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RISK BOUNDS FOR MIXTURE DENSITY ESTIMATION ∗

Alexander Rakhlin1, Dmitry Panchenko2 and Sayan Mukherjee3

Abstract. In this paper we focus on the problem of estimating a bounded density using a finite
combination of densities from a given class. We consider the Maximum Likelihood Estimator (MLE)
and the greedy procedure described by Li and Barron (1999) under the additional assumption of
boundedness of densities. We prove an O( 1√

n
) bound on the estimation error which does not depend

on the number of densities in the estimated combination. Under the boundedness assumption, this
improves the bound of Li and Barron by removing the log n factor and also generalizes it to the base
classes with converging Dudley integral.
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1. Introduction

In the density estimation problem, we are given i.i.d. sample S = (x1, . . . , xn) drawn from an unknown
density f . The goal is to estimate this density from the given data. We consider the Maximum Likelihood
Procedure (MLE) and the greedy procedure described by Li and Barron [7,8] and prove estimation bounds for
these procedures. Rates of convergence for density estimation were studied in [3,12,13,15]. For neural networks
and projection pursuit, approximation and estimation bounds can be found in [1, 2, 5, 11].
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RISK BOUNDS FOR MIXTURE DENSITY ESTIMATION 221

Let (X ,F) be a measurable space and let λ be a σ-finite measure on F . Whenever we mention below that
a probability measure on F has a density we will understand that it has a Radon-Nikodym derivative with
respect to λ.

To evaluate the accuracy of the density estimate we need a notion of distance. Kullback-Leibler (KL) diver-
gence and Hellinger distance are the most commonly used. In this paper we will work with the
KL-divergence, defined for two distributions f and g as

D(f‖g) =
∫

f(x) log
f(x)
g(x)

dλ(x) = Ex log
f(x)
g(x)

·

Here x has distribution with density f .
Consider a parametric family of probability density functions H = {φθ(x) : θ ∈ Θ ⊂ R

d} over X . The class
of k-component mixtures fk is defined as

Ck = convk(H) =

{
f : f(x) =

k∑
i=1

λiφθi(x),
k∑

i=1

λi = 1, λi ≥ 0, θi ∈ Θ

}
.

Let us define the class of continuous convex combinations

C = conv(H) =
{

f : f(x) =
∫

Θ

φθ(x)P (dθ), P is a probability measure on Θ
}

.

The approximation bound of Li and Barron [7, 8] states that for any f , there exists an fk ∈ Ck, such that

D(f‖fk) ≤ D(f‖C) +
c2
f,P γ

k
, (1)

where cf,P and γ are constants and D(f‖C) = infg∈C D(f‖g). Furthermore, γ is an upper bound on the log-ratio
of any two functions φθ(x), φθ′(x) for all θ, θ′, x and therefore

sup
θ,θ′,x

log
φθ(x)
φθ′(x)

< ∞ (2)

is a condition on the class H.
Li and Barron prove that k-mixture approximations satisfying (1) can be constructed by the following greedy

procedure: Initialize f1 = φθ to minimize D(f‖f1) and at step k construct fk from fk−1 by finding α and θ
such that

D(f‖fk) ≤ min
α,θ

D(f‖(1 − α)fk−1(x) + αφθ(x)).
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222 A. RAKHLIN, D. PANCHENKO AND S. MUKHERJEE

Furthermore, a connection between KL-divergence and Maximum Likelihood suggests the following method to
compute the estimate f̂k from the data by greedily choosing φθ at step k so that

n∑
i=1

log f̂k(xi) ≥ max
α,θ

n∑
i=1

log[(1 − α)f̂k−1(xi) + αφθ(xi)]. (3)

Li and Barron proved the following theorem:

Theorem 1.1. Let f̂k(x) be either the maximizer of the likelihood over k-component mixtures or more generally
any sequence of density estimates satisfying (3). Assume additionally that Θ is a d-dimensional cube with side-
length A, and that

sup
x∈X

| log φθ(x) − log φθ′(x)| ≤ B
d∑
j

|θj − θ′j | (4)

for any θ, θ′ ∈ Θ. Then

E

[
D(f‖f̂k)

]
− D(f‖C) ≤ c1

k
+

c2k

n
log(nc3), (5)

where c1, c2, c3 are constants (dependent on A, B, d).

