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ON THE INFINITE TIME HORIZON LINEAR-QUADRATIC REGULATOR
PROBLEM UNDER A FRACTIONAL BROWNIAN PERTURBATION
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Abstract. In this paper we solve the basic fractional analogue of the classical infinite time horizon
linear-quadratic Gaussian regulator problem. For a completely observable controlled linear system
driven by a fractional Brownian motion, we describe explicitely the optimal control policy which min-
imizes an asymptotic quadratic performance criterion.
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1. Introduction

Recently, stochastic models appropriate for long-range dependent phenomena have attracted a great deal of
interest and numerous theoretical results and successful applications have been already reported. In particular,
several contributions in the literature have been devoted to the extension of the classical theory of continuous-
time stochastic systems driven by Brownian motions to analogues in which the driving processes are fractional
Brownian motions (fBm’s for short). The tractability of the standard problems in prediction, parameter esti-
mation and filtering is now rather well understood (see, e.g., [6–9, 15, 18, 19] and references therein).

As far as we know, concerning optimal control problems, it is not yet fully demonstrated. Nevertheless, see
[1] for a recent attempt in a general setting and [10] for a complete solution of the simplest linear-quadratic
problem on a finite time interval. Here our aim is to illustrate further the actual solvability of control problems
by exhibiting an explicit solution for the basic infinite time fractional linear-quadratic regulator problem.

We deal with the fractional analogue of the so-called linear-quadratic Gaussian regulator problem in one
dimension. The real-valued state process X = (Xt, t ≥ 0) is governed by the stochastic differential equation

dXt = aXtdt + butdt + dBH
t , t ≥ 0, X0 = x, (1.1)

which is as usual interpreted as an integral equation. Here x is a fixed initial condition, BH = (BH
t , t ≥ 0) is

a normalized fBm with the Hurst parameter H in [1/2, 1) and the coefficients a and b �= 0 are fixed constants.
We suppose that X is completely observed and that a closed-loop control of the system is available in the sense
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186 M.L. KLEPTSYNA, A. LE BRETON AND M. VIOT

that at each time t ≥ 0 one may choose the input ut in view of the passed observations {Xs, 0 ≤ s ≤ t} in order
to drive the corresponding state, Xt = Xu

t say. Then, given a cost function which evaluates the performance of
the control actions, the classical problem of controlling the system dynamics so as to minimize this cost occurs.
After considering in [10] the case of an expected integral quadratic cost on a finite time interval, here we analyze
the case of an average quadratic payoff per unit time J defined for a control policy u = (ut, t ≥ 0) by

J(u) = lim sup
T→+∞

1
T

∫ T

0

[qX2
t + ru2

t ]dt, (1.2)

where q and r are positive constants. It is well-known that when H = 1/2 and hence the noise in (1.1) is a
Brownian motion, then (see, e.g., [3, 12]) a solution ū to the corresponding problem, called an optimal control,
is provided for all t ≥ 0 by the instantaneous linear feedback

ūt = − b

r
ρX̄t ; X̄t = X ū

t , (1.3)

where ρ is the nonnegative solution of the algebraic Riccati equation b2

r ρ2 − 2aρ − q = 0, i.e.,

ρ =
r

b2
[a + δ] ; δ =

√
a2 +

b2

r
q. (1.4)

Moreover the optimal cost J(ū) is given by
J(ū) = ρ a.s. (1.5)

Our main goal here is to show that actually when the system (1.1) is driven by a fBm with some H ∈ (1/2, 1)
instead of a Brownian motion, an explicit solution to the optimal control problem under the performance
criterion (1.2) is still available.

The paper is organized as follows. At first in Section 2, we fix some notations and preliminaries. Then,
in Section 3, a first solution to the concerned closed-loop control problem is elaborated: an optimal control
is identified as a linear but not instantaneous feedback which involves the solution of a Volterra type integral
equation and the optimal cost is computed. Section 4 is devoted to a complementary analysis: another optimal
control defined in terms of a simpler and more explicite linear feedback is described and the lowest possible cost
achievable by means of an instantaneous linear feedback is compared to the optimal cost. Finally, Section 5 is
an Appendix dedicated to auxiliary developments: we derive some technical results and we investigate ergodic
properties of some involved processes.

2. Preliminaries

In what follows all random variables and processes are defined on a given stochastic basis (Ω,F , P). Moreover
the natural filtration of a process is understood as the P-completion of the filtration generated by this process.

Here, for some H ∈ [1/2, 1), BH = (BH
t , t ≥ 0) is a normalized fractional Brownian motion with Hurst

parameter H means that BH is a Gaussian process with continuous paths such that BH
0 = 0, EBH

t = 0 and

EBH
s BH

t =
1
2

[
s2H + t2H − |s − t|2H

]
, s, t ≥ 0. (2.1)

Of course the fBm reduces to the standard Brownian motion when H = 1/2. For H �= 1/2, the fBm is outside
the world of semimartingales but a theory of stochastic integration w.r. to fBm has been developed (see, e.g.,
[4] or [5]). Actually the case of deterministic integrands, which is sufficient for the purpose of the present paper,
is easy to handle (see, e.g., [18]).
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INFINITE TIME FRACTIONAL LINEAR-QUADRATIC REGULATOR 187

– Fundamental martingale associated to BH – There are simple integral transformations which change the fBm
to martingales (see [9, 16–19]). In particular, defining for 0 < s < t ≤ T

kH(t, s) = κ−1
H s

1
2−H(t − s)

1
2−H ; κH = 2HΓ(3/2 − H)Γ(H + 1/2), (2.2)

wH
t = λ−1

H t2−2H ; λH =
2HΓ(3 − 2H)Γ(H + 1/2)

Γ(3/2 − H)
, (2.3)

MH
t =

∫ t

0

kH(t, s)dBH
s , (2.4)

then the process MH is a Gaussian martingale, called in [18] the fundamental martingale, whose variance
function 〈MH〉 is nothing but the function wH . Actually, the natural filtration of MH coincides with the
natural filtration (FH

t ) of BH . In particular, we have the direct consequence of the results of [9] that, given
a suitably regular deterministic function c = (c(t), t ≥ 0), the following representation holds almost surely
for t ≥ 0: ∫ t

0

c(s)dBH
s =

∫ t

0

Kc
H(t, s)dMH

s , (2.5)

where for H ∈ (1/2, 1) the function Kc
H is given by

Kc
H(t, s) = H(2H − 1)

∫ t

s

c(r)rH− 1
2 (r − s)H− 3

2 dr, 0 ≤ s ≤ t, (2.6)

and for H = 1/2 the convention Kc
1/2(t, .) ≡ c for all t is used. Conversely, given a suitably regular deterministic

function f = (f(t), t ≥ 0), we have also almost surely for t ≥ 0:

∫ t

0

f(s)dMH
s =

∫ t

0

kf
H(t, s)dBH

s , (2.7)

where the function kf
H is given by

kf
H(t, s) = −κ−1

H s
1
2−H d

ds

∫ t

s

(r − s)
1
2−Hf(r)dr. (2.8)

– Admissible controls – Let UH the class of (FH
t )-adapted processes u = (ut, t ≥ 0) such that the stochastic

differential equation (1.1) has a unique strong solution Xu. Of course then Xu is a (FH
t )-adapted process.

