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ESTIMATION OF PARAMETERS IN A NETWORK RELIABILITY MODEL
WITH SPATIAL DEPENDENCE ∗

Ian Hepburn Dinwoodie1

Abstract. An iterative method based on a fixed-point property is proposed for finding maximum
likelihood estimators for parameters in a model of network reliability with spatial dependence. The
method is shown to converge at a geometric rate under natural conditions on data.

Mathematics Subject Classification. 62B05, 62F10.

Received October 3, 2003. Revised May 10, 2005.

Introduction

A model for network reliability with spatial dependence was formulated in [7] that generalized the Bernoulli
model of [3]. The problem is to infer internal link failure probabilities from aggregate failure counts. An
approximate maximum likelihood estimator (mle) was proposed based on a one-step relaxation method. In this
paper, we describe an iterative scheme to find the numerical values of the mle based on a fixed point property.

Recent work on multicast network tomography has developed methodology for networks more general than
trees [2], for missing data [8], for sample size [9], and for efficient probing [15], always under the assumption of
independent link failures. There is also work on using unicast pairs for the same purpose [13], again assuming
independent losses on different links. An attempt to deal with dependence among components in a network is in
[10], where pseudo-likelihoods replace likelihoods for simplicity and approximate methods are used. A wide and
useful survey of internet tomography is [4], which concludes by saying that relaxing assumptions of stationarity
and independence is of great interest.

The focus here is on a specific multicast model with dependent link failures, for the simple tree topology.
The model for dependence adds a single interaction parameter θ which corresponds to the exponential of inverse
temperature in an interaction potential over all pairs of links. The extra parameter complicates the identifiability
and estimation because the recursive method of [3] is no longer is applicable. The foundations were put in place
in [7], but an efficient procedure for exact maximum likelihood was not given. Rather an efficient approximate
method was given that modified the estimates for the Bernoulli model. Here we give a new iterative method
for maximizing the likelihood, and we also explain the method in the context of the traditional Bernoulli model
with independent link failures.

Let us recall the problem and introduce some notation. A tree with vertices V and edge set E has root node
0 ∈ V and “leaf” nodes R ⊂ V (R stands for receivers). from the root node 0 towards the receiver nodes R,
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and it copies itself at each vertex onto each subsequent edge on its trip towards the receiver nodes (this is the
meaning of “multicast”). The probe is lost on an edge on route to the leaf nodes with a probability that depends
on the edge. An observation is a vector y ∈ {0, 1}R, where component i indicates whether the multicast signal
was lost on the trip from 0 to the leaf node i ∈ R (yi = 1 means it was lost). The observation y is the image
under a many-to-one linear map A of a hidden outcome x indicating success or failure on each edge.

Figure 1. Multicast tree.

This experiment is repeated independently and identically n ≥ 1 times, and observations y1,y2, . . . ,yn are a
random sample of iid vectors at the receiver nodes with components in {0, 1}. The goal is to estimate internal
reliability parameters on edges from the incomplete receiver data. This can be done with at least two probability
models, the original Bernoulli model and an interaction model with an extra parameter θ that encourages or
discourages multiple losses.

1. Bernoulli multicast model

In this section we describe in detail the Bernoulli multicast model of [3], for which a recursive estimation
algorithm exists, but which also can solved with the proposed method. The section will serve to fix notation in
a setting less complicated than the full interaction model.

Let T be the tree with vertices V numbered 0, 1, . . . , c. Let the parent of a node i be denoted f(i), and let
descendants of node i (the set of nodes whose path back to 0 goes through i, but not including i) be denoted d(i).
The siblings of i would be f−1 ◦f(i). The assumption that all parent vertices (VP ) have at least two child nodes
means that for each i ∈ VP it holds that f−1 ◦ f(i) − {i} �= ∅.

The parent nodes will be denoted VP := V −R, and V0 will be the collection of non-root nodes. All vertices
in VP will be assumed to have at least two child nodes. On the tree (1) above for example, V0 = {1, 2, 3, 4, 5, 6},
c = 6, VP = {0, 1, 2}, R = {3, 4, 5, 6}, and f(3) = f(4) = 1.