The above bound combines the approximation and estimation results. Note that the first term decreases
with the number of components k, while the second term increases. The rate of convergence for the optimal k

is therefore O(
√

log n
n ).

2. Main results

We assume that f and the densities in H are bounded above and below by some constants a and b, respectively.
This boundedness naturally extends to the convex combinations as well. We prove the following results:

Theorem 2.1. For any target density f such that a ≤ f(x) ≤ b for all x ∈ X and f̂k(x) being either the
maximizer of the likelihood over k-component mixtures or more generally any sequence of density estimates
satisfying (3),

E

[
D(f‖f̂k)

]
− D(f‖C) ≤ c1

k
+ E

[
c2√
n

∫ b

0

log1/2 D(H, ε, dn)dε

]
,

where c1, c2 are constants (dependent on a, b) and D(H, ε, dn) is the ε-covering number of H with respect to
empirical distance dn (d2

n(φ1, φ2) = 1
n

∑n
i=1(φ1(xi) − φ2(xi))2).

Corollary 2.2. Under the conditions of Theorem 1.1 (i.e. H satisfying condition (4) and Θ being a cube with
side-length A) and assuming boundedness of the densities, the bound of Theorem 2.1 becomes

E

[
D(f‖f̂k)

]
− D(f‖C) ≤ c1

k
+

c2√
n

,

where c1 and c2 are constants (dependent on a, b, A, B, d).

Corollary 2.3. The bound of Corollary 2.2 holds for the class of (truncated) Gaussian densities H = {fµ,σ :

fµ,σ(x) = 1
Zµ,σ

1
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
, |µ| ≤ M, σmin ≤ σ ≤ σmax} over a compact domain X (Zµ,σ is needed for

normalization).
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Remark 2.4. Theorem 2.1 hides the dependence of constants c1, c2 on a and b for the sake of easy comparison
to Theorem 1.1. We now state the result with explicit dependence on a and b:

D(f‖f̂k) − D(f‖C) ≤ 1
k

8b2

a2

(
2 + log

b

a

)
+

1√
n

(
b

a2
E

[
c1

∫ b

0

log1/2 D(H, ε, dn)dε

]
+

8b

a

)
+

√
t

n

(
4
√

2 log
b

a

)

with probability at least 1 − e−t, or, by integrating,

E

[
D(f‖f̂k)

]
− D(f‖C) ≤ 1

k

8b2

a2

(
2 + log

b

a

)
+

1√
n

(
b

a2
E

[
c1

∫ b

0

log1/2 D(H, ε, dn)dε

]
+

8b

a
+ 4

√
2 log

b

a

)
,

where c1 is an absolute constant.

Remark 2.5. Upper and lower bounds a and b are determined by the class H and by the target density f .
Assume there exists a sequence of truncations {fi} of f , such that ai ≤ fi(x) ≤ bi for all x ∈ X , and {ai} is
decreasing and {bi} increasing. Further assume that each class Hi contains functions bounded by ai and bi.
As the number of samples n grows, one can choose more and more complex models Hi. If ai is a decreasing
function of n and bi is an increasing function of n, Remark 2.4 provides the rate for learning fi, the truncated
version of f . This could be applied, for instance, to a sequence of classes Hi of Gaussian densities over increasing
domain and increasing range of variances.

3. Discussion of the results

The result of Theorem 2.1 is twofold. The first implication concerns dependence of the bound on k, the
number of components. Our results show that there is an estimation bound of the order O( 1√

n
) that does not

depend on k. Therefore, the number of components is not a trade-off that has to be made with the approximation
part (which decreases with k). The bound also suggests that the number of components k should be chosen to
be O(

√
n).

The second implication concerns the rate of convergence in terms of n, the number of samples. The rate of
convergence (in the sense of KL-divergence) of the estimated mixture to the true density is of the order O(1/

√
n).

As Corollary 2.2 shows, for the specific class H considered by Li and Barron, the Dudley integral converges
and does not depend on n. We therefore improve the results of Li and Barron by removing the log n factor.
Furthermore, the result of this paper holds for general base classes H with a converging entropy integral,
extending the result of Li and Barron. Note that the bound of Theorem 2.1 is in terms of the metric entropy of
H, as opposed to the metric entropy of C. This is a strong result because the convex class C can be very large
[10] even for small H.

