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Abstract. In this paper we consider three measures of overlap, namely Matusia’s measure ρ, Morisita’s
measure λ and Weitzman’s measure ∆. These measures are usually used in quantitative ecology and
stress-strength models of reliability analysis. Herein we consider two Weibull distributions having the
same shape parameter and different scale parameters. This distribution is known to be the most flex-
ible life distribution model with two parameters. Monte Carlo evaluations are used to study the bias
and precision of some estimators of these overlap measures. Confidence intervals for the measures are
also constructed via bootstrap methods and Taylor series approximation.
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1. Introduction

It is essential in reliability analysis to estimate the proportion of machines or electronic devises, from two dif-
ferent sources or under different levels of stress that have similar range of failure time. Overlap coefficients (OVL)
(Matusia’s measure ρ, Morisita’s measure λ and Weitzman’s measure ∆) are defined to be the common area
of graphing two probability density functions. In the literature, overlap coefficients are mostly used in ecology.
However, other applications of are the lowest bound for the probability of failure in the stress-strength models of
reliability analysis (Ichikawa [13]), an estimate of the proportion of genetic deviates in segregating populations
(Federer et al. [9]), and a measure of distinctness of clusters (Sneath [35]). For more applications on OVL
coefficients see Mulekar and Mishra [26,27]. Moreover, the history of such procedures is summarized by Inman
and Bradley [14].

Let f1 (x) and f2 (x) be two continuous probability density functions. The overlap measures are defined as
follows:

Matusia’s Measure [22]: ρ =
∫ √

f1 (x) f2 (x)dx.

Morisita’s Measure [25]: λ =
2f1 (x) f2 (x) dx

∫
[f1 (x)]2 dx +

∫
[f2 (x)]2 dx

·

Weitzman’s Measure [39]: ∆ =
∫

min {f1 (x) , f2 (x)}dx.

Keywords and phrases. Bootstrap method, Matusia’s measure, Morisita’s measure, Overlap coefficients, Taylor expansion,
Weitzman’s measure.
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For discrete type of distribution, one can replace the integrals with summations. Also, these forms can be
generalized to multivariate distributions. All three overlap measures of two densities are measured on the scale
of 0 to 1. An overlap value close to 0 indicates no common area between the two density functions. However,
an overlap value of 1 indicates that the common area between the two densities is 1.

The mathematical structure of these measures is complicated; there are no results available on the exact
sampling distributions of the commonly used OVL estimators. Researcher such as Smith [34] derived formulas
for estimating the mean and the variance of discrete version of Weitzman’s measure using the delta method.
Mishra et al. [24] gave small and large sample properties of the sampling distribution for a function of ∆̂
under the assumption of homogeneity of variances. Lu et al. [17] investigated some of these measures using
simulation. Mulekar and Mishra [26] derived the approximate expressions for the bias and variance of the
OVL estimators. They also used simulation to study the sampling distribution of the overlap measures for
normal densities with equal means. Dixon [6] used bootstrap and jackknife techniques for Gini coefficient of size
hierarchy and Jaccard index of community similarity. Mulekar and Mishra [27] addressed the problem of making
inferences about the overlap coefficients based on normal densities with equal means using jackknife, bootstrap,
transformation method and Taylor series approximation. Reiser and Faraggi [30] considered the problem of
making inference about the overlap coefficient ∆ , as a measure of bioequivalence under the name proportion
of similar responses, for normal densities with equal variances, based on the non-central t- and F -distributions.
The sampling behavior of a nonparametric estimator of ∆ is examined by Clemons and Bradley [4] by using
Monte Carlo and bootstrap techniques.

In this paper we consider the three measures of overlap (ρ, λ and ∆) for two Weibull distributions having the
same shape parameter and different scale parameters. Section 2 derives the measures. The estimators and their
approximate biases and confidence intervals using the delta method and bootstrap techniques are introduced in
Section 3. Simulation results are provided with discussion in Section 4. Section 5 presents a real data example
with final comments.