Actually, as mentioned in Section 1, for control purpose we are interested in closed-loop policies. So, we
introduce the class of admissible controls as the class Uad of those u’s in UH which are (Fu

t )-adapted processes
where (Fu

t ) is the natural filtration of the corresponding state process Xu. For u ∈ Uad, the pair (u, Xu) is
called an admissible pair and if ū ∈ Uad is such that

J(ū) = inf{J(u), u ∈ Uad} a.s.,

then it is called an optimal control and (ū, X̄), where X̄ = X ū, is called an optimal pair and the quantity J(ū)
is called the optimal cost.

3. First solution of the optimal control problem

To define a control policy as a candidate for optimality in the stated infinite time horizon problem, starting
from the solution of the finite horizon time problem which is derived in [10], one may take benefit of an heuristics
based on the connection between these two problems in the standard case H = 1/2. Then it appears natural
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188 M.L. KLEPTSYNA, A. LE BRETON AND M. VIOT

to introduce here the following families (γ(., s), s ≥ 0) and (k̄(., s), s ≥ 0) of auxiliary deterministic functions.
For any fixed s ≥ 0, the function γ(., s) = (γ(t, s), t ≥ s) is defined by

γ(t, s) = δeδt

∫ ∞

t

e−δτKH(τ, s)dτ, (3.1)

where δ is given by (1.4) and the function KH is given by (2.6) for c ≡ 1, i.e.,

KH(τ, s) = H(2H − 1)
∫ τ

s

rH− 1
2 (r − s)H− 3

2 dr, 0 ≤ s ≤ τ. (3.2)

Now, for any fixed s ≥ 0, the function k̄(., s) = (k̄(t, s), t ≥ s) is obtained by substituting γ(r, r) for f(r) in the
definition (2.8), i.e.,

k̄(t, s) = −κ−1
H s

1
2−H d

ds

∫ t

s

(r − s)
1
2−Hγ(r, r)dr. (3.3)

Observe that, due to (2.5) and (2.7), the functions KH(t, .) and k̄(t, .) allow the representations almost surely
for all t ≥ 0

BH
t =

∫ t

0

KH(t, s)dMH
s ;

∫ t

0

γ(s, s)dMH
s =

∫ t

0

k̄(t, s)dBH
s . (3.4)

Moreover, it can be checked that the following property also holds almost surely

∫ +∞

0

e−δsγ(s, s)dMH
s =

∫ +∞

0

e−δsdBH
s . (3.5)

Now, we may state our main result:

Theorem 3.1. Let the pair (ū, X̄) be governed by the system

ūt = − b

r
ρ

[
X̄t + v̄t

]
; X̄t = X ū

t , (3.6)

v̄t =
∫ t

0

δv̄sds +
∫ t

0

[
k̄(t, s) − 1

] {
dX̄s −

[
aX̄s + būs

]
ds

}
, (3.7)

where (ρ, δ) and k̄ are defined by (1.4) and (3.3) respectively. Then the control ū is optimal in Uad and (ū, X̄)
is an optimal pair. Moreover the optimal cost is given by

J(ū) = λ̄ a.s., (3.8)

where λ̄ is the constant

λ̄ =
qΓ(2H + 1)

2δ2H

[
1 +

δ + a

δ − a
sin πH

]
. (3.9)

Remark 3.1. (a) Observe that in the case H = 1/2, for all 0 ≤ s ≤ t, the entries γ(t, s) and k̄(t, s) both
reduce to 1. Hence, it is readily seen that v̄ ≡ 0, ū = −(b/r)ρX̄ and also λ̄ = ρ. So, finally, the statement in
Theorem 3.1 reduces to the well-known result recalled in Section 1.

(b) It is worth mentioning that actually the additional term v̄t which appears in the case H > 1/2 can be
interpreted in terms of the predictors at time t of the noise component BH

τ , τ ≥ t based on the observed
optimal dynamics (X̄s, s ≤ t) up to time t. Precisely, one can rewrite

v̄t =
∫ +∞

t

e−δ(τ−t)dB̂t
τ ; B̂t

τ = E(BH
τ /F ū

t ), τ ≥ t. (3.10)
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INFINITE TIME FRACTIONAL LINEAR-QUADRATIC REGULATOR 189

or equivalently
v̄t = E

(
ξt/F ū

t

)
, (3.11)

where

ξt =
∫ +∞

t

e−δ(τ−t)dBH
τ . (3.12)

This will be made clear in Remark 3.2 after the proof of Lemma 3.1.

The proof of Theorem 3.1 is organized through several lemmas. At first, given some process u ∈ UH and
the corresponding Xu, we introduce the (FH

t )-adapted process p = (pt, t ≥ 0) as the solution of the stochastic
differential equation:

dpt = −aptdt − qXu
t dt + ργ(t, t)dMH

t , t ≥ 0; p0 = ρx. (3.13)

Lemma 3.1. There exists a unique process ū ∈ UH such that ū can be represented as ū = −(b/r)p̄ where p̄ is
the process satisfying the equation (3.13) which corresponds to X̄ = X ū. Moreover, the pair (ū, X̄) is admissible
and is governed by the system (3.6)–(3.7).

Proof. At first, we prove the uniqueness. Suppose that u1 and u2 in UH both satisfy the property which is
required in the first assertion, i.e., for i = 1, 2, we have ui = −(b/r)pi, where pi satisfies equation (3.13) with
X i = Xui

in place of Xu. Let us use the notations

∆X = X1 − X2 ; ∆p = p1 − p2.

From equations (1.1) and (3.13), we have

d∆Xt = a∆Xtdt − b2

r
∆ptdt, t ≥ 0 ; ∆X0 = 0,

d∆pt = −a∆ptdt − q∆Xtdt, t ≥ 0, ∆p0 = 0.

