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LARGE DEVIATIONS FOR INDEPENDENT RANDOM VARIABLES –
APPLICATION TO ERDÖS-RENYI’S FUNCTIONAL LAW OF LARGE

NUMBERS

Jamal Najim
1

Abstract. A Large Deviation Principle (LDP) is proved for the family 1
n

∑n
1 f(xn

i ) ·Zn
i where the de-

terministic probability measure 1
n

∑n
1 δxn

i
converges weakly to a probability measure R and (Zn

i )i∈N are

R
d-valued independent random variables whose distribution depends on xn

i and satisfies the following
exponential moments condition:

sup
i,n

Eeα∗|Zn
i | < +∞ for some 0 < α∗ < +∞.

In this context, the identification of the rate function is non-trivial due to the absence of equidistribu-
tion. We rely on fine convex analysis to address this issue. Among the applications of this result, we
extend Erdös and Rényi’s functional law of large numbers.
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1. Introduction

Let (Zn
i )i≤n, n∈N be a sequence of R

d-valued independent random variables and let (xn
i ; 1 ≤ i ≤ n; n ≥ 1)

be a deterministic X -valued sequence of elements satisfying

1
n

n∑

1

δxn
i

weakly−−−−→
n→∞ R

where X is a topological space endowed with its Borel σ-field. In this article, we investigate the Large Deviations
(LD) of the empirical mean

〈Ln, f〉 =
1
n

n∑

1

f(xn
i ) · Zn

i

where

1
n

n∑

1

f(xn
i ) · Zn

i =
1
n

n∑

1






f1(xn
i ) · Zn

i
...

fm(xn
i ) · Zn

i




 ,
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LARGE DEVIATIONS FOR INDEPENDENT RANDOM VARIABLES 117

the fk’s being the rows of the m × d matrix f . Here, each fk is a bounded continuous function from X to R
d

and · denotes the scalar product in R
d. In particular the random variable 〈Ln, f〉 is R

m-valued.
The random variables Zn

i are independent and satisfy the following exponential moment condition:

sup
i,n

E eα∗|Zn
i | < ∞ for some α∗ > 0. (1.1)

The law of Zn
i (denoted by L(Zn

i )) depends on xn
i in the sens that if xn

i and xn
j are close, then so are L(Zn

i )
and L(Zn

j ) for the following distance between probability measures:

dOW (P, Q) = inf
η

inf
{

a > 0;
∫

Rd×Rd

τ

(
z − z′

a

)

η(dzdz′) ≤ 1
}

,

where η is a probability with given marginals P and Q and τ(z) = e|z| − 1. This distance allows us to quantify
easily the “exponential proximity” of two probability measures.

The large deviation principle

The main result of the article is the Large Deviations Principle (LDP) established for 〈Ln, f〉 under the
previously mentioned assumptions: Cramér’s condition (1.1) and variables Zn

i which are independent but not
identically distributed.

The Large Deviations associated to this model are of interest in gaz theory and have been studied in the
one-dimensional case by Ellis, Gough and Pulé in [15] in the case where L(Zn

i ) ∝ eg(xn
i )·zP (dz). Related LDPs

have been established by Dembo and Zajic [10] and Gamboa and Gassiat in [17]. In both cases [15, 17], it is
important to consider random variables which do not have all their exponential moments (1.1). This model is
also of interest in information theory where Zn

i = f(xn
i , Y n

i ), the Y n
i ’s being i.i.d., and have been studied by

Dembo and Kontoyiannis [9] and Chi [3, 4] in the case where the process Y satisfies some mixing conditions.
There are two key issues to establish the LDP.

1. Since no steepness is assumed, we are not able to use Gärtner-Ellis’ theorem nor to adapt in a different
way Cramér’s exponential change of measure argument. Our main tools to overcome it are the technique
developed in [22] in the i.i.d. setting and a coupling argument based on the distance dOW .

2. The identification of the rate function is non trivial. In fact, the technique developed in [22] relies
heavily on exponential approximation and thus yields to a very abstract rate function. The model
being more complex here, so is the identification of the rate function. Convex Analysis provides us with
very efficient tools to address this point.

Let us mention that this kind of problems often arises when dealing with LD of independent but not identically
distributed random variables (Dawson and Gärtner [6,7], Djellout, Guillin and Wu [13]). In a different fashion,
let us mention the work of Zabell [29] around Mosco-convergence and Large Deviations.

Applications of the LDP

LDPs in infinite dimension. The LDP of 〈Ln, f〉 is the cornerstone to get LDPs in infinite dimensional
settings via Dawson and Gärtner’s projective limit approach. We derive LDPs for the empirical measure Ln

and the random walk Z̄n where

Ln =
1
n

n∑

i=1

Zn
i δxn

i
and Z̄n(t) =

1
n

[nt]∑

i=1

Zn
i , t ∈ [0, 1].

These results extend those of [22] to the case where the random variables Zn
i are not identically distributed and

yield to rate functions with an extra term (see Ths. 4.1 and 4.3) à la Lynch and Sethuraman [21]. For instance,
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118 J. NAJIM

the rate function of the LDP satisfied by Ln is given by:

I(µ) = I1(µa) + I2(µs),

where µ = µa + µs is the Lebesgue decomposition of µ with respect to R. In particular, I(µ) can be finite for
measures µ which are not absolutely continuous with respect to R. One shall notice that the LDP for Z̄n has
been studied by Schuette in [28] under different conditions.

Erdös and Rényi’s functional law of large numbers (FLLN). Assume that the Zn
i ’s are as previously, that

E Zn
i = 0 and consider the process

ηn,m : t 	→ 1
An

[m+tAn]∑

i=m

Zi, t ∈ [0, 1]

where An = [log n] ([x] denotes the integer part of x) and m lies between 1 and n − An. Our main result is
the description of the cluster points of the sets Kn = {ηn,m, 1 ≤ m ≤ n − An}. This problem is known as
Erdös-Rényi’s FLLN and has been studied by several authors among which Deheuvels [8], Borovkov [2], Sanchis
[26, 27] and Gantert [18]. Let us first remind the crucial observation of Erdös and Rényi. Let

Un = max
0≤m≤n−An

Zm+1 + · · · + Zm+An

An
·

If An = n, then the limit of Un is a.s. zero (law of large numbers). If An is finite, say An = 1, then the
limit is infinite (provided that the Z’s are not bounded). Erdös and Rényi [16] have shown that for a scaling
in-between, namely An = [log n], then the limit of Un exists, is non trivial and might by expressed by means of
the rate function associated to the LDP of the empirical mean (Cramér’s theorem).

We describe the set of cluster points by means of the rate function associated to the LDP of Z̄n. Our results
extend Deheuvels’ result to the multidimensional setting and extends Borovkov’s result to the case where the
random variables Zi do not have all their exponential moments. We also relax the i.i.d. assumption.

Outline of the paper

The paper is organized as follows: in Section 2, the notations and the assumptions are given, the distance dOW

is defined and examples fulfilling the assumptions are studied (Sect. 2.4); the LDP together with the identification
of the rate function are stated and proved in Section 3. Large Deviations for the empirical measure Ln and the
random walk Z̄n are proved in Section 4. Finally, Section 5 is devoted to Erdös and Rényi’s functional law of
large numbers.

2. Notations and assumptions

2.1. Notations

Let X be a topological vector space endowed with its Borel σ-field B(X ) and let R be a probability measure
on X . We denote by C(X ) (resp. Cd(X )) the set of R-valued (resp. R

d-valued) continuous bounded functions
on X ; by L1

d(X ) the set of R
d-valued R-integrable functions on X and by P(X ) the set of probability measures

on X . We shall sometimes drop X and denote the previous sets by C, Cd, L1
d.

Let | · | denote a norm on any finite-dimensional vector space (usually R, R
d or R

m×d). We denote by ‖ · ‖
the supremum norm on the space of bounded continuous functions from X with values in R, R

d or R
m×d,

i.e. ‖f‖ = supx∈X |f(x)|. As usual, δa is the Dirac measure at a. Let a be a m × d matrix and let z ∈ R
d.
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LARGE DEVIATIONS FOR INDEPENDENT RANDOM VARIABLES 119

We denote by · the usual matrix product, that is

a · z =






a1 · z
...

am · z






where aj is the j-th row of the matrix a. Hence, · denotes the scalar product λ · z or the matrix product a · z,
depending on the context. Let f : X → R

m×d be a (matrix-valued) continuous bounded function and θ ∈ R
m,

then

f(x) · z =






f1(x) · z
...

fm(x) · z




 and θ · f(x) =

m∑

j=1

θj fj(x)

where each fj ∈ Cd(X ) is the j-th row of the matrix f . Let u : X → R
d be a measurable function, we denote by

∫

X
f(x) · u(x)R(dx) =






∫
X f1(x) · u(x)R(dx)

...∫
X fm(x) · u(x)R(dx)




 .

In the sequel, we shall follow the convention that x ∈ X , y and θ are elements of R
m and z and λ, of R

d.
We will denote by Ā (resp. int(A)) the closure (resp. the interior) of the set A.

