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ON THE MINIMIZING POINT OF THE INCORRECTLY
CENTERED EMPIRICAL PROCESS AND ITS LIMIT DISTRIBUTION

IN NONREGULAR EXPERIMENTS

Dietmar Ferger1

Abstract. Let Fn be the empirical distribution function (df) pertaining to independent random
variables with continuous df F . We investigate the minimizing point τ̂n of the empirical process
Fn − F0, where F0 is another df which differs from F . If F and F0 are locally Hölder-continuous of
order α at a point τ our main result states that n1/α(τ̂n − τ ) converges in distribution. The limit
variable is the almost sure unique minimizing point of a two-sided time-transformed homogeneous
Poisson-process with a drift. The time-transformation and the drift-function are of the type |t|α.
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1. Introduction

Let X1, . . . , Xn, n ∈ N, be independent random variables with common continuous distribution function F .
Consider the empirical process

Dn(x) = Fn(x) − F0(x), x ∈ R.

Here

Fn(x) = n−1
n∑

i=1

1{Xi≤x}, x ∈ R,

is the empirical distribution function pertaining to the random variables X1, . . . , Xn and F0 is an arbitrary
continuous distribution function which in general needs not to coincide with the true underlying distribution
function F . If however F0 = F then Dn is the well-known classical empirical process, which has been intensively
studied in the literature. Among many others there are the famous and fundamental results of Glivenko [15],
Cantelli [4], Kolmogorov [22], Smirnov [28], Birnbaum and Tingey [3] or Donsker [5] to mention some of the
pioneering work. A comprehensive and detailed treatment of the classical and related empirical processes is
given by Shorack and Wellner [27]. A generalization of the theory to function-indexed empirical processes can
be found in Dudley [8] or van der Vaart and Wellner [30].
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In this article we study the minimizing point τ̂n of Dn, i.e.

τ̂n := arg min
x∈R

Dn(x)

:= min
{

t ∈ R : Dn(t−) = inf
x∈R

Dn(x)
}

.

This definition is in accordance with the usual one of the argmin-functional on the space D(R) of all right-
continuous functions f : R → R with left-hand limits, see (1.3) below. Note that Dn ∈ D(R) and that between
two successive observations it is continuous and monotone decreasing with positive jumps of height n−1 at every
point Xi, 1 ≤ i ≤ n. This shows that

τ̂n = Xr:n a.s.,
where X1:n < . . . < Xn:n is our notation for the order statistics. The index r is random and given by

r = argmin
1≤i≤n

{
i − 1

n
− F0(Xi:n)

}
,

where in case of ambiguity we have to take the smallest index. Indeed in general τ̂n may not be unique but
if F0(X1) has no atoms then with probability one τ̂n is the only minimizer, confer Proposition A.1 in the
appendix. If F0 = F (correct centering) then τ̂n has the same distribution as the original observations, that
is P (τ̂n ≤ x) = F (x) for all x ∈ R. This has been proved in the case of the uniform distribution F = U(0, 1)
by several authors, confer Birnbaum and Pyke [2], Dwass [9], Kuiper [23], Takács [29] or Ferger [11]. For an
arbitrary distribution function F the result follows by using the quantile transformation, confer Proposition A.2
in the appendix. Thus for F0 = F the complete solution is known. Therefore we consider the situation when F0

and F differ. Assume F and F0 are (in some specified sense) local Hölder-continuous of order α ∈ (0,∞) at a
point τ , which is also the unique minimizer of the difference D = F −F0 �= 0. Then we will prove distributional
convergence of the sequence n1/α(τ̂n − τ), n ∈ N. The limit variable turns out to be the a.s. unique minimizing
point of a time-transformed two-sided Poisson-process with positive drift.