The Weibull is a very flexible life distribution model named for Professor Waloddi Weibull of Sweden who
suggested it as a distribution for a variety of applications (see Weibull [37, 38]). He considered the problems
of yield strength of a Bofors steel, fiber strength of Indian cotton, length of syrtoideas, fatigue life of an St-37
steel, statures of adult male born in British Isles, and breadth of beans of Phaseolus vulgaris. The distribution
was used as early as 1933 by Rosin and Rammler [31] in describing the “laws governing the fineness of powdered
coal”. The Weibull distribution began to be seriously considered as a competing model in the 1960’s (Bain and
Antle [1], Harter and Moore [11], Mann [18], Thoman et al. [36]), especially in problems in which the time to
failure was the response of interest, see for example Mann [18], Bain and Engelhardt [2] and Murthy et al. [28].

A random variable X follows the two-parameter Weibull distribution (denoted by WE2(α, β)) has cdf and
pdf given respectively, by:

F (x) = 1 − exp
{

−
(x

α

)β
}

for x > 0, (1.1)

and

f (x) =
β

α

(x

α

)β−1

exp
{

−
(x

α

)β
}

for x > 0, (1.2)

where α, β > 0 are respectively the scale and the shape parameters.

2. Overlap measures (OVL) for Weibull distribution

Suppose f1 (x) and f2 (x) represent the Weibull densities with common shape parameter β and scale pa-
rameters α1 and α2 respectively. Figure 1 shows overlap of WE2(2, 2) and WE2(4, 2). Let R = a1

α2
, then the
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Figure 1. The overlap densities of two Weibull pdf f1 (x) and f2 (x).

continuous version of the three overlap measures, can be expressed as a function of R as follows (the derivation
of the three overlap measures are straight forward and is omitted from the content of this paper):

ρ =
2
√

Rβ

1 + Rβ
, (2.1)

λ =
2C+1Rβ

(1 + R) (1 + Rβ)C
, where C =

2β − 1
β

(2.2)

and

∆ = 1 − (Rβ
) 1

1−Rβ

∣
∣
∣
∣1 − 1

Rβ

∣
∣
∣
∣ , R �= 1. (2.3)

Figure 2 shows curves of the three overlap measure (OVL) considered for WE2 (α, 2). All three measures are
not monotone for all R > 0. Similar to Mulekar and Mishra [27], ρ, λ and ∆ have nice properties, such as,
symmetry in R, i.e. OVL(R) = OVL(1/R) and invariance under the linear transformation Y = aX + b, α �= 0.
These properties are true for these three measures in a general setting.

3. Statistical inference

The OVL measures ρ, λ, and ∆ are functions of β, α1 and α2. In order to draw any inference about the
OVL measures, we need first to get estimators of β, α1 and α2.

3.1. Statistical inference for the two parameters Weibull

Early users of the two-parameter Weibull model were mainly engineers (McCool [23] and Weibull [38]);
they used graphical methods for estimation of the parameters. Other types of estimation are considered by
many authors, such as Lieblein and Zelen [16], White [40], and Mann [19–21] among others.

Maximum likelihood estimation of the parameters has been considered by Hater and Moore [11], Cohen
[5] and Leone et al. [15], among others. Suppose that (X11, X12, . . . , X1n1) and (X21, X22, . . . , X2n2) are two
independent random samples drawn from the two Weibull population f1 (x) and f2 (x) respectively. Assume
further that f1 (x) and f2 (x) have the same shape parameter β and different scale parameters α1 and α2.
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Figure 2. The three overlap measures for WE2 (α, 2).

Then the maximum likelihood estimators (MLEs) based upon the two samples are given by the solution to the
equations:

1) From the first sample

1
β̂
−

n1∑

i=1

X β̂
1iLn (X1i)

n1∑

i=1

X β̂
1i

+

n1∑

i=1

Ln (X1i)

n1
= 0, (3.1)

and

α̂1 =







n1∑

i=1

X β̂
1i

n1







1
β

· (3.2)

2) From the second sample

1
β̃
−

n2∑

i=1

X β̃
2iLn (X2i)

n2∑

i=1

X β̃
2i

+

n2∑

i=1

Ln (X2i)

n2
= 0, (3.3)

and

α̂2 =







n2∑

i=1

X β̃
2i

n2







1
β

· (3.4)
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The common shape parameter can be estimated using the weighted average of the solutions of (3.1) and (3.3)
as follows:

β∗ =
n1

n1 + n2
β̂ +

n2

n1 + n2
β̃. (3.5)