2.2. The Orlicz-Wasserstein distance

We introduce here a distance on the space of probability measures having some exponential moments:
∫

Rd

eα|z|P (dz) < ∞ for some α > 0.

We call it the Orlicz-Wasserstein distance. This distance appears to be very useful to quantify the “exponential
proximity” of two probability measures and is described below. It is then natural to ask to the distributions of
the family (Zn

i ) to change continuously (with respect to xn
i ) with respect to this distance.

Let τ(z) = e|z| − 1, z ∈ R
d and let us consider

Pτ (Rd) =
{

P ∈ P(Rd), ∃ a > 0
∫

Rd

τ
(z

a

)
P (dz) < ∞

}

=
{

P ∈ P(Rd), ∃ α > 0
∫

Rd

eα|z| P (dz) < ∞
}

Pτ is the set of probability distributions having some exponential moments. We denote by M(P, Q) the set of
all laws on R

d × R
d with given marginals P and Q. Consider the following Orlicz-Wasserstein distance defined

on Pτ (Rd) by:

dOW (P, Q) = inf
η∈M(P,Q)

inf
{

a > 0;
∫

Rd×Rd

τ

(
z − z′

a

)

η(dzdz′) ≤ 1
}

.

Lemma 2.1. dOW is a distance on Pτ (Rd).

Remark 2.1. Let us compare dOW with the usual Wasserstein distance:

W (P, Q) = inf
{∫

Rd×Rd

|z − z′|η(dzdz′), η ∈ M(P, Q)
}

.
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120 J. NAJIM

Then, W (P, Q) ≤ dOW (P, Q). In fact, |z| ≤ τ(z) therefore

∫

τ

(
z − z′

a

)

η(dzdz′) ≤ 1 ⇒
∫

|z − z′|η(dzdz′) ≤ a.

The proof of this lemma follows closely the standard proof of Dudley ([14], Lem. 11.8.3) and is omitted.
In the following, we shall endow Pτ (Rd) with the topology induced by dOW .

2.3. Assumptions

Let us now introduce some assumptions on the model:

Assumption A-1. R is a probability measure on (X ,B(X )) satisfying:

if U is a nonempty open set, then R(U) > 0.

Assumption A-2. The family (xn
i )1≤i≤n, 1≤n ⊂ X satisfies

1
n

n∑

1

δxn
i

weakly−−−−→
n→∞ R. (2.1)

Remark 2.2. The combination of Assumptions (A-1) and (A-2) is standard (see [1,15,17]). It has been shown
in [22] that the LDP for 〈Ln, f〉 might fail to hold if Assumption (A-1) is not fulfilled.

Assumption A-3. X is a compact space.

Assumption A-4. Let (Zn
i ) be a sequence of independent and R

d-valued random variables. There exists a
family of probability measures (P (x, ·), x ∈ X ) over R

d and a sequence (xn
i ; 1 ≤ i ≤ n; 1 ≤ n) with values in X

such that the law of each Zn
i is given by:

L(Zn
i ) ∼ P (xn

i , dz).

We shall call (P (x, ·), x ∈ X ) the distribution kernel associated to the family (Zn
i ). We will equally write P (x, ·),

Px or Px(dz).

We can associate to each kernel (P (x, ·), x ∈ X ) a cumulant generating function defined by

Λ(x, λ) = log
∫

Rd

eλ·zP (x, dz) where λ ∈ R
d,

and its convex conjugate
Λ∗(x, z) = sup

λ∈Rd

{λ · z − Λ(x, λ)} where z ∈ R
d.

Assumption A-5. Let (P (x, ·); x ∈ X ) ⊂ Pτ (Rd) be a given kernel. The application x 	→ P (x, A) is measurable
whenever the set A ⊂ R

d is borel. Moreover, the function

Γ : X → Pτ (Rd)
x 	→ P (x, ·)

is continuous when Pτ (Rd) is endowed with the topology induced by the distance dOW .
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LARGE DEVIATIONS FOR INDEPENDENT RANDOM VARIABLES 121

Remark 2.3. One shall notice that the two assumptions (A-3) and (A-5) yield the existence of a real number
α∗ > 0 such that

S∗ = sup
x∈X

∫

Rd

eα∗|z|Px(dz) < ∞. (2.2)

In fact, x 	→ dOW (Px, Px0) is a continuous application and is therefore bounded on the compact set X , that is
dOW (Px, Px0) ≤ a for every x ∈ X . In particular, for all x ∈ X , there exists a probability ηx ∈ M(Px, Px0) such
that ∫

e
|z−z′|

a ηx(dzdz′) ≤ 2.

Let α + β = 1. Choose b large enough so that α b > a and
∫

e
|z′|
β b Px0(dz′) < ∞ are satisfied. Then

∫

e
|z|
b Px(dz) =

∫

e
|z−z′+z′|

b ηx(dzdz′)

≤
[∫

e
|z−z′|

α b ηx(dzdz′)
]α [∫

e
|z′|
β b Px0(dz′)

]β

≤ 2α

[∫

e
|z′|

a Px0(dz′)
]β

< ∞

and (2.2) is established by taking α∗ = b−1.

Assumption (A-5) is probably the harder to check. Once (A-5) is fulfilled by a family of kernels (P (x, ·))x,
it is easy to build independent random variables whose law is given by L(Zn

i ) ∼ P (xn
i , dz). In Section 2.4,

Assumption (A-5) is proved to hold for the examples mentioned in the introduction.

2.4. Examples of families satisfying Assumption (A-5)

2.4.1. A family defined by its densities with respect to some probability measure P

Let P be such that ∫

Rd

eα∗|z|P (dz) < ∞ for some α∗ > 0, (2.3)

and consider the family of probability distributions Px defined by

dPx

dP
(z) =

eg(x)·z
∫

Rd eg(x)·zP (dz)
,

where g is a bounded continuous function from the compact set X ⊂ R
k into R

d. We will assume that
P (dz) = f(z) dz where dz stands for the Lebesgue measure on R

d and that f(z) = f(|z|), i.e. f is radial. We
also assume:

0 < |g(z)| = λ < λ∗. (2.4)

Under these assumptions,
∫

Rd eg(x)·zP (dz) does not depend on x. In order to prove that limx→x0 dOW (Px, Px0) =
0, it is sufficient to prove that for every ε > 0, there exists δ > 0 and a joint probability η such that

∫

Rd×Rd

e
|z−z′|

ε η(dz, dz′) ≤ 2

where |x − x0| < δ and η ∈ M(Px0 , Px). By (2.4), there exists an orthogonal matrix Ox such that:

Oxg(x0) = g(x) and lim
x→x0

|I − Ox| = 0, (2.5)
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122 J. NAJIM

where I denotes the identity matrix. Consider now the joint probability measure η associated to the random
variable (Z, OxZ) where

L(Z) ∼ eg(x0)·z
∫

Rd eg(x0)·zP (dz)
P (dz).

Then, η ∈ M(Px0 , Px). Let A(x) be defined by

A(x) =
∫

Rd×Rd

e
|z−z′|

ε η(dz, dz′) =
∫

Rd

e
|(I−Ox)·z|

ε Px0(dz).

Notice that A(x0) = 1. The Dominated Convergence theorem together with (2.4) and (2.5) yields then that

lim
x→x0

A(x) = 1.

In particular, if x − x0 is small enough say |x − x0| < δ then A(x) ≤ 2.

2.4.2. Twisted i.i.d. random variables

Let Z be a R
d-valued random variable with distribution Q. We introduce the following Orlicz space (recall

that τ(z) = e|z| − 1):

Lτ =
{

f : R
d → R

d; ∃a > 0,

∫

Rd

τ

(
f(z)

a

)

Q(dz) < ∞
}

.

We endow it with the norm

‖f‖τ = inf
{

a > 0;
∫

τ

(
f

a

)

dQ ≤ 1
}

.

Then (Lτ , ‖ · ‖τ ) is a Banach space. Note that

f ∈ Lτ ⇔ ∃α > 0, Eeα|f(Z)| < ∞.

Let X be a compact metric space and consider C(X ; Lτ ), the set of continuous functions from X to Lτ . The
fact that φ ∈ C(X ; Lτ ) implies two things:

• φ(x, ·) ∈ Lτ ∀x ∈ X ;
• x 	→ φ(x, ·) is continuous with respect to the norm ‖ · ‖τ .

Denote by Px the distribution of φ(x, Z). Then the family (Px)x∈X satisfies (A-5). In fact, consider the random
variables Y = φ(x, Z) and Ỹ = φ(x′, Z). Since φ is continuous,

Eτ

(
|Y − Ỹ |

ε

)

= Eτ

( |φ(x, Z) − φ(x′, Z)|
ε

)

≤ 1

for x′ close to x. Thus dOW (Px, Px′) ≤ ε.
Here is an example of a family for which Gärtner-Ellis’ theorem might not apply: let g : R

d → R and
f : X → R (X compact) be bounded and continuous and let Z be a random variable with values in R

d having
some exponential moments:

∃α > 0, Eeα|Z| < ∞.