Basic hidden outcomes are vectors of counts x = (xi)i∈V0 ∈ {0, 1}V0, where xi specifies how many probes
were lost on the edge {f(i), i} (the edges are labelled by the outer vertex). The multicast data y can be written
as a many-to-one function of basic hidden outcomes x with the help of a routing matrix A. The matrix A will
have d = |R| rows, one for each leaf node, and c = |V0| columns indexed by edges. The row for leaf node i will
have “1” in column j if j is on the path from 0 to leaf node i. For the binary tree in Figure 1, the matrix is
given by

A =




1 2 3 4 5 6
3 1 0 1 0 0 0
4 1 0 0 1 0 0
5 0 1 0 0 1 0
6 0 1 0 0 0 1


. (1.1)
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The experiment is repeated n ≥ 1 times. Then the total observed loss vector yk (for experiment k out of n) at
leaf nodes is given by

yk = Axk.

It is convenient to have a |V | × |V0| routing matrix B for all nodes in V , not just the leaf nodes. The row for
vertex i would have “1” in each column for vertices on the path from 0 to i. (Bx)i for a node i ∈ V0 would give
the total number of messages lost along the path from 0 out to i. The row for vertex 0 in B is identically 0.

Now let βi be the probability that a probe from vertex f(i) will fail to cross edge {f(i), i} to reach vertex
i ∈ V0. We will use an odds ratio parametrization:

βi =
λi

1 + λi
, λi ≥ 0.

For the Bernoulli model it is assumed that a probe fails to cross edge {f(i), i} with probability λi/(1+ λi), and
edges and probes all behave independently given failure count data on parent nodes (we generalize this below).
The distribution µλ on S0 = {x = (xi) ∈ ZV0

+ : xi ∈ {0, 1}} is

µλ(x) =
∏
i∈V0

(
1 − (Bx)f(i)

xi

)
λxi

i

(1 + λi)1−(Bx)f(i)

= λx
∏
i∈V0

(
1 − (Bx)f(i)

xi

)
1

(1 + λi)1−(Bx)f(i)

= λx

[∏
i∈V0

(
1−(Bx)f(i)

xi

)

(1 + λi)

] ∏
i∈V0

(1 + λi)(Bx)f(i)

= λx

[∏
i∈V0

(
1−(Bx)f(i)

xi

)

(1 + λi)

] ∏
i∈V0−R

∏
j∈d(i)

(1 + λj)xi . (1.2)

For i ∈ V0, let pi =
∏

j∈d(i)

(1 + λj). Then (1.2) can be written

µλ({y}) =
∑

{x∈Zc
+:Ax=y}

h(x)
λx
∏

i∈V0
pi(λ)xi

zλ

=
∑

{x∈Zc
+:Ax=y}

h(x)
λxp(λ)x

zλ

where

h(x) =
∏
i∈V0

(
1 − (Bx)f(i)

xi

)

zλ =
∏
i∈V0

(1 + λi) (1.3)

and the notation p(λ)x is the usual representation of
∏c

i=1 pi(λ)xi . The vector of parameters (λi : i ∈ V0) is
identifiable, meaning that two different vectors give rise to two different distributions µλ({y}) on the observed
(incomplete) data y. (In the Bernoulli model, identifiability holds in fact even if the root vertex 0 has only one
child, and the failure probabilities are allowed to be zero.) This gives consistent maximum likelihood estimates
(the estimates converge to the true parameter values) as the sample size n increases.
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Now we describe some new variables that simplify the likelihood function. Consider the one-to-one
reparametrization γi = λipi(λ), for i ∈ V0, from the set of positive reals in RV0 to itself. Then

µλ(γ)({y}) =
∑

{x∈Zc
+:Ax=y}

h(x)
γx

zλ(γ)
· (1.4)

For each y ∈ ZR
+ , let V y ⊂ V0 be the collection of edge labels that are closest to the root whose failure could

lead to observation y. For example, in the binary tree (1), V (1,1,1,1) = {1, 2}, V (1,1,0,1) = {1, 6}. If one defines
a partial order on V0 by w ≤T v if and only if w is on the path from the root 0 to v, then V y is the collection
of minimal elements with respect to this order of the union of sets of edges in π−1(y) where π : 2V0 → {0, 1}R

is defined by
π(A) = I∪w∈A{v∈R : v≥T w}.

Define polynomials qv, v ∈ V0 in variables sv, v ∈ V0 recursively by

qr := sr, r ∈ R

qv := sv +
∏

w∈f−1(v)

qw.