Let us shortly outline our proof. First we show that n1/α(τ̂n − τ) is stochastically bounded, i.e.

n1/α(τ̂n − τ) = OP (1) as n → ∞. (1.1)

We will manage this by deriving a sufficiently sharp upper bound for the tail-probabilities P (|τ̂n − τ | > a),
a > 0. Next introduce the rescaled and renormalized process

Yn(t) = n
{
Dn(τ + n−1/αt) − Dn(τ)

}
, t ∈ R,

which yields the representation
n1/α(τ̂n − τ) = argmin(Yn). (1.2)

Here the argmin-functional on D(R) is defined by

argmin(f) := min
{

t ∈ R : min(f(t−), f(t)) = inf
x∈R

f(x)
}

(1.3)

for every f ∈ D(R) such that the set on the right hand side in (1.3) is not empty and bounded. Since this is a
closed subset of the real line (confer Lem. 6.1 (i) of Ferger [12], the minimum exists in R. Also notice that our
definition of argmin(f), f ∈ D(R), follows the definition of Kallenberg [20], p. 226. The final step in our proof
is to derive a functional limit theorem for Yn:

Yn
L−→ Y in D(R) as n → ∞, (1.4)



MINIMIZER OF EMPIRICAL PROCESS 309

where D(R) is endowed with Lindvall’s [24] extension of the Skorokhod-metric. The limit Y is the above
mentioned two-sided Poisson-process. We show that the minimizing point

argmin(Y ) is unique a.s. (1.5)

Thus we are in a position to apply the Argmin-Continuous Mapping Theorem (Argmin-CMT) of van der Vaart
and Wellner [30] in the version of Ferger [13] for D(R)-valued processes . It states that under (1.1), (1.2), (1.4)
and (1.5) we can infer that

n1/α(τ̂n − τ) = argmin(Yn) L−→ argmin(Y ), (1.6)

which is our main result. The limit variable in (1.6) admits a rather simple representation, especially it is
continuously distributed.

We like to point out that the Argmin-CMT of van der Vaart and Wellner [30] deals with the bigger function
space l∞(R) ⊃ D(R) consisting of all locally bounded functions. This space is endowed with the topology of
uniform convergence on compacta. Because of measurability reasons an extended theory of weak convergence
is introduced. It goes back to Dudley [6,7] and Hoffman-Jørgenson [18]. Similarly as in the classical case weak
convergence is established by showing convergence of the finite dimensional distributions and by proving tight-
ness. However the tightness criteria there involve the modulus of continuity which (in our case) inevitably would
result in a limit process that by Theorem 15.5 from Billingsley [1] almost surely had continuous trajectories.
Since our limit process Y has jumps even with probability one the approach via weak convergence in l∞(R)
necessarily must fail.

There is another version of an Argmin-CMT using the space of lower semicontinuous functions with the
topology of epi-convergence, confer Theorem 1 of Knight [21]. His Argmin-CMT is very appropriate in stochastic
optimization problems, when the underlying objective functions are minimized under constraints. To circumvent
this difficulty one simply allows +∞ as possible value for the objective functions. In this case the Lindvall-
Skorokhod-space D(R) is inappropriate and our Argmin-CMT does not work. But as long as no constraints
are involved we prefer to work with D(R). This is mainly for two reasons. Firstly, our objective functions Yn

automatically lie in D(R). Secondly, weak convergence of stochastic processes in D(R) is equivalent with weak
convergence of their restrictions in the traditional Skorokhod-space D[−a, a] for every a > 0. Consequently we
can use the well-developed theory of weak convergence in D[−a, a] with compact interval [−a, a]. This theory
yields a lot of convenient criteria for deriving functional limit theorems, confer, e.g., Billingsley [1].

2. Probability inequalities

As was pointed out in the introduction the first important step is to derive tightness of the sequence n1/α(τ̂n−
τ). For that purpose we will derive probability inequalities for τ̂n − τ . The following proposition gives a first
upper bound for the probability of the tail-event {|τ̂n − τ | > r}, r > 0. It is valid under our general assumption
that F and F0 are continuous.