Then the family of laws associated to Zx = Z
1+|f(x)u(Z)| satisfies (A-5).
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2.4.3. Csiszàr’s example

We study here a family of probability measures with non steep logarithmic moment generating functions.
Consider the probability distribution Pa associated with the following distribution function:

Fa(x) = 1 − e−ax

(1 + x)4
, x ≥ 0 where a ∈ [α, β] ⊂ (0,∞).

This kind of distribution has been introduced by Csiszàr [5] to emphasize some side effects in conditional limit
theorems (see also Léonard and Najim [20] for further information).

It is straightforward to check that Λ(λ) = log
∫∞
0 eλxPa(dx) is not steep for each value of a ∈ [α, β]. We shall

prove here that Assumption (A-5) holds in this situation. In other words if a0 ∈ [α, β] and [α, β] � a → a0, then

lim
a→a0

dOW (Pa, Pa0) = 0.

Let F−1
a be defined by

1 − e−aF−1
a (u)

(1 + F−1
a (u))4

= u, u ∈ [0, 1). (2.6)

It is straightforward to check that

F−1
β (u) ≤ F−1

a (u) ≤ F−1
α (u), ∀a ∈ [α, β]. (2.7)

Consider now the joint probability distribution η associated to the random variable (F−1
a (U), F−1

a0
(U)) where U

is uniformily distributed over [0, 1]. Then η’s marginals are Pa and Pa0 . From (2.6), we deduce that

F−1
a (u) = −1

a
log(1 − u) − 4

a
log(1 + F−1

a (u)) ≤ −1
a

log(1 − u). (2.8)

On the other hand, (2.7) yields

F−1
a (u) ≥ −1

a
log(1 − u) − 4

a
log(1 + F−1

α (u)) =
α

a
F−1

α (u) (2.9)

where the last equality follows from (2.8). Standard considerations about implicit functions (see for example
Dieudonné [12], Chap. 3) yield that

F−1
α (u) = − 1

α
log(1 − u) − ε(α, u) log(1 − u) where ε(α, u) −−−→

u→1
0. (2.10)

In particular, equations (2.8) and (2.9) together with (2.10) yield

∣
∣
∣
∣F

−1
a (u) +

1
a

log(1 − u)
∣
∣
∣
∣ ≤

∣
∣
∣
α

a
ε(α, u) log(1 − u)

∣
∣
∣ . (2.11)

Notice that ε(α, u) does not depend on a.
Let us prove now that for every ε > 0, there exists δ∗ > 0 such that |a − a0| ≤ δ∗ implies that

∫

R+× R+
e

|z−z′|
ε η(dz, dz′) =

∫ 1

0

e
|F−1

a (u)−F −1
a0

(u)|
ε du ≤ 2.

Article published by EDP Sciences and available at http://www.edpsciences.org/ps or http://dx.doi.org/10.1051/ps:2005006

http://www.edpsciences.org/ps
http://dx.doi.org/10.1051/ps:2005006


124 J. NAJIM

First choose u0 close enough to 1 such that
∫ 1

u0
e

|F−1
a (u)−F−1

a0
(u)|

ε du ≤ 1 whenever a − a0 is small enough, say
|a − a0| < δ (use (2.11)). Then choose a − a0 smaller enough, say |a − a0| < δ∗ < δ, such that

∫ u0

0

e
|F−1

a (u)−F −1
a0

(u)|
ε du ≤ 1.

This is possible via the Dominated Convergence theorem since lima→a0 F−1
a (u) = F−1

a0
(u) by the Implicit

Function theorem and |F−1
a (u) − F−1

a0
(u)| ≤ 2F−1

α (u) which is bounded over [0, u0].

3. The large deviation principle

We can now state the Large Deviation Principle.

Theorem 3.1 (the LDP). Let f : X → R
m×d be a bounded continuous function. Assume that (A-1), (A-2),

(A-3), (A-4) and (A-5) hold. Then, the family

〈Ln, f〉 =
1
n

n∑

1

f(xn
i ) · Zn

i

satisfies the LDP in (Rm,B(Rm)) with some good rate function Υ.

One can have a look at (3.8) to get more insight on the rate function Υ.

Theorem 3.2 (identification of the rate function). Under the assumptions of Theorem 3.1, let (Px)x∈X be the
distribution kernel associated to the family (Zn

i ) and let If be defined by

If (y) = sup
θ∈Rm

{

θ · y −
∫

X
Λ(x, θ · f(x))R(dx)

}

, y ∈ R
m,

where Λ(x, λ) is the cumulant generating function associated to (Px). Then

Υ = If .

3.1. Proof of the LDP

The proof follows closely proof of Theorem 2.2 in [22]. Let us briefly outline it in the real case. Consider

1
n

n∑

i=1

f(xn
i )Zn

i

where f and the Zn
i ’s are real-valued and satisfy the assumptions of Theorem 3.1. Let f̃(x) =

∑p
k=1 ak1Ak

(x)
be a step function and let (Pk)1≤k≤p be p probability measures with some exponential moments. Assume that
there are independent random variables Z̃n

i such that if xn
i ∈ Ak then L(Zn

i ) = Pk. Under these conditions,
one can easily establish a LDP for

1
n

n∑

i=1

f̃(xn
i )Z̃n

i =
a1

n

∑

j1∈{i:xn
i ∈A1}

Z̃n
j1 + · · · + ap

n

∑

jp∈{i:xn
i ∈Ap}

Z̃n
jp
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via Cramér’s theorem (this is the content of Lem. 3.3). The whole point of the proof of Theorem 3.1 is to build
an exponential approximation of 1

n

∑n
i=1 f(xn

i )Zn
i based on simpler objects 1

n

∑n
i=1 f̃(xn

i )Z̃n
i (this is the content

of Lem. 3.4) where

(1) the step function f̃ approximates f for the sup-norm ‖f̃ − f‖ ≤ ε;
(2) the random variable Z̃n

i approximates Zn
i with respect to the distance dOW :

dOW (L(Zn
i ),L(Z̃n

i )) ≤ ε. (3.1)

One should notice that in [22], step (2) is not necessary since the variables are i.i.d.

Lemma 3.3. Assume that (A-4) holds with the following kernel:

P (x, dz) =
p∑

k=1

1Ak
(x)Pk(dz)

where Pk ∈ Pτ (Rd) and (Ak; 1 ≤ k ≤ p) is a measurable partition of X (in particular, L(Zn
i ) ∼ Pk(dz) if

xn
i ∈ Ak).
Assume moreover that R(Ak) > 0 and R(∂Ak) = 0 where ∂Ak = Āk \ int(Ak) and consider the (matrix

valued) step function:

f : X −→ R
m×d

x 	−→ f(x) =
p∑

k=1

ak1Ak
(x)

where ak are m × d matrices. Then,

〈Ln, f〉 =
1
n

n∑

1

f(xn
i ) · Zn

i

=
1
n

∑

j1∈{i:xn
i ∈A1}

a1 · Zn
j1 + · · · + 1

n

∑

jp∈{i:xn
i ∈Ap}

ap · Zn
j1

satisfies the LDP in (Rm,B(Rm)) with the good rate function

If (y) = sup
θ∈Rm

{

y · θ −
∫

X
Λ (x, θ · f(x)) R(dx)

}

, y ∈ R
m (3.2)

where Λ(x, ·) is the cumulant generating function associated to (Px)x∈X .

Remark 3.1 (on the assumptions R(Ak) > 0 and R(∂Ak) = 0). In [22], a probability measure P with some
exponential moments is built such that

(1) if Z is a random variable with L(Z) = P , then the LDP does not hold for Z
n ;

(2) if Zi are i.i.d. P -distributed then the LDP does not hold for 1
n

∑n−1
1 Zi − Zn

n ;
(3) however, if N(n)

n → c > 0, then 1
n

∑N(n)
1 Zi satisfies a LDP.
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Assumptions R(Ak) > 0 and R(∂Ak) = 0 are made in order to avoid the effects (1) and (2). Denote by
NAk

(n) = �{i :, xn
i ∈ Ak}, then NAk

(n)

n → R(Ak) and the LDP holds for

1
n

∑

jk∈{i:,xn
i ∈Ak}

ak · Zn
jk

by virtue of (3).

Proof of Lemma 3.3. The proof is a direct adaptation of Lemmas 5.2 and 5.6 in [22]. The LDP is estab-
lished via Cramér’s theorem (Lem. 5.2) and the identification of the rate function relies on duality arguments
(Lem. 5.6). �

Lemma 3.4. Assume that (A-1), (A-2), (A-3) and (A-5) hold and let f : X → R
m×d be a bounded continuous

function.

(i) There exists a family of random variables (Zn
i )i,n with distribution kernel (Px) given by (A-5) which

satisfy (A-4).
(ii) There exists a family of independent random variables (Zn,ε

i )i,n associated to a kernel (P ε
x)x∈X and a

step function f ε such that

〈Lε
n, f ε〉 =

1
n

n∑

i=1

f ε(xn
i ) · Zn,ε

i

satisfies the LDP with good rate function given by

Ifε(y) = sup
θ∈Rm

{

y · θ −
∫

X
Λε (x, θ · f ε(x)) R(dx)

}

, y ∈ R
m

where Λε(x, ·) is associated to the kernel (P ε
x).