(3.14)

Of course, consequently we have ∆Xt ≡ 0 and ∆pt ≡ 0, which means in particular that u1 ≡ u2.
Now we turn to prove the existence. We take

ūt = − b

r
p̄t ; p̄t = ρ

(
X̃t + Vt

)
; Vt =

∫ t

0

γ(t, s)dMH
s , (3.15)

where

dX̃t = a
[
X̃t + BH

t

]
dt − b2

r
ρ

[
X̃t + Vt

]
dt ; X̃0 = x. (3.16)

Observe that actually, from (3.15)–(3.16), it appears that the process X̄ = X̃ + BH is nothing but the state
process X̄ = X ū which corresponds to ū by equation (1.1). Moreover, due to the representation (3.4) of BH , it
is readily seen that we can rewrite p̄ in terms of X̄ in the form

p̄t = ρX̄t +
∫ t

0

[γ(t, s) − ρKH(t, s)]dMH
s . (3.17)

Now, we show that the process p̄ is a semimartingale and we identify its decomposition. From (3.1), it is easy
to see that γ(., s) is differentiable with

γ̇(t, s) = δ[γ(t, s) − KH(t, s)].
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190 M.L. KLEPTSYNA, A. LE BRETON AND M. VIOT

Hence, V defined in (3.15) is a semimartingale and its stochastic differential is

dVt =
[∫ t

0

γ̇(t, s)dMH
s

]
dt + γ(t, t)dMH

t

=
{∫ t

0

δ[γ(t, s) − KH(t, s)]dMH
s

}
dt + γ(t, t)dMH

t .

Then, again using the definition (3.15) of V and taking into account the representation (3.4) of BH , we get

dVt = δ
[
Vt − BH

t

]
dt + γ(t, t)dMH

t . (3.18)

Now, from the definition (3.15) of p̄, we have

dp̄t = ρ
[
dX̃t + dVt

]
,

and, inserting (3.16) and (3.18), we can compute this stochastic differential. Using the definition (1.4) of (ρ, δ),
it is easy to check that actually

dp̄t = −ap̄tdt − q
[
X̃t + BH

t

]
dt + ργ(t, t)dMH

t .

This means exactly that dp̄t is given by the right-hand side of equation (3.13) with X̄t = X̃t+BH
t . Summarizing,

we have checked that the (FH
t )-adapted process p̄ defined in (3.17) satisfies equation (3.13) with the state

process X̄ corresponding to ū = −(b/r)p̄ in place of Xu.
Now we turn to show the second assertion in the statement. To do this, it suffices to prove that ū is actually

the closed-loop control defined in (3.6)–(3.7) since then it turns that ū ∈ Uad and hence the pair (ū, X̄) is
admissible. From (3.17), we rewrite p̄t = ρ(X̄t + v̄t) where

v̄t = Vt − BH
t . (3.19)

From the stochastic differential (3.18) for V , computing dv̄t = dVt − dBH
t , it is readily seen that

v̄t =
∫ t

0

δv̄sds +
∫ t

0

γ(s, s)dMH
s − BH

t . (3.20)

But, due to the representation (3.4) of the stochastic integral with respect to MH as an integral with respect
to BH , in terms of the function k̄ defined by (3.3), we can rewrite this as

v̄t =
∫ t

0

δv̄sds +
∫ t

0

[k̄(t, s) − 1]dBH
s .

Consequently, since due to (1.1) we have dBH
s = dX̄s − [aX̄s + būs]ds, it means that the pair (ū, X̄) is governed

by the system (3.6)–(3.7) and in particular this pair is admissible. �

Remark 3.2. Let us justify the observation which is formulated in Remark 3.1. Actually, the component v̄t

defined by (3.19) in the previous proof is nothing but

v̄t =
∫ t

0

[γ(t, s) − KH(t, s)]dMH
s .
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INFINITE TIME FRACTIONAL LINEAR-QUADRATIC REGULATOR 191

From (3.1), it is easy to see that

γ(t, s) − KH(t, s) = eδt

∫ +∞

t

e−δτ K̇H(τ, s)dτ, s ≤ t,

where the function K̇H(τ, s) is the derivative of KH(τ, s) with respect to τ , i.e.,

K̇H(τ, s) = H(2H − 1)τH− 1
2 (τ − s)H− 3

2 , 0 ≤ s ≤ τ. (3.21)

Consequently, we can write

v̄t =
∫ t

0

{∫ +∞

t

e−δ(τ−t)K̇H(τ, s)dτ

}
dMH

s , (3.22)

or

v̄t =
∫ +∞

t

e−δ(τ−t)

{∫ t

0

K̇H(τ, s)dMH
s

}
dτ.

But, due to the representation (2.5) of B, it is clear that for every τ ≥ t, the predictor E(Bτ /FH
t ) of Bτ based

on the observation of BH on [0, t] is given by

E
(
Bτ/FH

t

)
=

∫ t

0

KH(τ, s)dMH
s ;

dE(Bτ/FH
t )

dτ
=

∫ t

0

K̇H(τ, s)dMH
s ,

and so

v̄t =
∫ +∞

t

e−δ(τ−t)dE
(
Bτ/FH

t

)
.

Finally, since by construction the solution X̄ = X ū of (1.1) for u = ū is such that F ū
t = FH

t , we can represent v̄t

in the form (3.10) which was claimed in Remark 3.1.

Now we analyze the asymptotic behavior of the admissible pair (ū, X̄) in order to show that it achieves the
announced lower bound λ̄ for the cost.

Lemma 3.2. Let (ū, X̄) be the admissible pair governed by (3.6)–(3.7). Then, the following property holds:

lim
T→+∞

1
T

∫ T

0

[
qX̄2

t + rū2
t

]
dt = λ̄ a.s.,

where λ̄ is given by (3.9) and consequently, for J evaluated according to (1.2), the equality (3.8) holds.

Proof. At first we derive a convenient representation of the pair (ū, X̄). From the system (3.6)–(3.7), it is readily
seen that

dX̄t = −δX̄tdt − b2

r
ρv̄tdt + dBH

t ,

and so

X̄t = e−δt

{
x − b2

r
ρ

∫ t

0

eδsv̄sds +
∫ t

0

eδsdBH
s

}
.