The polynomials qv have a probabilistic meaning. For each vertex v ∈ V0, let yv be the vector in {0, 1}R with 1
in each coordinate that is a descendent of v (including v if v is a receiver), which can be written as the indicator
function I{v∪d(v)}∩R. Then µλ({yv}) = qv(γ)/zλ, as we show below.

Proposition 1.1. For the Bernoulli model,

µλ(γ)({y}) =
1

zλ(γ)

∏
v∈V y

qv(γ)

zλ(γ) =
∑

y∈{0,1}R

∏
v∈V y

qv(γ).

Proof. Observe that qv is the generating function in indeterminates sw, w ∈ V0 for the outcomes of edge failures
that lead to data yv . Then

∏
v∈V y qv is the generating function for the outcomes of edge failures that lead to

y =
∑

v∈V y yv, and can be written
∑

x:Ax=y sx. The probability of each x in the sum is given by γx/zλ(γ)
from (1.4). Then µ({x : Ax = y}) =

∑
x:Ax=y γx/zλ(γ) =

∏
v∈V y qv(γ)/zλ(γ). �

Define the polynomial Z(q1, . . . , qc) by

Z(q) :=
∑

y∈{0,1}R

∏
v∈V y

qv.

Proposition 1.2. For the Bernoulli model,

zλ(γ) = Z(q(γ)).

Proof. From the definition of Z, Z(q(γ)) =
∑

y∈{0,1}R

∏
v∈V y

qv(γ) = zλ(γ)

∑
y∈{0,1}R

µλ(γ)({y}) = zλ(γ) · 1 from

Proposition 1.1. �
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Let Nv, v ∈ V0 be the number of observations in the sample y1, . . . ,yn such that the corresponding collec-
tions V yi include v:

Nv := #{i : 1 ≤ i ≤ n, v ∈ V yi}.
Now we can represent the distribution µλ in a simplified form:

n∏
i=1

µλ(γ)({yi}) =
1

zn
λ(γ)

n∏
i=1

∏
v∈V yi

qv(γ)

=
1

zn
λ(γ)

∏
v∈V0

∏
i:v∈V yi

qv(γ)

=
1

zn
λ(γ)

∏
v∈V0

qv(γ)Nv

which shows that (Nv)v∈V0 are sufficient statistics. This leads to a simple form of the Bernoulli log-likelihood
function lB in the parameters γi:

lB(γ) =
1
n

∑
v∈V0

Nv log qv(γ) − log zλ(γ).

An interior stationary point for lB can be found as a positive solution to a system of polynomial equations in
the variables qv, by the chain rule for derivatives. Using the definition above for Z(q) in terms of qv, v ∈ V0,
consider lB in the variables q1, . . . , qc:

lB(q) =
1
n

∑
v∈V0

Nv log qv − log Z(q). (1.5)

Let us use the notation qV y

:=
∏

v∈V y qv. Setting ∇lB = 0 (assuming an interior stationary point) leads to c
polynomial equations:

Nv

n
=

∑
y:v∈V y

qV y

∑
y

qV y , v ∈ V0

which is a polynomial system with a fixed point property in the vector q:

qv =
Nv

n

∑
y

qV y

∑
y:v∈V y

qV y/qv
, v ∈ V0.

This suggests the iterative method with transformation T : RV0 → RV0 as below from some reasonable initial
point q0:

qk+1 = T (qk), k = 0, 1, 2, . . .

T (q)v =
Nv

n

∑
y

qV y

∑
y:v∈V y

qV y/qv
, v ∈ V0.

Obviously this would not give positive values if q = 0 or Nv/n = 0, so there will be some conditions on the
initial point and the data in Section 3 for it to work.



246 I.H. DINWOODIE

Example 1.1. Consider the binary tree (1), which has polynomial Z(q) = (1 + q3 + q4 + q1)(1 + q5 + q6 + q2).
To find an interior stationary point for the function lB(q, θ), we solve the following system for positive qv, θ:

N1

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2)) = q1(1 + q5 + q6 + q2)

N2

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2)) = q2(1 + q3 + q4 + q1)

N3

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2)) = q3(1 + q5 + q6 + q2)

N4

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2)) = q4(1 + q5 + q6 + q2)

N5

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2)) = q5(1 + q3 + q4 + q1)

N6

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2)) = q6(1 + q3 + q4 + q1).