(iii) The family 〈Lε
n, f ε〉 is an exponential approximation of 〈Ln, f〉, i.e.:

lim
ε→0

lim sup
n→∞

1
n

log P {|〈Lε
n, f ε〉 − 〈Ln, f〉| > δ} = −∞ for every δ > 0.

(iv) The random variable 〈Ln, f〉 satisfies the full LDP with good rate function

Υ(y) = sup
η>0

lim inf
ε→0

inf
y′∈B(y,η)

Ifε(y′),

= sup
η>0

lim sup
ε→0

inf
y′∈B(y,η)

Ifε(y′), y ∈ R
m

where B(y, ε) = {y′ ∈ R
m, |y′ − y| < ε}.

Proof.

• The step function f ε and the kernel P ε. In the sequel, we shall build a step function f ε and a probability
kernel P ε

f ε(x) =
q∑

ι=1

αι1Dι(x), P ε(x, dz) =
q∑

ι=1

P̃ι(dz)1Dι(x)

Article published by EDP Sciences and available at http://www.edpsciences.org/ps or http://dx.doi.org/10.1051/ps:2005006

http://www.edpsciences.org/ps
http://dx.doi.org/10.1051/ps:2005006


LARGE DEVIATIONS FOR INDEPENDENT RANDOM VARIABLES 127

such that
(1) R(Dι) > 0 and R(∂Dι) = 0;
(2) ‖f ε − f‖ < ε;
(3) dOW (P ε(x, dz), P (x, dz)) < ε if x ∈ Dι,

in order to fulfill Assumptions of Lemma 3.3. We will rely heavily on Assumption (A-2). This is a key step.
Let ε > 0 be fixed and consider f : X → R

m×d. By Proposition A.1 in [22], there exist a1, . . . ,ap ∈ R
m×d and

ε1, . . . , εp ∈ (0, ε] such that the open sets Bf
k = f−1B(ak, εk) (where B(ak, εk) = {a ∈ R

m×d, |a − ak| < εk})
are R-continuous and form a cover of X :

X ⊂ ∪p
k=1B

f
k.

Similarly, as Γ : x 	→ Px is continuous and X is compact by (A-3), Proposition A.1 in [22] yields the existence of
P1, . . . , Pp′ ∈ Pτ (Rd) and ε′1, . . . , ε

′
p′ ∈ (0, ε] such that the open sets CP

l = Γ−1BOW (Pl, ε
′
l) (where BOW (Pl, ε

′
l) =

{P ∈ Pτ ; dOW (P, Pl) < ε′l}) are R-continuous and form a cover of X :

X ⊂ ∪p′
l=1C

P
l .

Thus, the family (Bf
k ∩CP

l )k,l is a cover of X based on R-continuous open sets. Assumption (A-1) implies that
each set is either empty or with strictly positive R-measure. Let us keep the non-empty sets. The previous
family satisfies the assumptions of Lemma A.2 in [22]. Therefore, there exists a partition (Dι; 1 ≤ ι ≤ q)
satisfying the properties of Lemma A.2 in [22]: each of the Dι is R-continuous with R-measure strictly positive.
Moreover, for every ι, there exist k and l such that

Dι ⊂ Bf
k ∩ CP

l

⊂ f−1B(ak, εk) ∩ Γ−1BOW (Pl, ε′l). (3.3)

Consider now a pairing which associates to each ι a unique couple (k, l) = (k(ι), l(ι)) such that (3.3) is satisfied.
We denote by

f ε =
q∑

ι=1

ak(ι) 1Dι .

It is then straightforward to check that ‖f ε − f‖ ≤ ε and that each Dι is R-continuous with strictly positive
measure. Moreover, if x ∈ Dι, then

dOW (Px, Pl(ι)) ≤ ε.

We denote by P ε the following kernel:

P ε(x, dz) =
q∑

ι=1

1Dι(x)Pl(ι)(dz). (3.4)

We can now build properly the families (Zn
i )i,n and (Zn,ε

i )i,n.
• The families (Zn

i )i,n and (Zn,ε
i )i,n.

Let xn
i ∈ X . There exists a unique Dι such that xn

i ∈ Dι. In particular

dOW (Pxn
i
, Pl(ι)) < ε,

where l(ι) is associated to ι via the pairing introduced after (3.3). Therefore, there exists a probability mea-
sure ηi,n on (Rd × R

d,B(Rd × R
d)) with given marginals Pxn

i
and Pl(ι) such that

∫

Rd×Rd

τ

(
x − y

ε

)

ηi,n(dxdy) ≤ 1.
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Endow (Rd × R
d,B(Rd × R

d)) with the probability measure ηi,n and set Zn
i (x, y) = x and Zn,ε

i (x, y) = y.
Then Zn

i is Pxn
i
-distributed, Zn,ε

i is Pl(ι)-distributed and

Eτ

(
Zn

i − Zn,ε
i

ε

)

≤ 1 ⇒ Ee
|Zn

i −Z
n,ε
i

|
ε ≤ 2. (3.5)

The usual countable extension ⊗i,nηi,n on the cartesian product Πi,nR
d × R

d yields the existence of a fam-
ily (Zn

i )i,n satisfying (A-4). The previous construction also yields the fact that the distribution kernel associated
to (Zn,ε

i ) is given by (3.4). Thus, 〈Lε
n, f ε〉 satisfies the assumptions of Lemma 3.3 and therefore satisfies the

LDP with good rate function Ifε .

• The exponential approximation.
First notice that

P {|〈Ln, f〉 − 〈Lε
n, f ε〉| > δ} ≤ P

{∣
∣
∣
∣
∣

1
n

n∑

1

f(xi) · (Zn
i − Zn,ε

i )

∣
∣
∣
∣
∣
>

δ

2

}

+P

{∣
∣
∣
∣
∣

1
n

n∑

1

(f(xi) − f ε(xi)) · Zn,ε
i

∣
∣
∣
∣
∣
>

δ

2

}

.

Thus

lim sup
n

1
n

log P {|〈Ln, f〉 − 〈Lε
n, f ε〉| > δ} ≤ lim sup

n

1
n

log P

{∣
∣
∣
∣
∣

1
n

n∑

1

f(xi) · (Zn
i − Zn,ε

i )

∣
∣
∣
∣
∣
>

δ

2

}

∨ lim sup
n

1
n

log P

{∣
∣
∣
∣
∣

1
n

n∑

1

(f(xi) − f ε(xi)) · Zn,ε
i

∣
∣
∣
∣
∣
>

δ

2

}

,

where a ∨ b = max(a, b). Consider first:

P

{∣
∣
∣
∣
∣

1
n

n∑

1

f(xi) · (Zn
i − Zn,ε

i )

∣
∣
∣
∣
∣
>

δ

2

}

≤ P

{
1
n

n∑

1

|Zn
i − Zn,ε

i | >
δ

2‖f‖

}

≤ exp
(

− nδ

2‖f‖ε
) n∏

1

E e
|Zn

i −Z
n,ε
i

|
ε ≤ exp

(

− nδ

2‖f‖ε
)

2n,

where the last inequality comes from (3.5). Thus

lim sup
n

1
n

log P

{∣
∣
∣
∣
∣

1
n

n∑

1

f(xi) · (Zn
i − Zn,ε

i )

∣
∣
∣
∣
∣
>

δ

2

}

≤ − nδ

2‖f‖ε + log 2. (3.6)

Consider now

P

{∣
∣
∣
∣
∣

1
n

n∑

1

(f(xi) − f ε(xi)) · Zn,ε
i

∣
∣
∣
∣
∣
>

δ

2

}

≤ P

{
1
n

n∑

1

|Zn,ε
i | >

δ

2ε

}

≤ exp
(

−α∗nδ

2ε

) n∏

1

E eα∗|Zn,ε
i |,
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where α∗ > 0 is chosen so that (2.2) is satisfied. We therefore get

lim sup
n

1
n

log P

{∣
∣
∣
∣
∣

1
n

n∑

1

(f(xi) − f ε(xi)) · Zn,ε
i

∣
∣
∣
∣
∣
>

δ

2

}

≤ −α∗δ
2ε

+ log S∗, (3.7)

where S∗ is given by (2.2). Finally, combining (3.6) and (3.7) with (3.5), we get

lim
ε→0

lim sup
n

1
n

log P {|〈Ln, f〉 − 〈Lε
n, f ε〉| > δ} = −∞.