From (3.20), integrating by parts, it is easy to check that

∫ t

0

eδsv̄sds =
1
2δ

{
eδtv̄t −

∫ t

0

eδsρ
[
γ(s, s)dMH

s − dBH
s

]}
,

and hence to get the representation

X̄t = −δ + a

2δ
v̄t +

δ + a

2δ
w̄t +

δ − a

2δ
z̄t, (3.23)
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192 M.L. KLEPTSYNA, A. LE BRETON AND M. VIOT

where

w̄t = e−δt

{
x +

∫ t

0

eδsγ(s, s)dMH
s

}
; z̄t = e−δt

{
x +

∫ t

0

eδsdBH
s

}
. (3.24)

Moreover, since ū = −(b/r)ρ(X̄ + v̄), we have also

ūt = − b

r
ρ

{
δ − a

2δ
v̄t +

δ + a

2δ
w̄t +

δ − a

2δ
z̄t

}
. (3.25)

It follows from (3.23) and (3.25) that

būt + (δ + a)w̄t = (δ − a)(X̄t − z̄t), (3.26)

and
d
dt

(X̄t − z̄t) = δ(X̄t − z̄t) + (δ + a)(z̄t − w̄t), X̄0 − z̄0 = 0. (3.27)

From (3.26)–(3.27), we get that

qX̄2
t + rū2

t = qX̄2
t +

r

b2
[(δ − a)(X̄t − z̄t) − (δ + a)w̄t]2,

and
d
dt

(X̄t − z̄t)2 = 2(X̄t − z̄t)[δ(X̄t − z̄t) + (δ + a)(z̄t − w̄t)], (X̄0 − z̄0)2 = 0.

Thus, by difference, we obtain

qX̄2
t + rū2

t −
q

δ + a

d
dt

(X̄t − z̄t)2 = q

[
z̄2

t +
δ + a

δ − a
w̄2

t

]
,

which by integration gives that

∫ T

0

[
qX̄2

t + ru2
t

]
dt = q

∫ T

0

[
z̄2

t +
δ + a

δ − a
w̄2

t

]
dt +

q

δ + a
(X̄T − z̄T )2. (3.28)

So, to prove the statement, we determine successively the limits

lim
T→+∞

1
T

∫ T

0

z̄2
t dt, lim

T→+∞
1
T

∫ T

0

w̄2
t dt, lim

T→+∞
1
T

(X̄T − z̄T )2.

Choosing a process (BH
t , t ≤ 0) such that (BH

t , t ∈ R) is a two-sided fractional Brownian motion, we can define
a Gaussian stationary ergodic process (z∗t , t ∈ R) by

z∗t =
∫ t

−∞
e−δ(t−s) dBH

s .

Thanks to Proposition 5.2 of the Appendix and to the Birkhoff theorem, the following properties hold:

lim
T→+∞

z∗T√
T

= 0 a.s.,

and

lim
T→+∞

1
T

∫ T

0

|z∗t |2 dt = E
{|z∗0 |2} a.s.,
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where E{|z∗0 |2} can be computed as

E
{|z∗0 |2} = H(2H − 1)

∫ ∞

0

∫ ∞

0

e−δ(s+r)|s − r|2H−2 dr ds =
Γ(2H + 1)

2δ2H
·

From (3.24) we see that

lim
t→+∞(z̄t − z∗t ) = lim

t→+∞ e−δt

{
x −

∫ 0

−∞
eδs dBH

s

}
= 0 a.s., (3.29)

and thus we have also

lim
T→+∞

z̄T√
T

= 0 a.s., (3.30)

and

lim
T→+∞

1
T

∫ T

0

z̄2
t dt =

Γ(2H + 1)
2δ2H

a.s. (3.31)

Assertion (iii) in Proposition 5.1 of the Appendix says that

lim
T→+∞

1
T

∫ T

0

w̄2
t dt =

Γ(2H + 1)
2δ2H

sin πH a.s. (3.32)

Now, we show that

lim
T→+∞

X̄T − z̄T√
T

= 0 a.s. (3.33)

From equation (3.27), we have

X̄t − z̄t = (δ + a)eδt

∫ t

0

e−δs[z̄s − w̄s] ds.

But, from (3.5) and (3.24), one can see that

∫ +∞

0

e−δs[z̄s − w̄s] ds = 0, (3.34)

and so the following representation holds:

X̄t − z̄t = −(δ + a)eδt

∫ +∞

t

e−δs[z̄s − w̄s] ds. (3.35)

Assertion (ii) in Proposition 5.1 of the Appendix says that

lim
T→+∞

w̄T√
T

= 0 a.s. (3.36)

Hence, due to (3.30), we have also that

lim
T→+∞

z̄T − w̄T√
T

= 0 a.s. (3.37)
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Now, (3.33) is a direct consequence of (3.35) and (3.37). Finally, inserting relations (3.31), (3.32) and (3.33)
into (3.28), it turns that

lim
T→+∞

1
T

∫ T

0

[
qX̄2

t + rū2
t

]
dt =

qΓ(2H + 1)
2δ2H

[
1 +

δ + a

δ − a
sin πH

]
a.s.,

where the right hand side is nothing but the constant λ̄ given by (3.9). �

Finally, to finish the proof of Theorem 3.1, it remains to show that the process ū involved in the above
statements minimizes J over Uad.

Lemma 3.3. Let (ū, X̄) be the admissible pair governed by (3.6)–(3.7). Then ū minimizes J over UH and
therefore (ū, X̄) is an optimal pair.

Proof. Given an arbitrary u ∈ UH , we use the notation

JT (u) =
∫ T

0

[
qX2

t + ru2
t

]
dt,

where Xt = Xu
t . We evaluate the difference

JT (u) − JT (ū) =
∫ T

0

{
q
[
X2

t − X̄2
t

]
+ r

[
u2

t − ū2
t

]}
dt.

Using the equality y2 − ȳ2 = (y − ȳ)2 + 2ȳ(y − ȳ) and exploiting the property ū = −(b/r)p̄, it is readily seen
that

JT (u) − JT (ū) = ∆1(T ) + 2∆2(T ),
where

∆1(T ) =
∫ T

0

{
q
[
Xt − X̄t

]2 + r [ut − ūt]
2
}

dt,

∆2(T ) =
∫ T

0

{
qX̄t

[
Xt − X̄t

] − bp̄t [ut − ūt]
}

dt.

Since J(u) = lim supT→+∞ T−1JT (u) a.s. and ∆1(T ) ≥ 0, of course we have

J(u) ≥ J(ū) + lim inf
T→+∞

T−1∆2(T ) a.s.