Rates of convergence for the MLE in mixture models were studied by Sara van de Geer [12]. As the author
notes, the optimality of the rates depends primarily on the optimality of the entropy calculations. Unfortunately,
in the results of [12], the entropy of the convex class appears in the bounds, which is undesirable. An advantage
of the approach of [12] is the use of Hellinger distance to avoid problems near zero. Li and Barron address
this problem by requiring (2), which is boundedness of the log of the ratio of two densities. Birgé and Massart
([3], p. 122) cite a counterexample of Bahadur (1958) which shows that even with a compact parameter space,
M.L.E. can diverge when likelihood ratios are unbounded. Unfortunately, boundedness of the ratios of densities
is not enough for the proofs of this paper. We assume boundedness of the densities themselves. This is
critical in one step of the proof, when the contraction principle is used (for the second time). Although the
boundedness condition seems as a somewhat strict requirement, note that a class of densities that satisfies (2),
but not boundedness of the densities, has to contain functions which all go to zero (or infinity) in exactly the
same manner. Also note that on a non-compact domain IR even a simple class of Gaussian densities does
not satisfy (2). Indeed, the log-ratio of the tails of two Gaussians with the same variance but different means
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becomes infinite. If one considers a compact domain X , the boundedness of densities assumption does not seem
very restrictive.

The proof technique of this paper seems to be a powerful general method for bounding uniform deviations
of empirical and expected quantities. The main ingredients of the proof are the Comparison inequality for
Rademacher processes and the fact that Rademacher averages (as defined in Lem. A.2) of the convex hull are
equivalent to those of the base class.

4. Proofs

Assume
0 < a ≤ φθ(x) ≤ b ∀x ∈ X , ∀φθ ∈ H.

Constants which depend only on a and b will be denoted by c with various subscripts. The values of the
constants might change from line to line.

Theorem 4.1. For any fixed density f such that 0 < a ≤ f(x) ≤ b ∀x ∈ X and S = (x1, . . . , xn) drawn i.i.d.
from f , with probability at least 1 − e−t,

sup
h∈C

∣∣∣∣∣
1
n

n∑
i=1

log
h(xi)
f(xi)

− E log
h

f

∣∣∣∣∣ ≤ E

[
c1√
n

∫ b

0

log1/2 D(H, ε, dn)dε

]
+ c2

√
t

n
,

where c1 and c2 are constants that depend on a and b.

Proof. First, we apply Lemma A.3 to the random variable Z(x1, . . . , xn) = suph∈C
∣∣∣ 1n ∑n

i=1 log h(xi)
f(xi)

− E log h
f

∣∣∣.
Let ti = log h(xi)

f(xi)
and t′i = log h(x′

i)
f(x′

i)
. The bound on the martingale difference follows:

|Z(x1, . . . , x
′
i, . . . , xn) − Z(x1, . . . , xi, . . . , xn)| =

∣∣∣∣sup
h∈F

∣∣∣∣E log
h

f
− 1

n
(t1 + . . . + ti + . . . + tn)

∣∣∣∣
− sup

h∈F

∣∣∣∣E log
h

f
− 1

n
(t1 + . . . + t′i + . . . + tn)

∣∣∣∣
∣∣∣∣

≤ sup
h∈F

1
n

∣∣∣∣log
h(x′

i)
f(x′

i)
− log

h(xi)
f(xi)

∣∣∣∣ ≤ 1
n

(
log

b

a
− log

a

b

)

=
1
n

2 log
b

a
= ci.

The above chain of inequalities holds because of triangle inequality and properties of sup. Applying McDiarmid’s
inequality (see Lem. A.3),

IP (Z − EZ > u) ≤ exp
(
− u2

2
∑

c2
i

)
= exp

(
− nu2

(
2
√

2 log b
a

)2
)
·

Therefore,

sup
h∈C

∣∣∣∣∣
1
n

n∑
i=1

log
h(xi)
f(xi)

− E log
h

f

∣∣∣∣∣ ≤ E sup
h∈C

∣∣∣∣∣
1
n

n∑
i=1

log
h(xi)
f(xi)

− E log
h

f

∣∣∣∣∣+ 2
√

2 log
b

a

√
t

n

with probability at least 1 − e−t and by Lemma A.2,

E sup
h∈C

∣∣∣∣∣
1
n

n∑
i=1

log
h(xi)
f(xi)