The existence and uniqueness of the solution to these equations were shown by Pike [29] and McCool [23].
The MLEs are easily found using Newton’s method to solve first for β̂ and β̃ and then using these to get α̂1

and α̂2. Moreover, for the two-parameter Weibull distribution, the MLEs are asymptotically efficient and they
are asymptotically normally distributed. Therefore,

{√
n1 (α̂1 − α1) ,

√
n1

(
β̂ − β

)}
∼ N2 (0, 0, V1) ,

and {√
n2 (α̂2 − α2) ,

√
n2

(
β̃ − β

)}
∼ N2 (0, 0, V2)

where

V1 =






1.109α2
1

β2
0.257α1

0.257α1 0.608β2




 , and V2 =






1.109α2
2

β2
0.257α2

0.257α2 0.608β2




 .

Hence, because the two random samples are independent,

√
n1 + n2 (β∗ − β) ∼ N

(
0, 0.608β2

)
.

3.2. Statistical inference for OVL measures

The OVL measures considered here are also functions of R and β, therefore, their MLE estimators are given
by

ρ̂ =
2
√

R̂β∗

1 + R̂β∗ , (3.6)

λ̂ =
2Ĉ+1R̂β∗

(
1 + R̂

)(
1 + R̂β∗

)Ĉ
, where Ĉ =

2β∗ − 1
β∗ (3.7)

and

∆̂ = 1 −
(
R̂β∗) 1

1−R̂β∗
∣
∣
∣
∣1 − 1

R̂β∗

∣
∣
∣
∣ , R̂ �= 1, (3.8)

where R̂ = α̂1
α̂2

. Let g (α1, α2) = R = α1
α2

, then R̂ = α̂1
α̂2

= g (α̂1, α̂2) . Thus using the well-known delta method
(Taylor series expansion), the approximate sampling variance of R̂ can be obtained as follows: using Taylor
series expansion R̂ can be written as

R̂ =
α̂1

α̂2
= g (α̂1, α̂2) =

α1

α2
+ [(α̂1 − α1) , (α̂2 − α2)]

[ 1
α2−α1

α2

]

+ Rn1,n2 .

Since R̂ is a function of the MLE’s of α1 and α2, then for large n1 and n2, E
(
R̂
)
≈ α1

α2
,

Var
(
R̂
)
≈ 1.109R2

β2

(
n1 + n2

n1n2

)

, (3.9)

and
(
R̂ − R

)
∼ N

(
0, 1.109R2

β2

(
n1+n2
n1n2

))
·

Article published by EDP Sciences and available at http://www.edpsciences.org/ps or http://dx.doi.org/10.1051/ps:2005010

http://www.edpsciences.org/ps
http://dx.doi.org/10.1051/ps:2005010


INFERENCE ON OVERLAP COEFFICIENTS FOR WEIBULL DISTRIBUTION 211

Theorem 1. Under the assumptions of the MLEs for Weibull distribution, the asymptotic covariance between R̂

and β∗
{
i.e., Cov

(
R̂, β∗

)}
converges to zero.

Proof.

Cov
(
R̂, β∗

)
= Cov

(
α̂1

α̂2
,

n1

n1 + n2
β̂ +

n2

n1 + n2
β̃

)

= Cov
(

α̂1

α̂2
,

n1

n1 + n2
β̂

)

+ Cov
(

α̂1

α̂2
,

n2

n1 + n2
β̃

)

. (3.10)

Now using the first term of the Taylor series expansion for R̂,
(
R̂ ≈ α1

α2
+ (α̂1−α1)

α2
− (α̂2−α2)α1

α2
2

)
in (3.10) we get

Cov(R̂, β∗) ≈ 0.257α1
α2(n1+n2) − α1

α2

0.257α2
α2(n1+n2)

= 0 and this concludes the proof. �

Using the above results the approximate sampling variances of the overlap measures estimators, can be
obtained using Taylor series expansion as follows:

Var (ln ρ̂) = σ2
ln ρ̂ ≈

(
1 − Rβ

)2 [1.109 (n1 + n2)
2 + 0.608 (n1n2) (ln R)2 β2

]

4n1n2 (n1 + n2) (1 + Rβ)2
, (3.11)