Hence, to prove that ū minimizes J over UH , it is sufficient to show that limT→+∞ T−1∆2(T ) = 0 a.s. But,
rewriting the quantity in the last integral above as

(Xt − X̄t)[qX̄t + ap̄t] − p̄t[a(Xt − X̄t) + b(ut − ūt)],

and taking into account equations (1.1) and (3.13), we see that ∆2(T ) can be written as

∆2(T ) = −
∫ T

0

(Xt − X̄t)dp̄t −
∫ T

0

p̄td(Xt − X̄t) + ρ

∫ T

0

(Xt − X̄t)γ(t, t)dMH
t .

Now, integrating by parts, since X0 − X̄0 = 0, it comes that

∆2(T ) = −p̄T (XT − X̄T ) + ρ

∫ T

0

(Xt − X̄t)γ(t, t)dMH
t .
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Hence of course it suffices to show that if the admissible pair (u, X) is such that J(u) < +∞ a.s., then

lim
T→+∞

T−1p̄T (XT − X̄T ) = 0 a.s. (3.38)

and

lim
T→+∞

T−1

∫ T

0

(Xt − X̄t)γ(t, t)dMH
t = 0 a.s. (3.39)

In order to prove (3.38), at first let us note that for such a pair (u, X) we have

lim sup
T→+∞

1
T

∫ T

0

[q(Xt − X̄t)2 + r(ut − ūt)2] dt < +∞ a.s.

Therefore, defining ζt = Xt − X̄t and, due to (1.1), rewriting b(ut − ūt) as ζ̇t − aζt, we get

lim sup
T→+∞

1
T

∫ T

0

r

b2

[(
ζ̇t − δζt

)2

+ 2(δ − a)ζtζ̇t

]
dt < +∞ a.s.

Thus

lim sup
T→+∞

1
T

∫ T

0

(
ζ̇t − δζt

)2

dt + lim sup
T→+∞

ζ2
T

T
< +∞ a.s.

and in particular lim supT→+∞ T−1ζ2
T < +∞ a.s., which means

lim sup
T→+∞

XT − X̄T√
T

< +∞ a.s. (3.40)

Hence to get (3.38) it is sufficient to show that

lim
T→+∞

p̄T√
T

= 0 a.s.

But, since p̄t = −(r/b)ūt, it is an immediate consequence of (3.26), (3.33) and (3.36).
In order to prove (3.39), we rewrite it as

lim
T→+∞

NT

〈N〉T
〈N〉T

T
= 0 a.s.,

where (Nt, t ≥ 0) is the martingale defined by

Nt =
∫ t

0

(X̄s − Xs)γ(s, s) dMH
s ,

with the quadratic variation process (〈N〉t, t ≥ 0) given by

〈N〉t =
∫ t

0

(X̄s − Xs)2 γ2(s, s) d〈MH〉s.

Due to assertion (i) in Proposition 5.1 of the Appendix, we have

lim sup
T→+∞

〈N〉T
T

< +∞ a.s. on {〈N〉T → +∞},

and so (3.39) follows immediately from Lemma 2.6.3 in [14]. �
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Remark 3.3. (a) One may observe that actually the optimal pair (ū, X̄) is an asymptotically stationarity
process in the sense that, for t − s fixed, as s tends to +∞, all the covariances converge to a limit.

(b) It can also be checked that the pair (ū, X̄) is also optimal with respect to the averaged quadratic criterion

lim sup
T→+∞

1
T

E

{∫ T

0

[
qX2

t + ru2
t

]
dt

}
. (3.41)

Moreover, the corresponding minimum value of the cost is again the constant λ̄ given by (3.9).

4. Second solution of the optimal control problem

The analysis in the previous section exhibits a solution of the problem such that the optimal pair (ū, X̄) is
a Gaussian asymptotically stationary process (see Rem. 3.3(a)). So it seems rather natural to look for another
solution of the problem in the class of those u’s in Uad for which the pair (u, Xu) is clearly candidate to have
this property. Moreover, it appears (see, e.g., representations (3.23) and (3.25)) that both components of the
pair (ū, X̄) can be written in terms of integrals with respect to BH . Globally, these observations lead to attempt
to find an optimal pair in the class of processes (u, X) which can be represented as1

ut =
∫ t

0

U(t − s)dBH
s ; Xt =

∫ t

0

X (t − s)dBH
s , (4.1)

where U and X are appropriate deterministic functions. Of course, we are interested in pairs (U ,X ) for which,
choosing a process (BH

t , t ≤ 0) such that (BH
t , t ∈ R) is a two-sided fractional Brownian motion, the pro-

cess (û, X̂) where

ût =
∫ t

−∞
U(t − s)dBH

s ; X̂t =
∫ t

−∞
X (t − s)dBH

s , (4.2)

is an ergodic stationary process with the same asymptotic behaviour as (u, X). Moreover, the pair (u, X) defined
by (4.1) must satisfy X = Xu, i.e., equation (1.1) must be fulfilled, and we want also u to be (Fu

t )-adapted.
In a first step, we concentrate only on the connection X = Xu. Inserting (4.1) into (1.1), we see that we must
have ∫ t

0

X (t − s)dBH
s = a

∫ t

0

{∫ s

0

X (s − r)dBH
r

}
ds + b

∫ t

0

{∫ s

0

U(s − r)dBH
r

}
ds + BH

t ,

or equivalently
∫ t

0

X (t − r)dBH
r = a

∫ t

0

{∫ t

r

X (s − r)ds

}
dBH

r + b

∫ t

0

{∫ t

r

U(s − r)ds

}
dBH

r +
∫ t

0

dBH
r .

This may by realized by choosing the following connection between X and U

X (s) = a

∫ s

0

X (τ)dτ + b

∫ s

0

U(τ)dτ + 1,

or equivalently
Ẋ (s) = aX (s) + bU(s) ; X (0) = 1. (4.3)

Our guess is that the minimum for J can be obtained by choosing U in such a way that if (û, X̂) are defined
by (4.2) with X governed by (4.3), then the minimum value of

Ĵ(U) = E

[
qX̂2

0 + rû2
0

]
,

1For simplicity, here we deal only with the case x = 0.
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is achieved. Actually, for a stochastic integral

St =
∫ t

−∞
g(t − s)dBH

s ,

we can evaluate

ES2
0 = H(2H − 1)

∫ +∞

0

∫ +∞

0

g(s)g(r) |s − r|2H−2 dsdr.