Observe that if we set tv := Nv/n, and Eq(γ)(Nv/n) :=
∑

y:v∈V y qV y

/Z(q), then the sequence q0,q1,q2, . . .
can be written

qk+1
v = qk

v · tv
Eqk(Nv/n)

·

This brings out some similarities with iterative proportional scaling [5].

2. Multicast model with spatial dependence: interaction model

We have described the original model of [3], and now we generalize that model to one where interaction
across edges occurs. This generalization is the simplest model with spatial dependence and other models with
different types of dependence structures would also be of interest.

The new interaction model has an additional parameter θ > 0 affecting the probability of multiple losses and
breaking the Markov property. The new model reduces to the Bernoulli model when θ = 1, corresponding in a
way to a temperature t = ∞ in a Curie-Weiss model of interaction, where θ = e1/t. The range of the interaction
is across all edges, and values of θ greater than 1 mean that multiple losses are more likely than they would be
under the Bernoulli model.

For x ∈ {0, 1}V0, let |x| :=
∑

i∈V0
xi be the number of 1’s in x. Then the notation [|x|−1]+ will give |x|−1 if

there are two or more 1’s in x, otherwise it will vanish. The new law νγ,θ in parameters γi > 0, i = 1, . . . , c, θ >
00, is specified by

νγ,θ(x) := h(x)
γxθ[|x|−1]+

wγ,θ

wγ,θ =
θ − 1 + zλ(θγ)

θ
(2.1)

where the formula for the normalizing constant wγ,θ relates to z from the Bernoulli model as follows. Consider
the one-to-one reparametrization from positive γ to positive λ with inverse given by

γi = λipi(λ), i = 1, . . . , c.

Then λ(θγ) is the vector (λ1(θγ), . . . , λc(θγ)) that comes from finding the λ corresponding to (θγ1, θγ2, . . . , θγc).
From the Bernoulli model, we know that

c∏
i=1

(1 + λi(γθ)) =
∑

x∈{0,1}V0

h(x)γxθ|x|
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and separating the case x = 0 gives the formula. In terms of the odds-ratio parameters λi, the law ν can be
written

νγ(λ),θ(x) := h(x)
λxp(λ)xθ[|x|−1]+

wγ(λ),θ
· (2.2)

The parameter pair (γ, θ) is called identifiable for positive γ and positive θ if νγ,θ({x ∈ {0, 1}V0 : Ax = y}) =
νγ′,θ′({x ∈ {0, 1}V0 : Ax = y}) for all y ∈ {0, 1}R implies that γ = γ′ and θ = θ′, where γ and γ′ are assumed
to be positive in each coordinate and θ and θ′ are assumed to be nonnegative real numbers. If the parameters
are identifiable, then different parameters will lead to different statistical patterns and consistent estimation is
possible under repeated, independent experiments. Otherwise, different parameter values may be statistically
indistinguishable based on repeated experimental outcomes.

In [7] it was proved that the parameters (λ, θ) are identifiable if the tree T has the property that all parent
nodes have at least two children.

3. Estimation and inference

In this section, we propose a numerical method for finding maximum likelihood estimates of the unknown
parameter values. With the “incomplete” data yi = Axi as a many-to-one function of outcomes xi, it seems
that the EM-algorithm [6] is appropriate. The EM-algorithm is used in [2, 8, 9, 13]. The paper [9] has some
interesting approximations on the speed of convergence of the EM-algorithm, which is governed by the largest
eigenvalue of a transformation matrix. The EM-algorithm is complicated when applied directly and in theory is
only a local optimizer. Below we present an iterative method that has some similarities with the EM-algorithm,
in that it is a fixed-point argument with geometric convergence. However, it does not seem to be included
in the description of the EM-algorithm, rather it is a method for the “M-step” as defined in equation (2.3)
p. 4, of [6]. The method is essentially a numerical way to compute a Legendre transform in a special case, and
resembles iterative proportional scaling [5] in some ways. The general theorems of [5] cannot be applied however
for convergence, because the variables in the procedure are not probabilities.

Local convergence is established in Theorem 3.2, which shows the stability of the iterative procedure. The
convergence to a global maximum is established under conditions in Theorem 3.3. This is analogous to the
results in [14] that strengthen the convergence conclusions of the EM iteration.