Var
(
ln λ̂
)

= σ2
ln λ̂

≈ 1.109R2 (n1 + n2)
2
g2
1 + 0.608 (n1n2) β4g2

2

n1n2 (n1 + n2)β2
,

where

g1 =
β
(
1 − Rβ+1

)
+ (β − 1)

(
R − Rβ

)

R (1 + R) (1 + Rβ)
and (3.12)

g2 =
β2 ln R +

(
1 + Rβ

)
ln 2 − β (β − 1)Rβ ln R − (1 + Rβ

)
ln
(
1 + Rβ

)

β2 (1 + Rβ)
,

Var
(
∆̂
)

= σ2
∆̂
≈
(
Rβ
) 2

1−Rβ β2 (ln R)2
[
1.109 (n1 + n2)

2 + 0.608 (n1n2) (ln R)2 β2
]

n1n2 (n1 + n2) (1 − Rβ)2
· (3.13)

The MLEs for the two-parameter Weibull distribution are asymptotically efficient and they are asymptotically
normally distributed (see, Thoman et al. [36]). However, the OVL measures are functions of the Weibull
distribution parameters. Therefore, by using the Delta-method, the OVL measures estimators are asymptotically
normally distributed. Thus, the 100 (1 − α)% approximate confidence intervals are given by

ρ̂e
±Z d

2
σ̂ln ρ̂

, (3.14)

λ̂e
±Z d

2
σ̂ln λ̂ , (3.15)

and
∆̂ ± Z d

2
σ̂∆̂, (3.16)

where Z d
2

is 100(d
2 )% upper quantile of the standard normal distribution.

For large samples these confidence intervals work fairly well. However, for small sample sizes more refined
versions of the above confidence intervals can be obtained by

{(
OV̂L − Bı̂as

(
OV̂L

))
− Z d

2
σ̂OV̂L,

(
OV̂L − Bı̂as

(
OV̂L

))
+ Z d

2
σ̂OV̂L

}
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or





Ln
(
OV̂L − Bı̂as (ln OVL)

)
− Z d

2
σ̂OV̂L,

Ln
(
OV̂L − Bı̂as (ln OVL)

)
+ Z d

2
σ̂OV̂L





,

where Bı̂as(OV̂L) is an estimate of Bias(OV̂L) = E (OV̂L) − OVL.
In the case of using the logarithmic transformation to the OVL estimates. The bias for the OVL coefficient

estimates can be approximated using Taylor expansion as follows:

Bias (ρ̂) =

√
Rβ
(
β − 2 − 6βRβ + R2β (β + 2)

)

2(1 + Rβ)3
1.109 (n1 + n2)

(n1n2)β
(3.17)

+

√
Rβ
(
1 + Rβ

(
Rβ − 6

))
[Ln (R)]2

2(1 + Rβ)3
0.608β2

(n1 + n2)
,

Bias
(
λ̂
)

=
1.109 (n1 + n2)R2

n1n2β2
K1 (R, β) +

0.608β2

(n1 + n2)
K2 (R, β) , (3.18)

where

K1 (R, β) =
1

(1 + R)3






2
3β−1

β Rβ−2
(
1 + Rβ

) 1−4β
β








2R2 − β − 4Rβ − 3R2β + β2 + 2Rβ2 + R2β2 + Rβ

(
R2 − 1 − 4R + 3 (1 + R)2 β − 4 (1 + R)2 β2

)

+R2β
(
β2 (1 + R)2 + β

(
R2 − 1

)− 2R
)













and

K2 (R, β) =
1

(1 + R)β4






2
3β−1

β Rβ
(
1 + Rβ

) 1−4β
β




















(Ln (2))2 − 2Rβ (2β − Ln (2)) Ln(2)

+R2βLn (2) (Ln(2) − 2β) − βLn (4) + β2

(
R2β (β − 1)2 + β2 − Rββ (4β − 3)

)
(Ln (R))2

+
(
1 + Rβ

)2 Ln
(
1 + RB

) (
2β − Ln (4) + Ln

(
1 + Rβ

))

−β
(
Rβ + 1

)
Ln (R)

(
2Rβ (β (β − 1) Ln (2))