Exploiting the representation

|s − r|2H−2 =
1

B(H − 1/2, 2− 2H)

∫ +∞

s∨r

(τ − s)H−3/2(τ − r)H−3/2dτ,

it is easy to check that we can rewrite

ES2
0 =

2HΓ(3
2 − H)

Γ(H + 1
2 )Γ(2 − 2H)

∫ +∞

0

g̃2(s)ds,

where

g̃(s) =
d
ds

∫ s

0

g(r)(s − r)H−1/2dr. (4.4)

Hence we can rewrite also

Ĵ(U) = J̃(Ũ) =
2HΓ(3

2 − H)
Γ(H + 1

2 )Γ(2 − 2H)

∫ +∞

0

{
qX̃ 2(s) + rŨ2(s)

}
ds, (4.5)

where X̃ and Ũ correspond to X and U by (4.4). Actually, it is readily seen from (4.3) that the dynamics which
links X̃ to Ũ is nothing else but

˙̃X (s) = aX̃ (s) + bŨ(s) +
(

H − 1
2

)
sH−3/2 ; X̃ (0) = 0. (4.6)

Applying Theorem 4.1 of [11] (see also the particular case 4.2 therein), we get the following solution of the
concerned infinite time horizon deterministic control problem.

Lemma 4.1. Let the pair (Ũ∗, X̃ ∗) be governed by

Ũ∗
t = − b

r
ρ

[
X̃ ∗

t + Ṽ ∗(t)
]
, (4.7)

˙̃X ∗(s) = aX̃ ∗(s) + bŨ∗(s) +
(

H − 1
2

)
sH−3/2; X̃ ∗(0) = 0, (4.8)

where

Ṽ ∗(τ) =
(

H − 1
2

) ∫ +∞

0

e−δr(τ + r)H−3/2dr, (4.9)

with (ρ, δ) given by (1.4). Then, for J̃ defined by (4.5), the pair (Ũ∗, X̃ ∗) is optimal in the control problem

min
Ũ

J̃(Ũ) subject to (4.6).

Moreover, the value of the optimal cost is J̃(Ũ∗) = λ̄ where λ̄ is given by (3.9).
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Now, taking into account the fact that the connection (4.4) can be inverted as

g(s) =
1

B(H + 1
2 , 3

2 − H)
d
ds

∫ s

0

g̃(r)(s − r)1/2−Hdr, (4.10)

we may reformulate our initial guess by telling that the pair (U∗,X ∗) obtained through (4.10) from (Ũ∗, X̃ ∗)
is a candidate to define through (4.1) an optimal pair (u∗, X∗) in the infinite time horizon stochastic control
problem. Actually, this is true and the proof below of the following statement includes the proof that it is.

Theorem 4.1. Let the pair (u∗, X∗) be governed by

u∗
t = − b

r
ρ[X∗

t + v∗t ] ; X∗
t = Xu∗

t , (4.11)

v∗t =
∫ t

0

δv∗sds +
∫ t

0

[
δ

1
2−H

Γ(3
2 − H)

(t − s)
1
2−H − 1

]
{dX∗

s − [aX∗
s + bu∗

s]ds}, (4.12)

where (ρ, δ) is given by (1.4). Then, for J defined by (1.2), the pair (u∗, X∗) is optimal in the control problem

min
u∈Uad

J(u) subject to (1.1),

i.e., J(u∗) = λ̄ a.s. where λ̄ is given by (3.9).

Proof. Due to the discussion above, we start with the pair (u∗, X∗) defined by

u∗
t =

∫ t

0

U∗(t − s)dBH
s ; X∗

t =
∫ t

0

X ∗(t − s)dBH
s , (4.13)

where

U∗(s) =
1

B(H + 1
2 , 3

2 − H)
d
ds

∫ s

0

Ũ∗(r)(s − r)1/2−Hdr,

X ∗(s) =
1

B(H + 1
2 , 3

2 − H)
d
ds

∫ s

0

X̃ ∗(r)(s − r)1/2−Hdr,

with (Ũ∗, X̃ ∗) governed by the system (4.7)–(4.8). It is easy to check that actually

U∗(s) = − b

r
ρ[X ∗(s) + V ∗(s)],

Ẋ ∗(s) = aX ∗(s) + bU∗(s) ; X ∗(0) = 1,

(4.14)

where V ∗, which corresponds through (4.10) to Ṽ ∗ given by (4.9), is defined by

V ∗(t) =
H − 1

2

B(H + 1
2 , 3

2 − H)

∫ +∞

0

e−δtr rH−1/2

r + 1
dr. (4.15)

Then, introducing the process

v∗t =
∫ t

0

V ∗(t − s)dBs, t ≥ 0, (4.16)

from definitions (4.13), (4.16) and equations (4.14), (4.15), one can parallel the proof of Theorem 3.1 in [11]
(see also Rem. 3.1 therein) in order to show that the triple (u∗, X∗, v∗) is governed by the system (4.11)–(4.12).
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Now, it remains to verify that the pair (u∗, X∗) is optimal, i.e., that with probability one

lim
T→+∞

1
T

∫ T

0

[q(X∗
t )2 + r(u∗

t )
2]dt = lim

T→+∞
1
T

∫ T

0

[
q
(
X̄t

)2 + r(ūt)2
]
dt,

where (ū, X̄) is the optimal pair given by (3.6)–(3.7). Clearly, this will hold if we are able to prove that

lim
t→+∞(X∗

t − X̄t) = 0 a.s.; lim
t→+∞(u∗

t − ūt) = 0 a.s. (4.17)

But, since the pairs (u∗, X∗) and (ū, X̄) satisfy equations (3.6) and (4.11) respectively, it is readily seen that

d(X∗
t − X̄t) = −δ(X∗

t − X̄t)dt − b2

r
ρ(v∗t − v̄t)dt; X∗

0 − X̄0 = 0,

where v∗ and v̄ are given by (3.7) and (4.12) respectively. Hence, to prove (4.17), it is sufficient to show that

lim
t→+∞(v̄t − v∗t ) = 0 a.s.

From Remarks 3.1 and 3.2, we know that
v̄t = E

(
ξt/FH

t

)
,

where ξ is the stationary process defined by

ξt =
∫ +∞

t

e−δ(s−t)dBH
s , t ≥ 0.