The basic idea can be illustrated most simply with the example of finding the value of the odds ratio
parameter λ in n Bernoulli trials, say with x successes. The objective function is λx/(1+λ)n, and the stationary
point λ̂ satisfies the fixed point equation λ = T (λ) := (x/n)(1 + λ). Then with λ0 = 1 one gets a sequence of
converging approximations 1, 2x/n, x/n + 2(x/n)2, . . . → x/(n − x), as long as x < n.

Let the observations for an iid sample be y1 = Ax1, . . . ,yn = Axn. Observe that the relationship between
the Bernoulli model µλ and the interaction model νλ,θ implies the following formula:

νγ,θ({y}) = µλ(θγ)({y})
[
θI0(y) + I�=0(y)
θ − 1 + zλ(θγ)

]
zλ(θγ)

where θγ := (θγ1, . . . , θγc).
Let N0 be the number of times the vector 0 appears in the sample y1, . . . ,yn. The objective function for

maximum likelihood estimation is the log-likelihood function l in (γ, θ) given by

l(γ, θ) =
1
n

n∑
i=1

log νγ,θ({yi})

=
1
n

n∑
i=1

log(µλ(θγ)({yi})) +
N0

n
log(θ) + log

(
zλ(θγ)

θ − 1 + zλ(θγ)

)
·
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It follows that l(γ, θ) = l0(θγ, θ), where l0 is defined by

l0(γ′, θ) =
1
n

n∑
i=1

log µλ(γ′)({yi}) +
N0

n
log(θ) + log

(
zλ(γ′)

θ − 1 + zλ(γ′)

)
· (3.1)

The objective function l0 in (3.1) can be simplified. For each y ∈ ZR
+ , let V y ⊂ V0 be the collection of edge

labels that are closest to the root whose failure could lead to observation y. For example, in the binary tree (1),
V (1,1,1,1) = {1, 2}, V (1,1,0,1) = {1, 6}. Define polynomials qv, v ∈ V0 in variables sv, v ∈ V0 recursively by

qr := sr, r ∈ R

qv := sv +
∏

w∈f−1(v)

qw. (3.2)

By the independence in the Bernoulli model,

µλ(γ)({y}) =
∑

Ax=y

h(x)
γx

zλ(γ)
=

1
zλ(γ)

∏
v∈V y

qv(γ),

which leads to the formula for the normalizing constant zλ(γ) in terms of the variables qv:

zλ(γ) =
∑

y∈{0,1}R

∏
v∈V y

qv(γ).

Let Nv, v ∈ V0 be the number of observations in the sample y1, . . . ,yn such that the corresponding collec-
tions V yi include v:

Nv := #{i : 1 ≤ i ≤ n, v ∈ V yi}.
Now we can represent the distribution µλ in a simplified form:

n∏
i=1

µλ(γ)({yi}) =
1

zn
λ(γ)

n∏
i=1

∏
v∈V yi

qv(γ)

=
1

zn
λ(γ)

∏
v∈V0

∏
i:v∈V yi

qv(γ)

=
1

zn
λ(γ)

∏
v∈V0

qv(γ)Nv

.

This leads to a simpler form of the objective function l0:

l0(γ, θ) =
1
n

∑
v∈V0

Nv log qv(γ) +
N0

n
log(θ) − log(θ − 1 + zλ(γ)). (3.3)

The procedure to maximize l over (γ, θ) is to maximize l0 over γ′, θ and transform back:

(γ̂′, θ̂) := arg maxγ′>0,θ>0 l0(γ′, θ)

(γ̂, θ̂) := (γ̂′/θ̂, θ̂). (3.4)

Define the polynomial Z(q1, . . . , qc) by
Z(q) :=

∑
y∈{0,1}R

qV y

(3.5)
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with the notation qV y

:=
∏

v∈V y qv. An interior stationary point for l0(γ, θ) can be found as a positive solution
to a system of polynomial equations in the variables qv, θ, by the chain rule for derivatives. Using the definition
above for Z(q) in terms of qv, v ∈ V0, consider l0 in the variables q1, . . . , qc:

l0(q, θ) =
1
n

∑
v∈V0

Nv log qv +
N0

n
log(θ) − log(θ − 1 + Z(q)). (3.6)