−βLn (4) + 2
(
Rβ + β − Rββ

)
Ln
(
1 + Rβ

)

)

























and

Bias
(
∆̂
)

=






1.109 (n1 + n2)R2

n1n2β2
D1 (R, β) +

0.608β2

(n1 + n2)
D2 (R, β) , for R > 1,

−1.109 (n1 + n2)R2

n1n2β2
D1 (R, β) − 0.608β2

(n1 + n2)
D2 (R, β) , for R < 1,

(3.19)
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where

D1 (R, β) =
1

(Rβ − 1)4 R2






β






















R4β
(
Rβ
) 1

R−β−1 (1 + β) +
(
Rβ
) 1

1−Rβ

(
β + (β − 1) Ln

(
Rβ
))− (Rβ

) 2−Rβ

1−Rβ

(
3 + (3β − 1)Ln(Rβ)

)− R3β





(
Rβ
) 1

1−Rβ
(
1 + 2β − (1 + β) Ln

(
Rβ
))

+
(
Rβ
) 1

R−β−1
(
3 + (1 + 3β) Ln

(
Rβ
))



+ R2β





(
Rβ
) 1

1−Rβ
(
3 (1 + β) − Ln

(
Rβ
) (

2 − 2β + βLn
(
Rβ
)))

(
Rβ
) 1

R−β−1
(
3 − 3β + Ln

(
Rβ
) (

2 + 2β + βLn
(
Rβ
)))































and

D2 (R, β) =
1

(1 + Rβ)4






(Ln (R))2



















(
R4β
) (

Rβ
) 1

R−β−1 − 3
(
Rβ
)

2−Rβ

1−Rβ

Ln
(
Rβ
)

+(Rβ)
1

1−Rβ
(
1 + Ln

(
Rβ
))

+ R3β

[
(
Rβ
) 1

1−Rβ
(
Ln
(
Rβ
)− 2

)− 3
(
Rβ
) 1

R−β−1
Ln
(
Rβ
)
]

+R2β





(
Rβ
) 1

R−β−1
(
Ln
(
Rβ
)− 1

) (
Ln
(
Rβ
)

+ 3
)

− (Rβ
) 1

1−Rβ
(
Ln
(
Rβ
)

+ 1
) (

Ln
(
Rβ
)− 3

)




























.

Reasonable estimates for the above biases can be obtained by substituting R by R̂ and β by β∗.

3.3. Bootstrap inference

Bootstrap methods are computer intensive and involve simulated data sets. Uniform (ordinary) bootstrap
resampling by Efron [8] is based on resampling with replacement from the observed sample according to a rule
which places equal probabilities on sample values. Uniform bootstrap resampling is an assumption-free method
that can be used for some inferential problems. However, it is designed for complete and continuous set of
observations (Hall [10]). In the two-sample case the uniform resampling rules applies to each sample separately
and independently (see Ibrahim [12], Samawi et al. [32], Samawi et al. [33]).

Suppose that ℵ1 = (X11, X12, . . . , X1n1 ) and ℵ2 = (X21, X22, . . . X2n2) are two independent random samples
drawn from f1 (x) and f2 (x) respectively. Assume that the parameter of interest is the OVL coefficient. Let S
be an estimate of OVL based on the random samples ℵ1 and ℵ2 i.e., S = S (ℵ1,ℵ2). Assume that U is a function
of S i.e., U = U (S). Write U∗ for the same function of the data but in the resamples ℵ∗

1 =
(
X∗

11, X
∗
12, . . . , X

∗
1n1

)

and ℵ∗
2 =

(
X∗

21, X
∗
22, . . . X

∗
2n2

)
which are drawn from ℵ1 and ℵ2 according to a rule which places probability 1

n1

on each sample value of ℵ1 and probability 1
n2

on each sample value of ℵ2. Let u = E (U) then the bootstrap
estimate (say û) of u is given by

û = E (U∗|ℵ1,ℵ2) . (3.20)

This expected value is often not computable.
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3.3.1. Uniform resampling approximation for bootstrap estimate

Assume that the probability of selecting X1i in a resample is

P (X∗
1 = X1i|ℵ1) =

1
n1

, (3.21)

and probability of selecting X2 in a resample is

P (X∗
2 = X2i|ℵ2) =

1
n2

· (3.22)