Similarly, it can be checked that defining the process v̂ by

v̂t =
∫ t

−∞
V ∗(t − s)dBH

s , t ≥ 0, (4.18)

the variable v̂t can be interpreted as
v̂t = E

(
ξt/FH

−∞,t

)
, (4.19)

where (FH
−∞,t; t ∈ R) is the natural filtration of the two-sided fractional Brownian motion BH . Indeed, us-

ing (4.15), from (4.18) we get that

v̂t =
H − 1

2

B(H + 1
2 , 3

2 − H)
eδt

∫ t

−∞
(t − s)

1
2−H

∫ +∞

t

e−δτ (τ − t)H− 1
2

τ − s
dτ dBH

s

=
1

B(H − 1
2 , 3

2 − H)

∫ +∞

t

eδ(t−τ)

∫ t

−∞

(t − s)
1
2−H(τ − t)H− 1

2

τ − s
dBH

s dτ

=
∫ +∞

t

eδ(t−τ)dE(BH
τ /FH

−∞, t),

where the last equality holds thanks to the representation of the predictor E(BH
τ /FH

−∞, t) which is derived in
[15] (see expression (14) therein).

From (4.19), since v∗t is FH
t -measurable, we can write

v̄t − v∗t = E([v̂t − v∗t ]/FH
t ), t ≥ 0.

Article published by EDP Sciences and available at http://www.edpsciences.org/ps or http://dx.doi.org/10.1051/ps:2005008

http://www.edpsciences.org/ps
http://dx.doi.org/10.1051/ps:2005008


200 M.L. KLEPTSYNA, A. LE BRETON AND M. VIOT

Consequently, thanks to Proposition 5.3 of the Appendix, to prove that

lim
t→+∞(vt − v∗t ) = 0 a.s.,

it is sufficient to check that
lim

t→+∞(v̂t − v∗t ) = 0 a.s. (4.20)

But, due to (4.16) and (4.18), we have

v̂t − v∗t =
∫ 0

−∞
V ∗(t − s)dBH

s , t ≥ 0,

which, integrating by parts, gives

v̂t − v∗t =
∫ 0

−∞
V̇ ∗(t − s)BH

s ds,

where V̇ ∗(τ) stands for the derivative of V ∗(τ) with respect to τ . Hence, we have

|v̂t − v∗t | ≤
∫ 0

−∞

∣∣∣V̇ ∗(t − s)
∣∣∣ ∣∣BH

s

∣∣ ds,

where, from the definition (4.15), one can check that the following properties hold:
(i) for all fixed s < 0, |V̇ ∗(. − s)| is decreasing on [0, +∞);

(ii) for all fixed s < 0, limt→+∞ |V̇ ∗(t − s)||BH
s | = 0 a.s.;

(iii) for all fixed t > 0,
∫ 0

−∞ |V̇ ∗(t − s)||BH
s | ds < ∞ a.s.

So we can apply the theorem of dominated convergence to get that a.s.

lim
t→+∞

∫ 0

−∞

∣∣∣V̇ ∗(t − s)
∣∣∣ ∣∣BH

s

∣∣ ds =
∫ 0

−∞

[
lim

t→+∞

∣∣∣V̇ ∗(t − s)
∣∣∣ ∣∣BH

s

∣∣
]

ds = 0,

which achieves the proof of the theorem. �
Remark 4.1. It is worth to emphasize that, due to the non Markovian setting, it is not surprising that the
optimal policy u∗ is not an instantaneous feedback control. Nevertheless, we can try to find an optimal policy
in the subclass of such admissible controls of the form ut = µXt, where X = Xu and µ is some fixed coefficient.
Then the state process X is governed by the equation

dXt = (a + bµ)Xtdt + dBH
t , X0 = x,

and the performance criterion J(u) to minimize becomes J∗(µ) where

J∗(µ) = (q + rµ2) lim sup
T→+∞

1
T

∫ T

0

X2
t dt.

It can be checked that if a + bµ ≥ 0 then J∗(µ) = +∞ a.s. and so we concentrate on values of µ such that
a + bµ < 0. Then the process X is an asymptotically stationary ergodic process and

J∗(µ) = (q + rµ2) lim
T→+∞

EX2
T a.s.,

where

lim
T→+∞

EX2
T =

Γ(2H + 1)
2|a + bµ|2H

·
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It is readily seen that to minimize J∗(µ) with respect to µ, one must take µ = µ∗ where

µ∗ = −
a +

√
a2 + 4 b2

r qH(1 − H)

2b(1 − H)
,

which leads to the cost function value

J∗(µ∗) = Γ(2H)
r|µ∗|

b
|a + bµ∗|1−2H .

For example, if a = 0 and b = q = r = 1, we get

µ∗ = −
√

H

1 − H
; J∗(µ∗) = Γ(2H)

(
H

1 − H

)1−H

·

Actually, under the same conditions, in the original problem, the optimal cost J(ū) = J(u∗) = λ̄ given by (3.9) is

J(ū) = Γ(2H)H(1 + sin πH).

5. Appendix

Here we prove auxiliary results around ergodic properties of some processes. At first, we analyze the asymp-
totic behaviour of a specific Gaussian process.

Proposition 5.1. Let γ(t, t) be defined by (3.1) for s = t, i.e.,

γ(t, t) = δeδt

∫ +∞

t

e−δrKH(r, t) dr,

with KH given by (3.2) and let (w̄t, t ≥ 0) be the process defined by (3.24), i.e., the solution of the stochastic
differential equation

dw̄t = −δw̄tdt + γ(t, t)d MH
t ; w̄0 = x,

where MH is the Gaussian martingale defined by (2.4), with the variance function 〈MH〉 = wH given by (2.3).
Then, the following properties hold:

(i)

lim
T→+∞

T
1
2−Hγ(T, T ) =

2HΓ(H + 1
2 )

δH− 1
2

;

(ii)

lim
T→+∞

w̄T√
T

= 0 a.s.;

(iii)

lim
T→+∞

1
T

∫ T

0

w̄2
t dt =

Γ(2H + 1)
2δ2H

sin πH a.s.

Proof. To prove assertion (i), at first we observe that

γ(t, t) = eδt

∫ ∞

t

e−δrK̇H(r, t) dr,
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where K̇H is given by (3.21). So, by successive changes of the variable in the integrals, we can write

γ(t, t) = H(2H − 1)
∫ ∞

0

e−δuuH− 3
2 (u + t)H− 1

2 du

= H(2H − 1)
∫ ∞

0

e−δtτ τH− 3
2 (1 + τ)H− 1

2 dτ.