Setting ∇l0 = 0 leads to c + 1 polynomial equations satisfied by the mle (q̂, θ̂):

Nv

n
(Z(q) + θ − 1) = qv

( ∑
y:v∈V y

qV y

/qv

)

N0

n
(Z(q) + θ − 1) = θ. (3.7)

If we define a transformation T on R × Rc by

T (q, θ)v =
Nv

n

Z(q) + θ − 1∑
y:v∈V y

qV y/qv
, 1 ≤ v ≤ c,

T (q, θ)c+1 =
N0

n
(Z(q) + θ − 1) (3.8)

then the desired optimal interior values (θ̂, q̂) satisfy the equation

(q̂, θ̂) = T (q̂, θ̂).

This leads to the iterative method with T starting with initial values (θ0,q0):

(qk+1, θk+1) = T (qk, θk), k = 0, 1, 2, . . .

Example 3.1. Consider the binary tree (1). To find an interior stationary point for the function l0(q, θ), we
solve the following system for positive qv, θ:

N1

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2) + θ − 1) = q1(1 + q5 + q6 + q2)

N2

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2) + θ − 1) = q2(1 + q3 + q4 + q1)

N3

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2) + θ − 1) = q3(1 + q5 + q6 + q2)

N4

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2) + θ − 1) = q4(1 + q5 + q6 + q2)

N5

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2) + θ − 1) = q5(1 + q3 + q4 + q1)

N6

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2) + θ − 1) = q6(1 + q3 + q4 + q1)

N0

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2) + θ − 1) = θ.
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The transformation T on (q, θ) is

T (q, θ)1 =
N1

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2) + θ − 1)/(1 + q5 + q6 + q2)

T (q, θ)2 =
N2

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2) + θ − 1)/(1 + q3 + q4 + q1)

T (q, θ)3 =
N3

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2) + θ − 1)/(1 + q5 + q6 + q2)

T (q, θ)4 =
N4

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2) + θ − 1)/(1 + q5 + q6 + q2)

T (q, θ)5 =
N5

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2) + θ − 1)/(1 + q3 + q4 + q1)

T (q, θ)6 =
N6

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2) + θ − 1)/(1 + q3 + q4 + q1)

T (q, θ)7 =
N0

n
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2) + θ − 1).

The solution must be transformed to γ̂′ using (3.2), then again transformed to γ̂ using (3.4).

To prove theoretical results about the optimization procedure, introduce new parameters φ := (φ0, φ1,
φ2, . . . , φc) = (log(θ), log(q)) and statistics t := (t0 = N0/n, t1 = N1/n, . . . , tc = N c/n). This simplifies
the objective function l0 to a standard concave form:

l0(φ) = φ · t − log(ζφ)

ζφ :=
∑

y∈{0,1}R

eφ·ay = Z(q) + θ − 1

where ay ∈ {0, 1}{0,1,...,c} is a vector defined in terms of the standard basis vectors e0, e1, . . . , ec+1 by

ay =
∑

i∈V y

ei if y �= 0

a0 = e0 = (1, 0, 0, . . . , 0).

In the tree of Figure 1, ζ(φ) = (1 + eφ1 + eφ3 + eφ4) · (1 + eφ2 + eφ5 + eφ6) + eφ0 − 1, and a(1,1,0,1) =
(0, 1, 0, 0, 0, 0, 1), a(0,0,0,0) = (1, 0, 0, 0, 0, 0, 0).

Let C ⊂ Rc+1 be the closed, convex hull of the vectors ay,y ∈ {0, 1}R. Then we have the linear equation
t = An/n if A is the matrix with 2R columns equal to the collection ay,y ∈ {0, 1}R, and n is a vector of
length 2R that counts the number of each of the 2R types of outcomes y in the sample y1, . . . ,yn. So if the
sample includes at least one of each type of vector y, then the data of sufficient statistics t will be in the interior
of C, as a full convex combination of the defining vectors of C.

The first result uses standard convexity theory for uniqueness.

Theorem 3.1. If the sample y1, . . . ,yn includes at least one of each of the 2R possibilities (or more generally,
suppose t ∈ intC) then there is a unique positive solution (q̂, θ̂) to the system (3.7) and a unique positive fixed
point for T in (3.8).