Consequently, the family (〈Lε
n, f ε〉; ε > 0) is an exponential approximation of 〈Ln, f〉. As 〈Lε

n, f ε〉 satisfies the
LDP by Lemma 3.3 with good rate function Ifε , Theorem 4.2.16 in [11] yields a weak LDP (i.e. the lower bound
of the LDP holds for every open set while the upper bound only holds for compact sets) for 〈Ln, f〉 with rate
function

Υ(y) = sup
η

lim inf
ε

inf
y′∈B(y,η)

Ifε(y′) = sup
η

lim sup
ε

inf
y′∈B(y,η)

Ifε(y′). (3.8)

• The full LDP: exponential tightness of 〈Ln, f〉. In order to prove that 〈Ln, f〉 satisfies the full LDP, one has
to check that 〈Ln, f〉 is exponentially tight (see Chap. 4 in [11] for the definition of the exponential tightness):

P

{∣
∣
∣
∣
∣

1
n

n∑

1

f(xi) · Zn
i

∣
∣
∣
∣
∣
> K

}

≤ P

{
1
n

n∑

1

|Zn
i | >

K

‖f‖

}

≤ exp
(

−nKα∗

‖f‖
) n∏

1

E eα∗|Zn
i |.

As previously, if α∗ > 0 is chosen so that (2.2) is satisfied, we get:

lim sup
n

1
n

log P

{∣
∣
∣
∣
∣

1
n

n∑

1

f(xi) · Zn
i

∣
∣
∣
∣
∣
> K

}

≤ −Kα∗

‖f‖ + log S∗ −−−−→
K→∞

−∞.

Therefore, 〈Ln, f〉 is exponentially tight and satisfies the full LDP with good rate function Υ. �

Proof of Theorem 3.1. Given any kernel (Px) satisfying (A-5), we have shown in the previous proof that there
exist random variables with distribution kernel (Px) satisfying (A-4) and such that the LDP holds for 〈Ln, f〉.
This is sufficient to assert that the LDP holds for any family of random variables satisfying (A-4) and (A-5). �

3.2. Identification of the rate function

Let us first introduce some definitions which are customary in Convex Analysis. We say that Jε

epi-converges to J and we note J = epi-limε→0 Jε if for every y ∈ R
d

lim inf
ε→0

Jε(yε) ≥ J(y) for every sequence yε −−−→
ε→0

y (3.9)

and lim sup
ε→0

Jε(yε) ≤ J(y) for one sequence yε −−−→
ε→0

y. (3.10)

This is equivalent to:

sup
η>0

lim inf
ε→0

inf
y′∈B(y,η)

Jε ≥ J (3.11)

and sup
η>0

lim sup
ε→0

inf
y′∈B(y,η)

Jε ≤ J. (3.12)
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For the details, see the book by Rockafellar and Wets [25], Chapter 7. Epigraphical convergence has already
been mentioned by Dawson and Gärtner in [6, 7] to identify rate functions.

In order to prove Theorem 3.2, we will heavily rely on Wijsman’s theorem (Th. 11.34, [25]) which states that
the convex conjugation is continuous with respect to the epi-convergence. Otherwise stated, if Jε epi-converges
to J , then Jε,∗ will epi-converge to J∗, where Jε,∗ (resp. J∗) is the convex conjugate of Jε (resp. J).

Recall that by Lemma 3.4 (iv), the rate function of the LDP is given by Υ = epi-limε Ifε where Ifε is defined
in Lemma 3.4 (ii) by:

Ifε(y) = sup
θ∈Rm

{

y · θ −
∫

X
Λε (x, θ · f ε(x)) R(dx)

}

, y ∈ R
m.

In order to prove Theorem 3.2, we will prove that
∫
X Λε(x, θ · f ε(x))R(dx) epi-converges toward

∫
X Λ(x, θ ·

f(x))R(dx) (Lem. 3.6). Wijsman’s theorem will then allow us to conclude that Ifε converges toward the convex
conjugate of

∫
X Λ(x, θ · f(x))R(dx), which is the desired result. We first need the following result:

Proposition 3.5. Let (Zn
i )i,n and (Zn,ε

i )i,n be as in Lemma 3.4 and consider their distribution kernels (Px)x∈X
and (P ε

x)x∈X . Let x ∈ R
d be fixed, then

Λ(x, λ) = epi-lim
ε→0

Λε(x, λ)

where Λ(x, ·) (resp. Λε(x, ·)) is the cumulant generating function associated to (Px) (resp. (P ε
x)).

Proof. Let x be fixed and consider a family of i.i.d. random variables (Ži)i≥1 Px- distributed. The empirical
mean 1

n

∑n
i=1 Ži satisfies the LDP with good rate function

Λ∗(x, z) = sup
λ∈Rd

{λ · z − Λ(x, λ)}.

For every ε > 0, the probability measure P ε(x, dz) satisfies

dOW (P ε
x, Px) ≤ ε.

Therefore one can build an exponential approximation of 1
n

∑n
i=1 Ži with P ε

x-distributed i.i.d. families of random
variables (Žε

i )i≥1. Thus, Theorem 4.2.16 in [11] yields the following identity for the rate functions:

let x be fixed, Λ∗(x, z) = epi-lim
ε→0

Λ∗
ε (x, z).

Wijsman’s theorem (Th. 11.34, [25]) yields then:

let x be fixed, Λ(x, λ) = epi-lim
ε→0

Λε(x, λ)

and Proposition 3.5 is proved. �

Lemma 3.6. Consider the following integral functionals

Γ(θ) =
∫

X
Λ(x, θ · f(x))R(dx) and Γε(θ) =

∫

X
Λε(x, θ · f ε(x))R(dx),

where θ ∈ R
m. Then

Γ = epi-lim
ε→0

Γε. (3.13)
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Proof. Assume first that Λ(x, ·) and Λε(x, ·) are non-negative.
In view of Theorem 7.17 in [25], it is necessary and sufficient to prove the pointwise convergence Γε(θ) → Γ(θ)

for θ ∈ D where D is a dense subset of R
m. Denote by

DΓ = {θ ∈ R
m, Γ(θ) < ∞}.

We shall first deal with the case where θ ∈ (DΓ)c. In this case, Γ(θ) = ∞ and

θ · f ε(x) −−−→
ε→0

θ · f(x).

In particular, the lower bound (3.9) of the epi-convergence yields

lim inf
ε→0

Λε(x, θ · f ε(x)) ≥ Λ(x, θ · f(x)).

As the Λε’s are non-negative, we can apply Fatou’s lemma:

lim inf
ε→0

∫

Rd

Λε(x, θ · f ε(x))R(dx) ≥
∫

Rd

Λ(x, θ · f(x))R(dx).

Thus
lim
ε→0

Γε(θ) = Γ(θ) = ∞ for all θ ∈ (DΓ)c. (3.14)

Let now θ ∈ int(DΓ) be fixed. We denote by Dx = {λ ∈ R
d, Λ(x, λ) < ∞}. Let us first prove the pointwise

convergence:
lim
ε→0

Λε(x, θ · f ε(x)) = Λ(x, θ · f(x)). (3.15)

In order to do so, we shall prove that

θ ∈ int(DΓ) ⇒ θ · f(x) ∈ int(Dx) a.e. (3.16)

If θ ∈ int(DΓ), then Λ(x, θ · f(x)) < ∞ a.e. Assume

∃x ∈ X , θ · f(x) ∈ ∂Dx. (3.17)

Then there exists ε > 0 and there exists ξ ∈ R
m such that

|ξ − θ| < ε, Λ(x, ξ · f(x)) = ∞ and ξ ∈ int(DΓ).

Let α + β + δ = 1 be a convex combination, then Hölder’s inequality yields

Λ(x, ξ · f(x)) = log
∫

Rd

eξ·f(x)·zP (x, dz)

≤ α log
∫

Rd

e
ξ·(f(x)−f(y))

α ·zP (x, dz)

+ β log
∫

Rd

e
ξ·f(y)

β ·(z−z′)η(dz, dz′) + δΛ
(

y,
ξ · f(y)

δ

)

(3.18)

where η has given marginals Px and Py. Since ξ ∈ int(DΓ), there exists δ < 1 such that ξ/δ ∈ int(DΓ). Let
α = β = (1 − δ)/2 and choose a neighborhood Vx of x such that

log E e
|ξ||f(x)−f(y)|

α |Zx| < ∞ and dOW (Px, Py) ≤ β if y ∈ Vx.
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In particular log
∫

Rd e
ξ·f(y)

β ·(z−z′)η(dz, dz′) < ∞ if η is well-chosen (recall the definition of the Orlicz-Wasserstein
distance) and (3.18) yields

y ∈ Vx ⇒ Λ
(

y,
ξ · f(y)

δ

)

= ∞.

Necessarily,

Γ(ξ/δ) =
∫

X
Λ
(

x,
ξ · f(x)

δ

)

R(dx)

≥
∫

Vx

Λ
(

x,
ξ · f(x)

δ

)

R(dx) = ∞,

(recall that R(Vx) > 0 by Assumption (A-1)) which is impossible since ξ/δ ∈ DΓ. Necessarily, (3.17) is false
and (3.16) is proved.

Assume from now that θ ∈ int(DΓ). As shown previously, there exists a neighborhood Vx of θ · f(x) in-
cluded in int(Dx). Since no points of the boundary ∂Dx belong to Vx, a caracterization of the epi-convergence
(Th. 7.17, [25]) yields that:

sup
ζ∈Vx

|Λε(x, ζ) − Λ(x, ζ)| −−−→
ε→∞ 0.