Let ℵ∗
11,ℵ∗

12, . . .ℵ∗
1B and ℵ∗

21,ℵ∗
22, . . .ℵ∗

2B denote two independent resamples sets of size B each drawn from ℵ1,
and ℵ2 respectively. To obtain a Monte Carlo approximation to û using uniform resampling, let U∗

b denote U
computed from ℵ∗

1b, and ℵ∗
2b. Then, the uniform resampling approximation to the bootstrap estimate û is

given by

û∗
B = B−1

B∑

b=1

(U∗
b ) . (3.23)

Do and Hall [7] showed that û∗
B is an unbiased approximation to û, in the sense that E (û∗

B|ℵ1,ℵ2) = û.
Moreover, an approximation of the bootstrap bias of u can be obtained by b̂ıas∗ = |û∗

B−û|, and an approximation

of the bootstrap MSE can be obtained by MŜE∗ = B−1
B∑

b=1

(U∗
b − û)2.

3.3.2. Bootstrap confidence intervals of OVL

Adopting the notations of Section 3.3.1, let S∗
1 , S∗

2 , . . . , S∗
B be the resampling realization of S. Then, the

uniform resampling approximation to the bootstrap 100(1 − d)% confidence limits can be obtained as follows:
Let S∗

(1), S
∗
(2), . . . , S

∗
(B) be the order statistics of S∗

1 , S∗
2 , . . . , S∗

B. Define K1 = int {Bd} and K2 = int {B (1 − d)}.
Then the uniform resampling approximation of the 100(1 − d)% confidence interval is

{
S∗

(K1)+S∗
(K1+1)

2 ,

S∗
(K2)+S∗

(K2+1)

2

}
·

4. Simulation study

A Monte Carlo simulation study was conducted for R = 0.2, 0.5, and 0.80, (n1, n2) = (20, 20), (20, 30), (50, 50),
(100, 100) and (200, 200) and d = 0.05. All the 1000 simulated sets of observations were generated under the
assumption that both variables have Weibull distribution with the same shape parameter (β = 2) but with
different scale parameters. For bootstrap approximation 1000 resamples were used. Note that the results
presented in Table 1–3 are based on (3.14)–(3.16).

Tables 1–3, indicate that the |bias| in all cases are less than 0.04 and decreases as the sample size increases.
It seems that the Taylor series approximation works well. Also, bootstrap method, which does not need
complicated formula for the variances seems to work fairly well except for small R.

The asymptotic method gives a good estimate for the coverage probability of the 95% confidence intervals
for ρ, λ and ∆. However, the coverage probability of those 95% confidence intervals does not converge to the
nominal values when the bootstrap method is used for small R.

5. Application on body mass index data from 65+ RHS study

The 65+ Rural Health Study (RHS) is a prospective longitudinal cohort study of 3673 individuals (1420 men
and 2253 women) aged 65 or older living in Washington and Iowa counties of Iowa in 1982. This study is one of
four studies supported by the National Institute on Aging and collectively referred to as EPESE, Established
Populations for Epidemiological Studies of the Elderly, see Brock et al. [3].
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Table 1. Estimates (Est.), Bias, MSE, length of interval (L.), and the coverage probability
(Cover.) for R = 0.20. Exact OVL coefficients: ρ = 0.385, λ = 0.178 and ∆ = 0.161.

Asymptotic inference Bootstrap inference
(n1, n2) Est. MSE(|Bias|) Cover L. Est. MŜE∗ (bı̂as∗) Cover L.
(20, 20) ρ 0.352 0.0092(0.033) 0.930 0.352 0.317 0.0120(0.068) 0.810 0.320

λ 0.158 0.0057(0.020) 0.928 0.305 0.138 0.0059(0.040) 0.810 0.236
∆ 0.144 0.0036(0.017) 0.985 0.378 0.126 0.0040(0.035) 0.810 0.191

(20, 30) ρ 0.358 0.0070(0.026) 0.947 0.320 0.327 0.0094(0.058) 0.805 0.290
λ 0.162 0.0045(0.016) 0.946 0.275 0.275 0.0049(0.035) 0.808 0.218
∆ 0.147 0.0028(0.014) 0.995 0.365 0.365 0.0324(0.030) 0.805 0.175