Proposition 2.1. Let F and F0 be continuous. Assume

D := F − F0

has a unique minimizer τ = argmin(D) with D(τ) < 0. Then there exists r0 > 0 so that for every 0 < r ≤ r0

there exists b = b(r) > 0 such that

P (|τ̂n − τ | > r) ≤ 2 exp{−2nb2} ∀n ∈ N. (2.1)

A crucial auxiliary tool for deriving the probability inequality (2.1) is the following simple but very useful
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Lemma 2.2. Let f ∈ D(R) have a unique real minimizer τ , i.e. τ = argmin(f) is unique and f(τ) =
mint∈R f(t). If for r > 0 the minimum

a(r) := min{f(t) : |t − τ | ≥ r}

exists, then the following statements hold:
(1) b(r) := 1

3 (a(r) − f(τ)) > 0;
(2) let g ∈ D(R) be such that argmin(g) is well-defined in the sense of (1.3). Then the following implication

is true:
sup
t∈R

|f(t) − g(t)| ≤ b(r) ⇒ |argmin(f) − argmin(g)| ≤ r.

Proof. By assumption there exists t0 ∈ R with |t0 − τ | ≥ r and f(t0) = a(r) ∈ R. Assume that a(r) ≤ f(τ),
whence f(τ) ≤ f(t0) = a(r) ≤ f(τ), so that t0 �= τ is also a minimizer of f in contradiction to the uniqueness
of τ . This shows (1). To see (2) consider an arbitrary t ∈ R with |t−τ | ≥ r. Then g(t) ≥ f(t)−b(r) ≥ a(r)−b(r)
and g(τ) ≤ f(τ)+b(r). Consequently g(t)−g(τ) ≥ a(r)−f(τ)−2b(r) = b(r) > 0 by (1). We obtain g(t) > g(τ)
and by taking the limit g(t−) ≥ g(τ) + b(r) > g(τ) for all t ∈ R with |t− τ | > r. This shows for σ := argmin(g)
that |σ − τ | ≤ r, because otherwise inft∈R g(t) = min(g(σ), g(σ−)) > g(τ), which is a contradiction. �
Proof of Proposition 2.1. By assumption D is continuous whence τ is a unique and real minimizer. Moreover,
since D(x) → 0 as|x| → ∞ one finds an r0 > 0 such that a(r) = min{D(x) : |x − τ | ≥ r} exists in R for all
0 < r ≤ r0. Consequently we can apply (2) of Lemma 2.1 to f = D and g = Dn, which yields

P (|τ̂n − τ | > r) ≤ P

(
sup
x∈R

|Dn(x) − D(x)| > b(r)
)

= P

(
sup
x∈R

|Fn(x) − F (x)| > b(r)
)

≤ 2 exp{−2nb2} ∀n ∈ N,

where the last inequality follows from the Dvoretzky-Kiefer-Wolfowitz-inequality with the optimal constant of
Massart [25]. �

The next Corollary is an immediate consequence of Proposition 2.1 and the first Borel-Cantelli lemma.

Corollary 2.3. Under the assumption of Proposition 2.1 we have that

τ̂n → τ a.s. as n → ∞.

Next we refine inequality (2.1) under the additional assumption of local Hölder-continuity in a specified sense.
To be precise assume that F and F0 meet the following requirements:

There exist real numbers α > 0, r > 0 and τ such that (2.2)

F (x) =
{

F (τ) + p(x)|x − τ |α , if τ ≤ x ≤ τ + r
F (τ) + q(x)|x − τ |α , if τ − r ≤ x ≤ τ

F0(x) =
{

F0(τ) + p0(x)|x − τ |α , if τ ≤ x ≤ τ + r
F0(τ) + q0(x)|x − τ |α , if τ − r ≤ x ≤ τ

where p and p0 are positive and continuous on [τ, τ + r], whereas q and q0 are negative and continuous on
[τ − r, τ ],