As limε→0 θ · f ε(x) = θ · f(x), θ · f ε(x) ∈ Vx for ε small enough and

lim
ε→0

Λε(x, θ · f ε(x)) = Λ(x, θ · f(x)).

It remains to prove that Λε(x, θ · f ε(x)) is uniformly majorized by an integrable function.

Λε(x, θ · f ε(x)) ≤ α log E e
|θ||fε(x)−f(x)|

α |Zε
x|

+β log E e
|θ| ‖fε‖

β ·|Zε
x−Zx| + δΛ

(

x,
θ · f(x)

δ

)

·

First choose δ close enough to 1 so that θ/δ ∈ DΓ. Then fix α and β so that α + β + δ = 1. For ε small enough,
the right hand of the previous inequality can be majorized uniformily in ε. The Dominated convergence theorem
yields then

lim
ε→0

Γε(θ) = Γ(θ) for all θ ∈ int(DΓ). (3.19)

Finally, (3.14) and (3.19) yield the pointwise convergence limε→0 Γε(θ) = Γ(θ) for every point outside ∂DΓ.
Since the complement of ∂DΓ is dense in R

d, Theorem 7.17 in [25] yields the epi-convergence of Γε toward Γ
and the case where Λ and Λε are non-negative is done.

In the general case, let

mx =
∫

Rd

z P (x, dz) and mε
x =

∫

Rd

z P ε(x, dz).

As W (P, Q) ≤ dOW (P, Q) (recall Rem. 2.1), a straightforward application of the Kantorovich-Rubinstein theo-
rem (Th. 11.8.2,[14]) yields that:

lim
ε→0

mε
x = mx. (3.20)

Since |mε
x| ≤ K S∗ where S∗ is given by (2.2), the Dominated convergence theorem yields

∫

X
f ε · mε

x R(dx) →
∫

X
f · mx R(dx). (3.21)
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Let us introduce

Λ̃(x, λ) = log
∫

X
eλ·(z−mx)P (x, dz) = Λ(x, λ) − λ · mx and

Λ̃ε(x, λ) = log
∫

X
eλ·(z−mε

x)P ε(x, dz). = Λε(x, λ) − λ · mε
x.

Since the random variables Zx − mx are centered, Λ̃(x, λ) and Λ̃ε(x, λ) are non-negative for they are convex
and ∇Λ(x, 0) = ∇Λε(x, 0) = 0. As (3.20) holds,

Λ̃(x, λ) = epi-lim
ε→0

Λ̃ε(x, λ).

The first part of the proof yields
∫

X
Λ̃(x, θ · f(x))R(dx) = epi-lim

ε→0

∫

X
Λ̃ε(x, θ · f ε(x))R(dx),

that is
∫

X
Λ(x, θ · f(x))R(dx) + θ ·

∫

X
f(x) · mx R(dx) = epi-lim

ε→0

(∫

X
Λε(x, θ · f ε(x))R(dx) + θ ·

∫

X
f ε(x) · mε

x R(dx)
)

.

The conclusion follows as
∫

f ε · mε· dR → ∫
f · m· dR by (3.21) and Lemma 3.6 is proved. �

Proof of Theorem 3.2. Since Γ = epi-limε→0 Γε, Wijsman’s theorem (theorem 11.34, [25]) yields the
epi-convergence for the convex conjugates, that is precisely

If = epi-lim
ε→0

Ifε

and Theorem 3.2 is proved. �

4. Large deviations in infinite dimension

In this section, we prove a LDP for empirical measures. This result is of interest in statistical physics [15]
and in statistics [17]. We also prove a LDP for random walks in the spirit of Mogul’skii’s theorem. Both results
rely on Theorem 3.1 and are a careful adaptation of the proofs in [22].

In the case where X is compact, the continuous linear forms over Cd(X ) are vector measures. We denote
by M1(X ) the set of real measures and by Md(X ) the set of vector measures with value in R

d, that is µ ∈ Md(X )
iff µ = (µ1, . . . , µd) where each µi ∈ M1(X ). Let f ∈ Cd(X ) and µ ∈ Md(X ). We denote by

∫

X
f(x) · µ(dx)

�
=

d∑

l=1

∫

X
fl(x)µl(dx). (4.1)

In the case where f : X → R
m×d is a matrix valued bounded continuous function, we denote by

∫

f · dµ
�
=






∫
X f1(x) · µ(dx)

...∫
X fm(x) · µ(dx)




 (4.2)

Article published by EDP Sciences and available at http://www.edpsciences.org/ps or http://dx.doi.org/10.1051/ps:2005006

http://www.edpsciences.org/ps
http://dx.doi.org/10.1051/ps:2005006


134 J. NAJIM

where fj ∈ Cd(X ) is the jth row of the matrix f . We shall endow Md(X ) with the weak-∗ topology σ(Md, Cd)
which makes every linear form Γf : µ 	→ ∫

f · dµ continuous and with the associated Borel σ-field B(Md). Let
µ ∈ Md(X ). We denote by µa its absolutely continuous part with respect to R and by µs its singular part.

Following Lynch and Sethuraman [21], we introduce some notations. Let BV ([0, 1], Rd) (shortened in BV )
be the space of functions of bounded variation on [0, 1]. We identify BV with Md([0, 1]) in the usual manner:
To f ∈ BV there corresponds µf characterized by µf ([0, t]) = f(t). We endow BV with the weak-∗ topology
σ (BV , Cd([0, 1])) (shortened in σw) and with the associated Borel σ-field Bw. Up to this identification, Cd([0, 1])
is the topological dual of BV . Let f ∈ BV and µf be the associated measure in Md([0, 1]). We will denote
µf = µf

a +µf
s where µf

a is the absolutely continuous part of µf with respect to the Lebesgue measure dx and µf
s

its singular part.
Recall that Dx = {λ ∈ R

d, Λ(x, λ) < ∞}. The recession function ρ(x, z) of Λ∗(x, z) is defined by ρ(x, z) =
sup{λ · z, λ ∈ Dx}.

4.1. Large deviations in infinite dimension

We shall prove here a LDP for the empirical measure Ln and the random walk Z̄n where

Ln =
1
n

n∑

i=1

Zn
i δxn

i
and Z̄n(t) =

1
n

[nt]∑

i=1

Zn
i

where [· ] denotes the integer part.

Theorem 4.1. Assume that (A-1), (A-2), (A-3), (A-4) and (A-5) hold. Then the family

Ln =
1
n

n∑

1

Zn
i δxn

i

satisfies the large deviation principle in (Md(X ), σ(Md, Cd),B(Md)) with the good rate function

I(µ) = sup
f∈Cd(X )

{∫

X
f(x) · µ(dx) −

∫

X
Λ(x, f(x))R(dx)

}

=
∫

X
Λ∗
(

x,
dµa

dR
(x)
)

R(dx) +
∫

X
ρ

(

x,
dµs

dθ
(x)
)

θ(dx), (4.3)

where ρ(x, z) is the recession function of Λ∗(x, ·) and θ is any real-valued nonnegative measure with respect to
which µs is absolutely continuous.

Proof.
• The LDP. Denote by C′

d(X ) (resp. C′(X )) the algebraic dual of Cd(X ) (resp. C(X )). Denote by 〈 , 〉 the
duality bracket between these spaces and consider the mapping

pf1,...,fm : C′
d(X ) → R

m, ξ 	→






〈ξ, f1〉
...

〈ξ, fm〉




 ,
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where fi ∈ Cd(X ). Then pf1,...,fm(Ln) = 〈Ln, f〉 satisfies a LDP by Theorem 3.1. By Dawson-Gärtner’s theorem,
Ln satisfies a LDP in C′

d(X ) endowed with the weak-∗ topology with the good rate function

I(ξ) = sup
m≥1

sup
f1,...,fm∈Cd(X )

sup
θ∈Rm

{
m∑

1

θi〈ξ, fi〉 −
∫

X
Λ(x,

m∑

1

θifi(x))R(dx)

}

= sup
f∈Cd(X )

{

〈ξ, f〉 −
∫

X
Λ(x, f(x))R(dx)

}

for ξ ∈ C′
d(X ).

• Restriction of the LDP. Let us show that I(ξ) < +∞ implies that ξ is a continuous linear form. Assume that
I(ξ) < +∞. Then for all f ∈ Cd(X ), f �= 0

〈

ξ,
f

a‖f‖
〉

≤ I(ξ) +
∫

X
Λ
(

x,
f

a‖f‖
)

dR ≤ I(ξ) + sup
x∈X

log
∫

Rd

e
|z|
a P (x, dz).