(50, 50) ρ 0.373 0.0034(0.020) 0.950 0.226 0.351 0.0042(0.034) 0.878 0.211
λ 0.171 0.0023(0.007) 0.951 0.192 0.156 0.0025(0.022) 0.878 0.168
∆ 0.154 0.0014(0.006) 0.996 0.311 0.142 0.0553(0.019) 0.878 0.133

(100, 100) ρ 0.379 0.0016(0.006) 0.961 0.161 0.362 0.0020(0.023) 0.893 0.151
λ 0.174 0.0011(0.004) 0.959 0.136 0.162 0.0013(0.016) 0.893 0.123
∆ 0.158 0.0007(0.003) 0.999 0.227 0.147 0.0067(0.013) 0.893 0.097

(200, 200) ρ 0.380 0.0008(0.004) 0.972 0.114 0.367 0.0011(0.018) 0.898 0.108
λ 0.175 0.0005(0.003) 0.095 0.095 0.164 0.0007(0.014) 0.899 0.089
∆ 0.158 0.0003(0.003) 0.999 0.161 0.149 0.0723(0.011) 0.898 0.070

Table 2. Estimates (Est.), Bias, MSE, length of interval (L.), and the coverage probability
(Cover.) for R = 0.50. Exact OVL coefficients: ρ = 0.800, λ = 0.675 and ∆ = 0.528.

Asymptotic inference Bootstrap inference
(n1, n2) Est. MSE(|Bias|) Cover L. Est. MŜE∗ (bı̂as∗) Cover L.
(20, 20) ρ 0.774 0.0091(0.026) 0.945 0.354 0.746 0.0120(0.054) 0.905 0.366

λ 0.642 0.0183(0.033) 0.974 0.598 0.608 0.0218(0.067) 0.903 0.500
∆ 0.508 0.0182(0.020) 0.992 0.643 0.487 0.0175(0.041) 0.905 0.418

(20, 30) ρ 0.774 0.0077(0.026) 0.947 0.323 0.749 0.0101(0.051) 0.886 0.328
λ 0.641 0.0156(0.034) 0.962 0.546 0.610 0.0186(0.065) 0.886 0.452
∆ 0.506 0.0098(0.022) 0.990 0.589 0.486 0.0437(0.042) 0.886 0.370

(50, 50) ρ 0.786 0.0036(0.014) 0.954 0.224 0.774 0.0043(0.026) 0.907 0.222
λ 0.656 0.0077(0.019) 0.976 0.382 0.640 0.0086(0.035) 0.906 0.319
∆ 0.515 0.0049(0.013) 0.998 0.410 0.505 0.0606(0.022) 0.907 0.259

(100, 100) ρ 0.797 0.0015(0.003) 0.957 0.157 0.790 0.0017(0.010) 0.936 0.152
λ 0.672 0.0034(0.003) 0.981 0.272 0.662 0.0036(0.012) 0.936 0.224
∆ 0.526 0.0023(0.001) 0.998 0.290 0.520 0.0691(0.007) 0.936 0.183

(200, 200) ρ 0.798 0.0007(0.002) 0.961 0.11 0.794 0.0008(0.006) 0.947 0.108
λ 0.672 0.0016(0.003) 0.980 0.193 0.666 0.0017(0.009) 0.947 0.160
∆ 0.526 0.0011(0.001) 0.998 0.205 0.522 0.0734(0.011) 0.947 0.130
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Table 3. Estimates (Est.), Bias, MSE, length of interval (L.), and the coverage probability
(Cover.) for R = 0.80. Exact OVL coefficients: ρ = 0.976, λ = 0.958 and ∆ = 0.837.