− E log
h

f

∣∣∣∣∣ ≤ 2E sup
h∈C

∣∣∣∣∣
1
n

n∑
i=1

εi log
h(xi)
f(xi)

∣∣∣∣∣ ·
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Combining,

sup
h∈C

∣∣∣∣∣
1
n

n∑
i=1

log
h(xi)
f(xi)

− E log
h

f

∣∣∣∣∣ ≤ 2E sup
h∈C

∣∣∣∣∣
1
n

n∑
i=1

εi log
h(xi)
f(xi)

∣∣∣∣∣+ 2
√

2 log
b

a

√
t

n

with probability at least 1 − e−t.
Therefore, instead of bounding the difference between the “empirical” and the “expectation”, it is enough to

bound the above expectation of the Rademacher average. This is a simpler task, but first we have to deal with the
log and the fraction (over f) in the Rademacher sum. To eliminate these difficulties, we apply Lemma A.1 twice.
Once we reduce our problem to bounding the Rademacher sum of the basis functions supφ∈H

∣∣ 1
n

∑n
i=1 εiφ(xi)

∣∣,
we will be able to use the entropy of the class H.

Let pi = h(xi)
f(xi)

− 1 and note that a
b − 1 ≤ pi ≤ b

a − 1. Consider φ(p) = log(1 + p). The largest derivative of
log(1 + p) on the interval p ∈ [a

b − 1, b
a − 1] is at p = a/b− 1 and is equal to b/a. So, a

b log(p + 1) is 1-Lipschitz.
Also, φ(0) = 0. By Lemma A.1 applied to φ(p),

2E sup
h∈C

∣∣∣∣∣
1
n

n∑
i=1

εi log
h(xi)
f(xi)

∣∣∣∣∣ = 2E sup
h∈C

∣∣∣∣∣
1
n

n∑
1

εiφ(pi)

∣∣∣∣∣

≤ 4
b

a
E sup

h∈C

∣∣∣∣∣
1
n

n∑
i=1

εi
h(xi)
f(xi)

− 1
n

n∑
1

εi

∣∣∣∣∣

≤ 4
b

a
E sup

h∈C

∣∣∣∣∣
1
n

n∑
i=1

εi
h(xi)
f(xi)

∣∣∣∣∣+ 4
b

a
Eε

∣∣∣∣∣
1
n

n∑
i=1

εi

∣∣∣∣∣

≤ 4
b

a
E sup

h∈C

∣∣∣∣∣
1
n

n∑
i=1

εi
h(xi)
f(xi)

∣∣∣∣∣+ 4
b

a

1√
n
·

The last inequality holds because

Eε

∣∣∣∣∣
1
n

n∑
i=1

εi

∣∣∣∣∣ ≤

Eε

(
1
n

n∑
i=1

εi

)2



1/2

=
1√
n
·

Let hi = h(xi), fi = f(xi). We apply Lemma A.1 again with the contraction φi(hi) = ahi

fi
. Note that

|φi(hi) − φi(gi)| = a
|fi| |hi − gi| ≤ |hi − gi|. Therefore,

4
b

a
E sup

h∈C

∣∣∣∣∣
1
n

n∑
i=1

εi
h(xi)
f(xi)

∣∣∣∣∣ ≤ 8
b

a2
E sup

h∈C

∣∣∣∣∣
1
n

n∑
i=1

εih(xi)

∣∣∣∣∣ .

Combining the inequalities, with probability at least 1 − e−t

sup
h∈C

∣∣∣∣∣
1
n

n∑
i=1

log
h(xi)
f(xi)

− E log
h

f

∣∣∣∣∣ ≤
8b

a2
E sup

h∈C

∣∣∣∣∣
1
n

n∑
i=1

εih(xi)

∣∣∣∣∣+
√

8 log
b

a

√
t

n
+

4b

a

1√
n
·

The power of using Rademacher averages to estimate complexity comes from the fact that the Rademacher
averages of a class are equal to those of the convex hull. Indeed, consider suph∈C

∣∣ 1
n

∑n
i=1 εih(xi)

∣∣ with h(x) =∫
θ
φθ(x)P (dθ). Since a linear functional of convex combinations achieves its maximum value at the vertices,

the above supremum is equal to supθ

∣∣ 1
n

∑n
i=1 εiφθ(xi)

∣∣ , the corresponding supremum on the basis functions φ.
Therefore, Eε suph∈C

∣∣ 1
n

∑n
i=1 εih(xi)