F (τ) < F0(τ), (2.3)
and

D(τ) − D(x) ≤ −L|x − τ |α ∀x ∈ [τ − r, τ + r] (2.4)
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for some positive L = L(r), so that especially τ is a local minimizer of D. Observe that under (2.2) the condition
(2.4) is fulfilled if

L+ := min {p(x) − p0(x) : τ ≤ x ≤ τ + r} > 0 (2.5)
and

L− := min {q(x) − q0(x) : τ − r ≤ x ≤ τ} > 0
both are positive. Then L = L(r) = min(L+, L−) > 0 is appropriate. If τ is not only a local but even the
unique global minimizer of D then we obtain an inequality which is sufficiently good for proving (1.1).

Proposition 2.4. Assume that (2.2)–(2.4) hold and that τ = argmin(D) is unique. Then there exist positive
constants C, L and b such that

P (|τ̂n − τ | > a) ≤ CL−2n−1a−α + 2 exp{−2nb2} (2.6)

for every a > 0 and all n ∈ N.

Corollary 2.5. Under the assumptions of Proposition 2.4

n1/α(τ̂n − τ) = OP (1) as n → ∞.

Proof of Proposition 2.4. By Proposition 2.1 and (2.3) there exists r0 > 0 such that (2.1) is valid. With r
coming from (2.2) let δ = min(r, r0) , which is positive, and take b = b(δ) and L = L(δ) from Proposition 2.1
and (2.4), respectively. We start with the simple estimate

P (|τ̂n − τ | > a) ≤ P (a < |τ̂n − τ | ≤ δ) + P (|τ̂n − τ | > δ) =: Pn + Qn. (2.7)

By Proposition 2.1 we have
Qn ≤ 2 exp{−2nb2} ∀n ∈ N, (2.8)

so it remains to investigate the first probability Pn. Since Pn = 0 if a ≥ δ we may assume that a < δ. In this
case we observe that

{a < |τ̂n − τ | ≤ δ} ⊆ { inf
a<|t−τ |≤δ

Dn(t) ≤ Dn(τ)}.
To see this assume that a < |τ̂n − τ | ≤ δ but infa<|t−τ |≤δ Dn(t) > Dn(τ), which means that Dn(t) > Dn(τ) and
by taking the limit that also Dn(t−) ≥ Dn(τ) for every t with a < |t − τ | ≤ τ . For t = τ̂n we therefore obtain
that Dn(τ̂n−) = Dn(τ). Since Dn does not attain its infimum this is a contradiction. Thus we can conclude
that

Pn ≤ P

(
inf

a<|t−τ |≤δ
Dn(t) ≤ Dn(τ)

)
(2.9)

≤ P




⋃

τ+a<t≤τ+δ

{Dn(t) ≤ Dn(τ)}




+P




⋃

τ−δ≤t<τ−a

{Dn(t) ≤ Dn(τ)}


 =: P̃n + P ∗
n .

Note that for all t ∈ [τ − δ, τ + δ]

Dn(τ) − Dn(t) = Dn(τ) − D(τ) − (Dn(t) − D(t)) + D(τ) − D(t)
= Fn(τ) − F (τ) − (Fn(t) − F (t)) + D(τ) − D(t)
≤ Fn(τ) − F (τ) − (Fn(t) − F (t)) − L|t − τ |α (2.10)
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by (2.4). Let αn denote the uniform empirical process, i.e.

αn(u) = n−1/2
n∑

i=1

(
1{F (Xi)≤u} − u

)
, 0 ≤ u ≤ 1.

Then (2.10) shows that

P̃n ≤ P




⋃

τ+a<t≤τ+δ

{
αn(F (τ)) − αn(F (t))

(t − τ)α
≥ Ln1/2

}



≤ P

(
sup

τ+a<t≤τ+δ

|αn(F (t)) − αn(F (τ))|
(t − τ)α

≥ Ln1/2

)

≤ P

(
sup

τ+a<t≤τ+δ

|αn(F (t)) − αn(F (τ))|
F (t) − F (τ)

≥ Ln1/2

||p||
)

, (2.11)

where the last inequality follows from (2.2), i.e.