For a large enough supx∈X log
∫

Rd e|z|/aP (x, dz) is finite by (2.2) and 〈ξ, f〉 ≤ K‖f‖. Considering −f , we get
|〈ξ, f〉| ≤ K‖f‖. Thus ξ is a continuous linear form. Since X is compact, Riesz’s representation theorem implies
that ξ can be represented as a R

d-valued measure over X , i.e. ξ ∈ Md(X ). We shall denote it by µ. We can
now apply Lemma 4.1.5 in [11] to obtain the LDP in (Md(X ), σ(Md, Cd),B(Md)).
• Representation of the rate function. The representation of the rate function relies heavily on the following
theorem from Rockafellar:

Theorem 4.2 (Rockafellar, Th. 5 in [24]). Assume that X is a compact space with no nonempty open sets of
measure zero, and that the multifunction D : x 	→ Dx is fully lower semicontinuous, with intDx �= ∅ for every x.
Assume further that

∫
V
|Λ(x, λ)|R(dx) < ∞ whenever V is an open subset of X and λ is a point of R

d having
a neighborhood U such that U ⊂ Dx for all x ∈ V . Then

I(µ) = sup
f∈Cd(X )

{∫

X
f(x) · µ(dx) −

∫

X
Λ(x, f(x))R(dx)

}

=
∫

X
Λ∗
(

x,
dµa

dR
(x)
)

R(dx) +
∫

X
ρ

(

x,
dµs

dθ
(x)
)

θ(dx),

where ρ(x, ·) is the recession function of Λ∗(x, ·), µs is the singular componant of µ with respect to R, and θ is
any nonnegative measure in M1(X ) with respect to which µs is absolutely continuous.

It is straightforward to check that intDx �= ∅ for every x holds here. We must check that the multifunction

D : x 	→ Dx

is fully lower semicontinuous [24] (p. 457), that is:
(i) if x0 ∈ X and U ⊂ R

d is an open set such that Dx0 ∩ U �= ∅ then there exists a neighborhood V of x0

such that Dx ∩ U �= ∅ whenever x ∈ V ;
(ii) if V × U is a neighborhood of (x0, λ0) ∈ X × R

d, such that {x′ ∈ V, U ⊂ Dx′} is dense in V then
λ0 ∈ Dx0 .

The first step is easy to check. Let us focus on the second point. Let V ×U be a neighborhood of (x0, λ0) such
that {x′ ∈ V, U ⊂ Dx′} is dense in V . Let 0 < β < 1 be such that λ0

β ∈ U and let x ∈ {x′ ∈ V, U ⊂ Dx′} be
such that dOW (Px, Px0) ≤ α

|λ0| (α + β = 1). Hölder’s inequality yields

Λ(x0, λ0) ≤ α log
∫

Rd×Rd

e
|λ0| |z−z′|

α η(dz, dz′) + βΛ(x, λ0/α),
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where η has marginals Px0 and Px. Since dOW (Px, Px0) ≤ α
|λ0| , there exists at least a probability measure η

with marginals Px0 and Px such that

log
∫

Rd×Rd

e
|λ0| |z−z′|

α η(dz, dz′) < ∞.

Therefore Λ(x0, λ0) < ∞ and λ0 ∈ Dx0 ⊂ Dx0 . Thus D is fully lower semicontinuous.
We must also check the following: Assume now that V is an open subset of X and that λ is a point of R

d

having a neighborhood U such that U ⊂ Dx for all x ∈ V . We have to check that in this case,
∫

X
|Λ(x, λ)|R(dx) < ∞. (4.4)

First note that V is relatively compact. Let x0 ∈ V be fixed. Let 0 < β < 1 be such that λ
β ∈ U and let x be

such that dOW (Px0 , Px) < α
|λ0| . Then

|Λ(x, λ0)| ≤ α

∣
∣
∣
∣log

∫

Rd×Rd

e
|λ0| |z−z′|

α η(dz, dz′)
∣
∣
∣
∣+ β|Λ(x0, λ0/β)|,

where η has marginals Px0 and Px. The previous inequality implies that |Λ(x, λ0)| is dominated by a constant
(the right side of the inequality) whenever dOW (Px0 , Px) < α

|λ0| . Since V is relatively compact, |Λ(·, λ0)| is
dominated by a piecewise constant function and therefore is integrable.

As (A-1) and (A-3) hold true, all the assumptions of Theorem 4.2 are satisfied and

I(µ) =
∫

X
Λ∗
[
dµa

dR
(x)
]

R(dx) +
∫

X
ρ

[
dµs

dθ

]

dθ,

where ρ is the recession function of Λ∗ and θ is any real-valued nonnegative measure with respect to which µs

is absolutely continuous. As Λ is the convex conjugate of Λ∗, ρ is the support function of Λ [23] (Th. 13.3),
that is:

ρ(x, z) = sup{λ · z, λ ∈ Dx}.
Hence Theorem 4.1 is proved. �

We shall now derive the LDP for the random function

t 	→ Z̄n(t) =
1
n

[nt]∑

i=1

Zi, t ∈ [0, 1]

where [x] denotes the integer part of x. This result is a corollary of Theorem 4.1 in the case where X = [0, 1],
R(dx) = dx is the Lebesgue measure on [0, 1] and (xn

i ) =
(

i
n

)
. One can check that (A-1), (A-2) and (A-3) hold

true in this situation.

Theorem 4.3. Assume that (A-4) and (A-5) hold. Then the random functions
(
Z̄n(t)

)
t∈[0,1]

satisfy the LDP
in (BV , σw,Bw) with the good rate function

Φ(f) =
∫

[0,1]

Λ∗(x, f ′
a(x)) dx +

∫

[0,1]

ρ(x, f ′
s(x)) dθ(x),

where θ is any real-valued nonnegative measure with respect to which µf
s is absolutely continuous and f ′

s =
dµf

s/dθ.
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Remark 4.1. Note that the definition of f ′
s is θ-dependent. However, by homogeneity, Φ does not depend

upon θ.

Proof. Consider Π : Md → BV where

Π(µ) =






µ1[0, x]
...

µd[0, x]






x∈[0,1]

and recall that Ln = 1/n
∑n

1 Ziδxi . Then Π is a continuous bijection and Π(Ln) = Z̄n. As Ln satisfies the LDP
with the good rate function (4.3), the contraction principle yields the LDP with the desired rate function. �

5. Erdös and Rényi’s functional law of large numbers

In this section, we establish Erdös and Rényi’s functional law of large numbers. Assume for the sake of
simplicity that E Zn

i = 0 for every 1 ≤ i ≤ n, n ∈ N. In this case, Λ∗(xn
i , 0) = 0 which in turn yields that

Φ(0) =
∫
X Λ∗(x, 0)R(dx) = 0. Let

ηn,m : t 	→ 1
An

[m+tAn]∑

i=m

Zn
i , t ∈ [0, 1]

where An = [log n] and 1 ≤ m ≤ n − An and recall that

Φ(f) =
∫

[0,1]

Λ∗(x, f ′
a(x)) dx +

∫

[0,1]

ρ(x, f ′
s(x)) dθ(x)

is defined over the set BV (we denote by Φ(A) = infA Φ). Our main result is the following:

Theorem 5.1. Under Assumptions (A-1), (A-2), (A-3), (A-4) and (A-5), There exists a set Ω̃ with probability
one such that for every ω ∈ Ω̃:

(1) the set {ηn,m(ω); 1 ≤ m ≤ n− An, n ∈ N} is relatively compact in BV and every cluster point belongs
to

∆ = {f ∈ BV ; Φ(f) ≤ 1};
(2) let f ∈ ∆, then there exists a subsequence of {ηn,m(ω)} which converges to f .

Remark 5.1. Note that since BV is not first countable, the existence of a subsequence of ηn,m converging to f
is a stronger result than the fact that f is a cluster point of {ηn,m} (in the later case, we would only have the
existence of a subnet converging to f).

As a corollary, we get:

Theorem 5.2. Let Γ : BV → R be a continuous functional then under the same assumptions as in Theorem
5.1,

lim
n→∞ sup

1≤m≤n−An

Γ(ηn,m) = sup
f∈∆

Γ(f)

with probability one.
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In the case where the random variables are real, Theorem 5.1 has been proved by Deheuvels in [8] for i.i.d.
random variables satisfying (∃α > 0, Eeα|Zi| < ∞). In the case where the random variables are i.i.d., R

d-valued
and satisfy the stronger integrability condition:

Eeα|Zi| < ∞ for all α > 0, (5.1)

Theorem 5.1 has been proved by Borovkov in [2].
Our proof relies on Theorem 4.3 and on the technique developed by Deheuvels [8] to handle some delicate

topological issues (BV is not first countable). In the spirit of Deheuvels, we shall first prove Theorem 5.3
hereafter, from which Theorem 5.1 is a direct corollary. Let us first introduce some notations. Denote by |f |v(s)
the total variation of f , that is |f |v(s) = |µf |([0, s]), where |µf | = µ+

f + µ−
f (Hahn-Jordan decomposition).

Let BVC = {f ∈ BV , |f |v(1) ≤ C} and consider the following distance defined on BV :

d(f, g) =
∫ 1

0

|f − g| d� + |f(1) − g(1)|,

where � denotes the Lebesgue measure.
Then BVC is a compact set of BV and the topology induced by the weak topology on BVC is compatible with
the one induced by d on BVC (see [19]). We will denote by

Kn = {ηn,m; 1 ≤ m ≤ n − An}.