∣∣ = Eε supθ∈Θ

∣∣ 1
n

∑n
i=1 εiφθ(xi)

∣∣.
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Next, we use the following classical result (see [14]),

Eε sup
φ∈H

∣∣∣∣∣
1
n

n∑
i=1

εiφ(xi)

∣∣∣∣∣ ≤
c1√
n

∫ b

0

log1/2 D(H, ε, dn)dε,

where dn is the empirical distance with respect to the set S.
Combining the results together, the following holds with probability at least 1 − e−t:

sup
h∈C

∣∣∣∣∣
1
n

n∑
i=1

log
h(xi)
f(xi)

− E log
h

f

∣∣∣∣∣ ≤
[

c1√
n

∫ b

0

log1/2 D(H, ε, dn)dε

]
+ c2

√
t

n
· �

Remark 4.2. If H is a VC-subgraph with VC dimension V , the Dudley integral above is bounded by c
√

V and
we get O(1/

√
n) convergence. One example of such a class is the class of (truncated) Gaussian densities over a

compact domain and with bounded variance (see Cor. 2.3). Another example is the class considered in [7], and
its cover is computed in the proof of Corollary 2.2. More information on the classes with converging Dudley
integral and examples of VC-subgraph classes can be found in [4, 14].

We are now ready to prove Theorem 2.1:

Proof.

D(f‖f̂k) − D(f‖fk) =

(
E log

f

f̂k

− 1
n

n∑
i=1

log
f(xi)

f̂k(xi)

)
+

(
1
n

n∑
i=1

log
f(xi)
fk(xi)

− E log
f

fk

)

+

(
1
n

n∑
i=1

log
f(xi)

f̂k(xi)
− 1

n

n∑
i=1

log
f(xi)
fk(xi)

)

≤ 2 sup
h∈C

∣∣∣∣∣
1
n

n∑
i=1

log
h(xi)
f(xi)

− E log
h

f

∣∣∣∣∣

+

(
1
n

n∑
i=1

log
f(xi)
f̂k(xi)

− 1
n

n∑
i=1

log
f(xi)
fk(xi)

)

≤ E

[
c1√
n

∫ b

0

log1/2 D(H, ε, dn)dε

]
+ c2

√
t

n
+

1
n

n∑
i=1

log
fk(xi)

f̂k(xi)

with probability at least 1−e−t (by Th. 4.1). Note that 1
n

∑n
i=1 log fk(xi)

f̂k(xi)
≤ 0 if f̂k is constructed by maximizing

the likelihood over k-component mixtures. If it is constructed by the greedy algorithm described in the previous
section, f̂k achieves “almost maximum likelihood” (see p. 27 of [8], or Sect. 3 of [7]) in the following sense:

∀g ∈ C,
1
n

n∑
i=1

log(f̂k(xi)) ≥ 1
n

n∑
i=1

log(g(xi)) − γ
c2
Fn,P

k
·

Here c2
Fn,P = (1/n)

∑n
i=1

∫
φ2

θ(xi)P (dθ)

(
∫

φθ(xi)P (dθ))2
≤ b2

a2 and γ = 4 log(3
√

e) + 4 log b
a . Hence, with probability at least

1 − e−t,

D(f‖f̂k) − D(f‖fk) ≤ E

[
c1√
n

∫ b

0

log1/2 D(H, ε, dn)dε

]
+ c2

√
t

n
+

c3

k
·
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We now write the overall error of estimating an unknown density f as the sum of approximation and estimation
errors. The former is bounded by (1) and the latter is bounded as above. Note again that c2

f,P and γ in the
approximation bound (1) are bounded above by constants which depend only on a and b. Therefore, with
probability at least 1 − e−t,

D(f‖f̂k) − D(f‖C) = (D(f‖fk) − D(f‖C)) +
(
D(f‖f̂k) − D(f‖fk)

)

≤ c

k
+

[
c1√
n

∫ b

0

log1/2 D(H, ε, dn)dε

]
+ c2

√
t

n
· (6)

Finally, we rewrite the above probabilistic statement as a statement in terms of expectations. Let ζ = c
k +

E

[
c1√
n

∫ b

0 log1/2 D(H, ε, dn)dε
]

and ξ = D(f‖f̂k) − D(f‖C). We have shown that IP
(
ξ ≥ ζ + c2

√
t
n

)
≤ e−t.