F (t) − F (τ) = p(t)(t − τ)α ≤ ||p||(t − τ)α

for all τ ≤ t ≤ τ + δ, where ||p|| := supτ≤t≤τ+δ p(t). For the last probability in (2.11) we obtain the upper
bound

P

(
sup

F (τ+a)≤v≤F (τ+δ)

|αn(v) − αn(F (τ))|
v − F (τ)

≥ Ln1/2

||p||

)
≤ P

(
sup

γ≤s≤λ

|αn(s + F (τ)) − αn(F (τ))|
s

≥ Ln1/2

||p||

)

= P

(
sup

γ≤s≤λ

|αn(s)|
s

≥ Ln1/2

||p||

)
, (2.12)

where γ = F (τ + a)−F (τ) and λ = F (τ + δ)−F (τ) and the last equality follows from the differential property
of the uniform empirical process:

{αn(u + s) − αn(u) : 0 ≤ s ≤ 1 − u} L= {αn(s) : 0 ≤ s ≤ 1 − u} ∈ D[0, 1 − u]

for every fixed u ∈ [0, 1]. This is a simple consequence of the stationarity of the increments of αn (confer, e.g.,
Dudley [8], Lem. 1.14(b)) and of Theorem 14.5 in Billingsley [1]. An application of Lemma A.3 in the appendix
yields

P

(
sup

γ≤s≤λ

|αn(s)|
s

≥ Ln1/2

||p||

)
≤ {F (τ + a) − F (τ)}−1||p||2L−2n−1

≤ p(τ + a)−1||p||2L−2n−1a−α by (2.2). (2.13)

Combining (2.11)–(2.13) and noticing that p(τ +a) ≥ minτ≤t≤τ+δ p(t) is strictly positive by assumption we find
a positive constant C1 such that

P̃n ≤ C1L
−2n−1a−α. (2.14)

In the same way one finds a positive constant C2 such that

P ∗
n ≤ C2L

−2n−1a−α (2.15)
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taking into account that

{αn(u − s) − αn(u) : 0 ≤ s ≤ u} L= {αn(s) : 0 ≤ s ≤ u} ∈ D[0, u]

for every fixed u ∈ [0, 1]. Now the assertion (2.6) follows from (2.7)–(2.9), (2.14) and (2.15). �

3. A functional limit theorem for Yn in D(R)

Recall the process
Yn(t) = n{Dn(τ + n−1/αt) − Dn(τ)}, t ∈ R,

introduced in section one. There we explained that our second task is to prove convergence in distribution of Yn

in the function space D(R) of Lindvall [24]. The process Yn splits into a random and a purely deterministic
part:

Yn(t) = Sn(t) − ∆n(t), t ∈ R, (3.1)

where

Sn(t) =

{ ∑n
i=1 1{τ<Xi≤τ+n−1/αt}, t ≥ 0

−∑n
i=1 1{τ+n−1/αt<Xi≤τ}, t < 0

and
∆n(t) = n{F0(τ + n−1/αt) − F0(τ)}, t ∈ R.

Assumption (2.2) allows us to apply the Poisson approximation to the Binomial, which yields

Sn(t) L−→
{

Poisson (p(τ)tα), t ≥ 0
−Poisson (−q(τ)(−t)α), t < 0,

(3.2)

as n → ∞ for every fixed t ∈ R. Here Poisson(λ) denotes a random variable which has a Poisson-distribution
with parameter λ. As to the deterministic part it follows easily from (2.2) that

∆n(t) −→ ∆(t) =

{
p0(τ)tα, t ≥ 0
q0(τ)(−t)α, t < 0

(3.3)

as n → ∞ where the convergence holds uniformly on every compact interval [−a, a] a > 0. In view of (3.2)
we introduce two independent Poisson processes N1 and N2 with parameters λ1 = p(τ) and λ2 = −q(τ),
respectively. The second process N2 is chosen such that its trajectories are left-continuous and possess right-
hand limits. According to (3.2) and (3.3) it follows that

Yn(t) L−→ Y (t) as n → ∞ (3.4)

for every fixed t ∈ R, where

Y (t) =

{
N1(tα) − p0(τ)tα, t ≥ 0
−N2((−t)α) − q0(τ)(−t)α, t < 0.