As usual, we will say that a condition κn holds ultimately if there exists N such that κn is true whenever n ≥ N .
Similarly, we will say that κn holds ultimately with probability one if there exists a set Ω̃ with probability one
such κn is true whenever n ≥ N(ω) and ω ∈ Ω̃.

Theorem 5.3. There exists a nonnegative real constant C such that

∆ ⊂ BVC and Kn ⊂ BVC ultimately.

If F ⊂ BVC, denote by
F ε = {f ∈ BVC , ∃g ∈ F, d(f, g) < ε}.

Then the following inclusion holds
∆ ⊂ Kε

n ⊂ ∆2ε

ultimately with probability one.

Our proof is essentially a restatement of Deheuvels’ proof of Theorem 3.1 in [8]. Since our LDP is not exactly
the one stated by Deheuvels in [8] (Lem. 2.14), a few details need to be added.

Proof. The guideline of the proof is to restrict ourselves to some compact set BVc of BV which is metrisable
with respect to the induced topology. We shall prove the theorem in several steps.
• Step 1. Choice of the constant C.

Let A > 0 then the complement of BVA is a σw-open set in BV and

{Z̄n /∈ BVA} =

{
1
n

n∑

i=1

|Zi| > A

}

.

The LD lower bound in Theorem 4.3 yields

− inf{Φ(f); f /∈ BVA} ≤ lim inf
n→∞

1
n

log P{Z̄n /∈ BVA}.
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On the other hand,
P{Z̄n /∈ BVA} ≤ e−n(Aα∗−log S∗)

where α∗ and S∗ are defined in (2.2). Thus

1
n

log P{Z̄n /∈ BVA} ≤ −(Aα∗ − log S∗) ≤ −2

for A large enough. In particular, inf{Φ(f); f /∈ BVA} ≥ 2 > 1 which implies that ∆ ⊂ BVA. Let us now prove
that

lim sup
n→∞

sup
1≤m≤n−An

1
An

m+An∑

i=m

|Zi| ≤ B < ∞ (5.2)

with probability one. One shall notice that

P

(

sup
1≤m≤n−An

1
An

m+An∑

i=m+1

|Zi| > B

)

= P

(
n−An⋃

m+1

{
1

An

m+An∑

i=m+1

|Zi| > B

})

≤ n sup
1≤m≤n−An

P {ηn,m /∈ BVB} ≤ n exp{−An(Bα∗ − log S∗)} ≤ 1
n2

for B large enough. Thus (5.2) follows by Borel-Cantelli’s lemma. As |ηn,m|v(1) = 1
An

∑m+An

i=m+1 |Zi|, (5.2) yields
that Kn ⊂ BVB+1 ultimately. Let C = max(A, B + 1). Then the first part of the theorem is proved. It is useful
for the sequel to note that

lim sup
n→∞

1
n

log P{Z̄n /∈ BVC} ≤ −2. (5.3)

For the sake of clarity, we will write d-open (resp. d-closed) when working with open sets (respectively closed
sets) in BV C for the induced topology.
• Step 2. Let us prove that ultimately, Kε

n ⊂ ∆2ε a.e. Due to the triangle inequality, it is enough to prove
that

P{Kn �⊂ ∆ε, i.o.} = 0, (5.4)
where i.o. stands for infinitely often.

P{Kn �⊂ ∆ε} = P

{
n−An⋃

m=1

{ηn,m /∈ ∆ε}
}

≤ n sup
1≤m≤n−An

P{ηn,m /∈ ∆ε}.

Denote by C the complement of ∆ε in BV . One can not apply directly the large deviation upper bound to the
event {ηn,m ∈ C} since C is not σw-closed in BV . However,

P{ηn,m ∈ C} ≤ P{ηn,m ∈ C ∩ BVC} + P{ηn,m /∈ BVC}. (5.5)

As a subset of BVC , ∆ε is d-open. Therefore, its complement in BVC , namely C ∩ BVC , is d-closed in BVC .
As BVC is a σw-compact set of BV , so is C ∩ BVC . As Theorem 4.3 remains valid for ηn,m with the speed An

when m is fixed, the LD upper bound yields then

lim sup
n→∞

1
An

log P{ηn,m ∈ C ∩ BVC} ≤ −Φ(C ∩ BVC).

Moreover C ∩ BVC being σw-compact and disjoint from ∆, we get

Φ(C ∩ BVC) > 1.
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This together with (5.3) yields then

lim sup
n→∞

1
An

log P{ηn,m ∈ C} ≤ max(−2,−Φ(C ∩ BVC)) = −(1 + δ), δ > 0.

Therefore, for n large enough,

P{ηn,m ∈ C} ≤ e−(1+δ/2)An ,

which yields

P{Kn �⊂ ∆ε} ≤ ne−(1+δ/2)An .

Using the fact that An ≥ log n − 1, one gets:

P{Kn �⊂ ∆ε} ≤ κ n−δ/2, where κ = exp(1 + δ/2). (5.6)

Introduce now the sequence of integers nk = max{n; An = k}. Recalling that An = [log n], we see that nk is
properly defined for k large enough. Moreover, ek ≤ nk < e(k+1), and Kn ⊂ Knk

for nk−1 < n ≤ nk. Thus (5.4)
is equivalent to

P{Knk
�⊂ ∆ε, i.o. (in k)} = 0. (5.7)

By (5.6), we obtain for k large enough (say k ≥ k0):

∞∑

k=k0

P{Knk
�⊂ ∆ε} ≤ κ

∞∑

k=k0

n
−δ/2
k ≤ κ

∞∑

k=k0

exp
(

−kδ

2

)

< ∞.

Therefore, (5.7) follows by Borel-Cantelli. This in turn yields (5.4).

• Step 3. Let us prove now that ∆ ⊂ Kε
n ultimately with probability one. Let f ∈ ∆ and ε > 0. Consider the

set

Nε(f) = {g ∈ BVC , d(f, g) < ε}.
The set Nε(f) is d-open in BVC . We want to prove:

−(1 − δ) ≤ lim inf
n→∞

1
n

log P(Z̄n ∈ Nε(f)). (5.8)

One can not apply directly the LD lower bound since Nε(f) is not σw-open as a subset of BV . However, there
exists a σw-open set G in BV such that G ∩ BVC = Nε(f). In particular (1 − α)f ∈ G for some α > 0. As
Φ(0) = 0 (recall that EZn

i = 0),

Φ((1 − α)f) ≤ (1 − α)Φ(f) + αΦ(0) ≤ 1 − α < 1.

Therefore, Φ(G) = 1 − δ < 1 for some δ > 0. As G ⊂ Nε(f) ∪ BV c
C , the LD lower bound (Th. 4.3) yields:

−(1 − δ) ≤ lim inf
n→∞

1
n

log P{Z̄n ∈ G}

≤ max
(

lim inf
n→∞

1
n

log P(Z̄n ∈ Nε(f)), lim sup
n→∞

1
n

log P(Z̄n /∈ BVC)
)

.

Recall that lim supn
1
n log P(Z̄n /∈ BVC) ≤ −2 by (5.3). Thus (5.8) is proved.
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Let us introduce Rn = [(n − An)/An] and the corresponding set Mn = {ηn,rAn , 1 ≤ r ≤ Rn}. Observe that
Mn ⊂ Kn. Moreover, P{ηn,rAn ∈ Nε(f)} ≥ exp(−An(1 − δ/2)) for n large enough. Therefore,

P{f /∈ M2ε
n } = P {∩1≤r≤Rn{ηn,rAn /∈ N2ε(f)}}

≤
(

1 − inf
1≤r≤Rn

P(ηn,rAn ∈ N2ε(f))
)Rn

≤ exp
(

−Rn inf
1≤r≤Rn

P(ηn,rAn ∈ N2ε(f))
)

≤ exp (−Rn exp(−An(1 − δ/2)))

≤ exp(−nδ/3) (5.9)

for n sufficiently large.
To prove the full statement, recall that ∆ is d-compact in BVC thus there exist f1, · · · , fk ∈ ∆ such that

∆ ⊂ ∪k
i=1Nε(fi). Therefore,

P{∆ �⊂ M ε
n} ≤ P{∪k

i=1Nε(fi) �⊂ M ε
n}

≤
k∑

i=1

P{Nε(fi) �⊂ M ε
n}

≤
k∑

i=1

P{fi �⊂ M2ε
n }

≤ k exp(−nδ/3)

for n sufficiently large where the last inequality follows by (5.9). Therefore Borel-Cantelli’s lemma implies that

P{∆ �⊂ M ε
n, i.o.} = 0.

As Mn ⊂ Kn, the same conclusion holds for Kn:

P{∆ �⊂ Kε
n, i.o.} = 0. �
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[15] R.S. Ellis, J. Gough and J.V. Pulé, The large deviation principle for measures with random weights. Rev. Math. Phys. 5 (1993)

659–692.
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