Since ξ ≥ 0,

E [ξ] =
∫ ζ

0

IP (ξ > u) du +
∫ ∞

ζ

IP(ξ > u)du ≤ ζ +
∫ ∞

0

IP (ξ > u + ζ) du.

Now set u = c2

√
t
n . Then t = c3nu2 and E [ξ] ≤ ζ +

∫∞
0 e−c3nu2

du ≤ ζ + c√
n
. Hence,

E
[
D(f‖f̂k)

]
− D(f‖C) ≤ c1

k
+ E

[
c2√
n

∫ b

0

log1/2 D(H, ε, dn)dε

]
. �

Remark 4.3. Inequality (6) is much stronger than the result of Theorem 2.1 because it reveals the tail behavior
of D(f‖f̂k) − D(f‖C). Nevertheless, to be able to compare our results to those of Li and Barron, we present
our results in terms of expectations.

Remark 4.4. In the actual proof of the bounds, Li and Barron [7,8] use a specific sequence of αi for the finite
combinations. The authors take α1 = 1, α2 = 1

2 , and αk = 2
k for k ≥ 2. It can be shown that in this case

fk =
2

k(k − 1)

(
1
2
φ1 +

1
2
φ2 +

k∑
m=3

(m − 1)φm

)
,

so the later choices have more weight.

We now prove Corollary 2.2:

Proof. Since we consider bounded densities a ≤ φθ ≤ b, condition (4) implies that

∀x, log
(

φθ(x) − φθ′(x)
b

+ 1
)

≤ B|θ − θ′|L1 .

This allows us to bound L∞ distances between functions in H in terms of the L1 distances between the cor-
responding parameters. Since Θ is a d-dimensional cube of side-length A, we can cover Θ by

(
A
δ

)d
“balls” of

L1-radius d δ
2 . This cover induces a cover of H. For any fθ there exists an element of the cover fθ′ , so that

dn(fθ, fθ′) ≤ |fθ − fθ′ |∞ ≤ beB dδ
2 − b = ε
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Therefore, δ =
2 log( ε

b +1)
Bd and the cardinality of the cover is (A

δ )d =
(

ABd

2 log( ε
b +1)

)d

. Hence,

∫ b

0

log1/2 D(H, ε, dn)dε =
∫ b

0

√
d log

ABd

2 log
(

ε
b + 1

)dε.

A straightforward calculation shows that the integral above converges. �
By creating a simple net over the class F in Corollary 2.3, one can easily show that F has a finite cover

D(F , ε, dn) = K
ε2 , for some constant K. Corollary 2.3 follows.

5. Appendix A

We will denote fi = f(xi). Let ε1, . . . , εn be i.i.d. Rademacher random variables, i.e. Pr(εi = −1) = Pr(εi =
+1) = 1/2. The following inequality can be found in [6], Theorem 4.12.

Lemma A.1 ([6] Comparison inequality for Rademacher processes). If φi : R → R (i = 1, ..., n) are contractions
( φi(0) = 0 and |φi(s) − φi(t)| ≤ |s − t| ), then

Eε sup
f∈F

∣∣∣∣∣
n∑

i=1

εiφi(fi)

∣∣∣∣∣ ≤ 2Eε sup
f∈F

∣∣∣∣∣
n∑

i=1

εifi

∣∣∣∣∣ .

Lemma A.2 ([14] Symmetrization). Consider the following processes:

Z(x) = sup
f∈F

∣∣∣∣∣Ef − 1
n

n∑
i=1

f(xi)

∣∣∣∣∣ , R(x) = sup
f∈F

∣∣∣∣∣
1
n

n∑
i=1

εif(xi)

∣∣∣∣∣ .

Then
EZ(x) ≤ 2ER(x).

The quantity ER(x) is called the Rademacher average of F .

Lemma A.3 ([9] McDiarmid’s inequality). Let x1, . . . , xn, x′
1, . . . , x

′
n ∈ Ω be i.i.d. random variables and let Z :

Ωn → R such that

∀x1, . . . , xn, x′
1, . . . , x

′
n |Z(x1, .., xn) − Z(x1, . . . , xi−1, x

′
i, xi+1, xn)| ≤ ci,

then

IP (Z − EZ > ε) ≤ exp
(
− ε2

2
∑n

i=1 c2
i

)
·
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