Proof. This follows from Theorem 9.13 of [1] with parametrization φ = (log(θ), log(q)). �

The following result is the basic theorem on stability of the fixed point map.
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Theorem 3.2. Suppose the sample y1, . . . ,yn includes at least one of each of the 2R possibilities. If (q0, θ0) is
sufficiently close to the optimal values (q̂, θ̂), if θ̂ is sufficiently close to 1, and if the observed failure counts are
sufficiently small, then the sequence T k(q0, θ0) converges at a geometric rate to the positive fixed point (q̂, θ̂).

Proof. Let T̄ (φ) := log(T (eφ)) be the transformation T in the φ variables, which with (3.8) becomes

T̄ (φ)v = log(Nv/n) − log




∑
y:v∈V y

qV y

/qv

ζφ




= φv + log(tv) − log ∂φv log(ζφ)

= φv − log

(
∂φv log(ζφ)
∂φv log(ζφ̂)

)
,

using the optimality condition ∂φv log(ζφ̂) = tv for interior t in the last line. The above, together with the
formula for the last variable log(θ) = φ0 gives the final representation for the transformation T in terms of the
canonical parameters φ:

T̄ (φ) = φ + log t − log(∇ log ζφ) = φ − log

(
∇ log ζφ

∇ log ζφ̂

)
·

It is enough to show that the eigenvalues of the derivative Dφ̂T̄ are strictly less than one in absolute value.

The derivative Dφ̂T̄ is a matrix with rows ∇T̄ (φ̂)v indexed by edge labels v ∈ V0. Now

∂φw T̄ (φ̂)v = δvw + 0 −
∂φw∂φv log ζφ̂

∂φv log ζφ̂

= δvw −
Σφ̂(v, w)

tv
,

where Σφ̂(v, w) is the covariance of coordinates v, w in the vectors {ay} with probabilities in the exponential

family pφ(ay) = eφ·ay

ζφ
. Thus

Dφ̂T̄ = I − AtΣφ̂

At :=




1/t0 0 0 . . . . . .
0 1/t1 0 . . . . . .
. . . . . . . . . . . . . . .
0 0 0 . . . 1/tc


 .

Therefore it is sufficient to show that the eigenvalues of AtΣφ̂ are in (0, 2), which is the same as having the
eigenvalues of

√
AtΣφ̂

√
At in (0, 2). Now

√
AtΣφ̂

√
At is the covariance matrix for

√
At · a, or in other words√

AtΣφ̂

√
At (v, w) = Covφ̂(a(v)/

√
tv,a(w)/

√
tw), where a is a random vector of length c + 1 taken from the

distribution pφ. This matrix is positive definite as a nondegenerate covariance matrix.
Consider first the diagonal entries Varφ̂(a(v)/

√
tv). Since the vectors ay have entries ay(v) in {0, 1},

Varφ̂(a(v)) = Eφ̂(a(v) − tv)2 ≤ Eφ̂(a(v)2) ≤ Eφ̂(a(v)) = tv. Thus the diagonal entries are less than 1.
Consider next the off-diagonal entries Covφ̂(a(v)/

√
tv, a(w)/

√
tw). Recall that the index “0” is special and

corresponds to no loss at all in the network, unlike v = 1, 2, . . . , c. If θ̂ = 1 then φ̂0 = 0 so there is an
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independence property and

Covφ̂(a(v)/
√

tv,a(w)/
√

tw) = −
√

tv
√

tw, if v, w ≥ 1, and v ∈ d(w) or w ∈ d(v)

= 0, if v, w ≥ 1, and neither v ∈ d(w) nor w ∈ d(v)

= −
√

t0
√

tw, if v = 0 and w ≥ 1.

Now by the method of Gersgorin discs (p. 146, [11]), the eigenvalues of AtΣφ̂ will be in (0, 2) if∑c+1
w=0,w �=v | −

√
tv
√

tw| < 1 for each v = 0, 1, . . . , c. This will follow if the values of tw, w = 1, 2, . . . , c are
sufficiently small, in particular if

∑c
w=1

√
tw < 1 and

√
tw < 1

2 , w = 1, 2, . . . , c.

Then by continuity, the eigenvalues of AtΣφ̂ will be in (0, 2) if the same condition holds on t and if φ̂0 is
close to 0. �

Theorem 3.2 should hold with much weaker assumptions, but it is difficult to bound the eigenvalues when
the interaction parameter θ̂ is not close to 1. Below, we have a final global convergence result that justifies the
iteration procedure starting from any positive initial point.