Hence, using the Laplace approximation method, we get immediately that

lim
t→+∞ t

1
2−Hγ(t, t) = lim

t→+∞ H(2H − 1)t
1
2−H

∫ ∞

0

e−δtτ τH− 3
2 dτ

= H(2H − 1)Γ
(

H − 1
2

)
δ

1
2−H =

2HΓ(H + 1
2 )

δH− 1
2

,

which means exactly that assertion (i) holds.
Now, to prove assertions (ii) and (iii), we parallel the proof of Lemma 6 in [12]. Actually, due to the

representation (3.24), i.e.,

w̄T = e−δT

{
x +

∫ T

0

eδsγ(s, s)dMH
s

}
,

exploiting the limiting property (i), assertion (ii) follows directly from the law of iterated logarithm for contin-
uous martingales.

To prove assertion (iii), at first we apply the Itô formula to the process (w̄2
t , t ∈ [0, T ]) to get the representation

w̄2
T − w̄2

0 = −2δ

∫ T

0

w̄2
t dt + 2

∫ T

0

γ(t, t)w̄t dMH
t +

∫ T

0

γ2(t, t) d
〈
MH

〉
t
.

This can be rewritten as

1
T

∫ T

0

w̄2
t dt

[
1 − LT

〈L〉T ΨT

]
=

1
2δT

[
x2 − w̄2

T

]
+

1
2δT

∫ T

0

γ2(t, t) d
〈
MH

〉
t
, (5.1)

where

LT =
∫ T

0

γ(t, t)w̄t dMH
t ; 〈L〉T =

∫ T

0

γ2(t, t) w̄2
t d

〈
MH

〉
t

; ΨT =
〈L〉T

δ
∫ T

0
w̄2

t dt
·

Since 〈MH〉 is nothing but the function wH given by (2.3), thanks to (i), we get that

lim
T→+∞

1
2δT

∫ T

0

γ2(t, t) d
〈
MH

〉
t
=

Γ(2H + 1)
2δ2H

sin πH.

Hence, exploiting (ii), we see that the right hand side in (5.1) tends to the same limit. Now, in the left hand
side of (5.1), we observe that due to assertion (i), we have

0 < lim
T→+∞

ΨT < ∞ a.s.

Therefore, making use of Lemma 2.6.3 in [14] to discuss the behaviour of the factor within brackets, it is readily
seen that the statement (iii) holds. �
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Now, we analyze the asymptotic behaviour of some stationary continuous processes.

Proposition 5.2. Let (Gt, t ∈ R) be a stationary continuous process. Then, the following assertions hold:
(i) if

E sup
t∈[0,1]

|Gt|2 < +∞, (5.2)

then
lim

T→+∞
GT√

T
= 0 a.s. (5.3)

(ii) if (Gt, t ∈ R) is Gaussian, then the condition (5.2) is fulfilled and (5.3) holds.

Proof. To prove assertion (i), we must show that if (5.2) is fulfilled, then for all l ∈ N∗

P

{
lim sup
T→+∞

|GT |√
T

>
1
l

}
= 0.

But, clearly we have

P

{
lim sup
T→+∞

|GT |√
T

>
1
l

}
= P

{
∩n∈N ∪m≥n

{
sup

t∈[m,m+1]

|Gt|√
t

>
1
l

}}

≤ P

{
∩n∈N ∪m≥n

{
sup

t∈[m,m+1]

|Gt| >

√
m

l

}}

= lim
n→+∞ P

{
∪m≥n

{
sup

t∈[m,m+1]

|Gt| >

√
m

l

}}

≤ lim
n→+∞

+∞∑
m=n

P

{
sup

t∈[m,m+1]

|Gt| >

√
m

l

}
·

So, due to the stationarity assumption, we get that

P

{
lim sup
T→+∞

|GT |√
T

>
1
l

}
≤ lim

n→+∞

+∞∑
m=n

P

{
sup

t∈[0,1]

|Gt| >

√
m

l

}

= lim
n→+∞

+∞∑
m=n

P{ηl > m},

where ηl = l2 supt∈[0,1] |Gt|2. But condition (5.2) implies that Eηl < +∞ and so, for all l ∈ N∗, we have

lim
n→+∞

∞∑
m=n

P{ηl > m} = 0.

This gives that (5.3) holds, which means that the statement (i) is valid.
To prove assertion (ii), at first we observe that, due to the continuity of the process (Gt, t ∈ R), we have

sup
t∈[0,1]

|Gt| = sup
q∈[0,1]∩Q

|Gq| < +∞ a.s.

Then, defining the function

N1(x) = sup
q∈[0,1]∩Q

|xq| ; x = (xq, q ∈ [0, 1] ∩ Q),
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on the set R[0,1]∩Q, we have P{N1(G|[0,1]∩Q) < +∞} = 1. Hence, since the process (Gt, t ∈ R) is Gaussian, from
the corollary of Lemma 4.9.2 in [14], we get that

EN2
1 (G|[0,1]∩Q) < +∞.

So, it turns that the condition (5.2) is fulfilled. �

Finally, we prove a Levy type result for Gaussian processes.

Proposition 5.3. Let (Gt), t ∈ R be a continuous Gaussian process such that

lim
T→+∞

GT = 0 a.s. (5.4)

Then, for all family (Ft, t ∈ R) of nondecreasing σ-algebras, the following property holds:

lim
T→+∞

E(GT /FT ) = 0 a.s.

Proof. We need to show that for any sequence τ = {tn, n ∈ N} which tends to infinity as n goes to infinity, we
have

lim
n→+∞ E(Gtn/Ftn) = 0 a.s.

To prove this, according to the Theorem 1.6 in [13] (see also [2]), it is sufficient to check that

E(sup
n∈N

|Gtn |) < +∞. (5.5)

We define the function
N2(x) = sup

n∈N

|xtn | ; x = (xtn , n ∈ N),

on the set Rτ . Since thanks to (5.4) we have limn→+∞ Gtn = 0 a.s., it turns that P{N2(G|τ ) < +∞} = 1.
Hence, since the process (Gt, t ∈ R) is Gaussian, from the corollary of Lemma 4.9.2 in [14], we get that

EN2(G|τ ) < +∞,

which means exactly that the condition (5.5) is fulfilled. �

References

[1] F. Biaggini, Y. Hu, B. Øksendal and A. Sulem, A stochastic maximum principle for processes driven by fractional Brownian
motion. Stochastic Processes Appl. 100 (2002) 233–253.

[2] D. Blackwell and L. Dubins, Merging of opinions with increasing information. Ann. Math. Statist. 33 (1962) 882–886.
[3] M.H.A. Davis, Linear Estimation and Stochastic Control. Chapman and Hall, New York (1977).
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