Asymptotic inference Bootstrap inference
(n1, n2) Est. MSE(|Bias|) Cover L. Est. MŜE∗ (bı̂as∗) Cover L.
(20, 20) ρ 0.958 0.0021(0.017) 0.890 0.156 0.940 0.0034(0.036) 0.945 0.183

λ 0.929 0.0058(0.029) 0.940 0.398 0.900 0.0088(0.058) 0.945 0.294
∆ 0.815 0.0121(0.022) 0.995 0.528 0.786 0.0292(0.051) 0.945 0.404

(20, 30) ρ 0.962 0.0018(0.013) 0.853 0.135 0.947 0.0026(0.028) 0.938 0.155
λ 0.936 0.0049(0.022) 0.922 0.347 0.911 0.0070(0.046) 0.938 0.253
∆ 0.826 0.0110(0.012) 0.989 0.479 0.800 0.0537(0.038) 0.938 0.367

(50, 50) ρ 0.968 0.0008(0.008) 0.900 0.093 0.961 0.0010(0.014) 0.938 0.095
λ 0.945 0.0021(0.013) 0.949 0.247 0.934 0.0026(0.024) 0.938 0.159
∆ 0.829 0.0058(0.009) 0.981 0.329 0.820 0.0660(0.017) 0.938 0.271

(100, 100) ρ 0.973 0.0003(0.003) 0.921 0.063 0.970 0.0003(0.006) 0.942 0.062
λ 0.954 0.0008(0.004) 0.977 0.172 0.948 0.0009(0.010) 0.942 0.105
∆ 0.837 0.0028(0.000) 0.976 0.230 0.834 0.0719(0.003) 0.942 0.200

(200, 200) ρ 0.974 0.0001(0.002) 0.932 0.045 0.972 0.0001(0.003) 0.945 0.043
λ 0.955 0.0004(0.003) 0.992 0.124 0.952 0.0004(0.005) 0.945 0.074
∆ 0.836 0.0014(0.000) 0.970 0.163 0.835 0.0748(0.002) 0.945 0.144

Table 4. Body mass index (kg/m2) of diabetic women aged 80 to 85 years in the Iowa 65+
Rural Health Study by urinary incontinence.

No Urinary 18.88 19.35 19.52 19.77 20.57 21.65 21.67 22.90 23.45 23.45
Incontinence 23.46 23.62 26.27 25.66 27.50 28.95 30.10 30.17 36.65

Urinary 19.61 22.88 24.07 24.38 25.24 25.66 26.01 27.31 27.49 29.29
Incontinence 31.31 31.95 33.52 37.66

Table 4 presents the body mass index data (BMI) collected at the baseline for the Iowa 65+ RHS. In this
study there were 33 diabetic women aged 80 to 85 of whom 14 reported urinary incontinence. The question
of interest is to draw inference about the percentage of similarity in the BMI of the diabetic women with or
without urinary incontinence. The BMI is the ratio of the subject’s weight (kg) divided by height square (m2).
Figures 3 and 4 (including the Anderson-Darling goodness of fit test) indicate that the underlying distribution
for this data follows Weibull distributions with P -values > 0.99.

Moreover, using the asymptotic normality of the MLEs of the shape parameters, our test of the two shape
parameters equality using two samples Z-test (Z = 0.55; P -value = 0.291) indicates that the two distributions
shape parameters are statistically equal. Also, the combined MLE from the two samples for β is β∗ = 5.72.
Table 5, summarizes the asymptotic inference and the bootstrap inference on the OVL measures for the BMI
data of urinary incontinence and non- urinary incontinence women aged 80-85 at the baseline for the Iowa 65+
RHS.

Table 5 shows an illustration of estimating the OVL coefficients for two weibull distributions. For example
MLE of ∆ = 0.686 indicates that about 68% of diabetic women aged 80–85 years with or without urinary
incontinence have the same range of BMI.
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Figure 3. Weibull probability plot for body mass index of diabetic women aged 80–85 with
urinary incontinence.

 

 

 

 

  

    

 

Figure 4. Weibull probability plot for body mass index of diabetic women aged 80–85 with
no urinary incontinence.
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Table 5. Results based on the real data of BMI in Table 4.

Asymptotic Inference Bootstrap Inference based on 1000 resamples
95% confidence 95% confidence
Interval limits Interval limits

Coefficients MLEs MSE Lower Upper Estimate MŜE∗ (bı̂as∗) Lower Upper
ρ 0.910 0.0065 0.777 1.000 0.922 0.0080 (0.012) 0.703 1.000
λ 0.840 0.0940 0.460 1.000 0.865 0.0211 (0.025) 0.516 1.000
∆ 0.686 0.0273 0.496 0.948 0.751 0.0292 (0.065) 0.421 0.986
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