Theorem 3.3. Suppose the sample y1, . . . ,yn includes at least one of each of the 2R possibilities (or more
generally suppose t ∈ intC). If (q0, θ0) is any positive initial value, let (qk, θk) = T k(q0, θ0). If the sequence
{log(θk)} is bounded, then (qk, θk) converges to the optimal fixed point (q̂, θ̂) as k → ∞.

Proof. From (3.8), we have

θk+1 =
N0

n
(Z(qk) + θk − 1), k = 0, 1, 2, . . .

which implies that θk+1 − N0

n (θk − 1) = N0

n Z(qk). If M ≥ θk+1 for all k = 0, 1, 2, . . ., then M + N0

n ≥ Z(qk).
This implies that {qk} is bounded.

Let (qnk , θnk) be any convergent subsequence to a limit (q, θ). If q = 0 (qv = 0 for all v ∈ V0), then by
continuity of the last coordinate of T in θ, it follows that θ = N0

n θ. This is impossible since 0 < N0 < n and θk

is bounded above 0, by assumption. Thus some qv > 0, so Z(q) > 1. This implies that θ > 0 and qv > 0 for
each v ∈ V0, so the limit is positive. By uniqueness from Theorem 3.1, (q, θ) = (q̂, θ̂), the unique, positive,
optimal solution.

Since any convergent subsequence converges to the unique solution, the entire original sequence must converge
to the unique solution, because it is bounded. �

The convergence conclusion of Theorem 3.3 should hold under weaker conditions, but we have been unable
to prove a result with no assumption of boundedness.

4. Conclusions

We have proposed an iterative method for solving a polynomial system of equations to find the maximum
likelihood estimators for a problem of network reliability, and we have proven that the method has essential
convergence qualities. In practice, it seems to be stable and efficient. The conditions on the data under which
the method is proved to work are natural, and may possibly be further weakened. On the down side, the
conditions require a sample size on the order of R 2R (where R is the number of receiver nodes) to to get a
tractable likelihood function to which convexity theory can be applied. A further area of research would be
Bayesian methodology, which can make likelihood functions well-behaved with smaller sample sizes.

The primary competing method for parameter estimation in network tomography is the EM-algorithm. In
theory it is not guaranteed to find the global maximum of the likelihood function unless some extra conditions
are verified [14]. In practice it seems to have worked well for the Bernoulli model in several studies, including
[9, 13]. For the model that we study here, it seems to be more complicated than the proposed method because
the EM-algorithm involves a series of expectations and maximizations, rather than repeated evaluation of a
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rational function. It is hard to make clear and useful comparisons because most studies have been done with
relatively small simulated examples. In fact the reparametrization to φ variables in an exponential family makes
a quasi-Newton method possible, but a quasi-Newton method will be relatively complex because of complicated
components like the normalizing constant ζφ.

It seems valuable as a general strategy to formulate optimal solutions to dependent network problems as real
solutions of polynomial systems. This opens the way to using new methods from computational real algebraic
geometry. This may be the key to handling more realistic and complex network dependencies. For example, one
may try new methods of semi-definite programming for solving polynomial systems, as described in Parrilo and
Sturmfels [12] and implemented in SOS Tools. On the other hand, it seems unlikely that existing polynomial
homotopy methods would be efficient. These numerical system solvers start with solutions to an easy “nearby”
system (say the Bernouli model) and repeatedly adjust them to get all solutions to the desired polynomial
system. Since homotopy methods find all complex solutions rather than just nonnegative real solutions, the
work involved may be unreasonable for large networks where there will be thousands of complex solutions. A
comparative numerical study would be interesting.

The failure model we have studied is worthwhile because it generalizes the Bernoulli model to allow for
dependence across the network, and it also has a method of exact solution. Other more refined or sophisticated
models may ultimately be more practical. For example, a model with more local dependence may seem more
suitable. Local dependence is difficult to model, first because interactions may occur in “neighborhoods” that
have little to do with geography or physical distance, and second because the mathematical problem of getting
identifiable parameters is quite difficult the way the data is collected. This is certainly an area for interesting
work that would be a subtle blend of theory and practice. We would hope that some of the techniques and
ideas from the present paper would carry over to any useful model with spatial dependence.
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