(3.5)

Notice that our choice of N2 ensures that the process Y possesses trajectories in D(R). Next we extend (3.4)
to the weak convergence of all finite-dimensional distributions.

Lemma 3.1. If F satisfies assumption (2.2) then the finite-dimensional distributions of Yn converge weakly to
those of Y .
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Proof. For the sake of convenience we only consider the two-dimensional case, but the general case can be
treated in the same manner. If 0 ≤ s < t then for every l, k ∈ N0

P (Sn(s) = l, Sn(t) − Sn(s) = k) =
n!

l!k!(n − k − 1)!
pl
1p

k
2(1 − p1 − p2)n−k−l, (3.6)

where

np1 = n{F (τ + n−1/αs) − F (τ)}
= p(τ + n−1/αs)sα by (2.2)
−→ p(τ)sα as n → ∞

and analogously

np2 = n{F (τ + n−1/αt) − F (τ + n−1/αs)}
−→ p(τ)(tα − sα) as n → ∞.

Thus with (3.6) we can conclude that (Sn(s), Sn(t) − S(s)) L−→ (N1(sα), N1(tα) − N1(sα)) as n → ∞ and the
Continuous Mapping Theorem (CMT) gives

(Sn(s), Sn(t)) L−→ (N1(sα), N1(tα)) as n → ∞.

If s < 0 ≤ t then one shows in the same way that (−Sn(s), Sn(t)) → (N2((−s)α), N1(tα)) as n → ∞, whence
by the CMT

(Sn(s), Sn(t)) L−→ (−N2((−s)α), N1(tα)) as n → ∞.

Finally, if s < t < 0 then one can proceed as in the case 0 ≤ s < t. Now the assertion follows from (3.1), (3.3)
and Slutsky’s theorem. �

In the sequel we consider the restrictions of our processes on intervals [−a, a], a > 0. These are random
elements in the Skorokhod-space D[−a, a]. Let

ω′′(f, δ) = supmin{|f(t) − f(t1)|, |f(t2) − f(t)|}, δ > 0,

where the supremum extends over t1 ≤ t ≤ t2 ∈ [−a, a] satisfying t2 − t1 ≤ δ. This modulus characterizes the
compact sets in the Skorokhod topology. The following lemma guarantees the tightness of the sequence (Sn).

Lemma 3.2. Suppose F satisfies (2.2). Then for every a > 0 it follows that

lim
δ→0

lim sup
n→∞

P (ω′′(Sn, δ) ≥ ε) = 0 ∀ε > 0.

Proof. Let t1 ≤ t ≤ t2 ∈ [−a, a] be arbitrary points. Assume, e.g., that t1 ≤ 0 ≤ t ≤ t2. Then

Sn(t) − Sn(t1) =
n∑

i=1

1{τ+n−1/αt1<Xi≤τ+n−1/αt}

and

Sn(t2) − Sn(t) =
n∑

i=1

1{τ+n1−αt<Xi≤τ+n−1/αt2}.
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Since the intervals (τ + n−1/αt1, τ + n−1/αt] and (τ + n−1/αt, τ + n−1/αt2] are disjoint we obtain

E(|Sn(t) − Sn(t1)||Sn(t2) − Sn(t)|) = n(n − 1){F (τ + n−1/αt)

−F (τ + n−1/αt1)}{F (τ + n−1/αt2) − F (τ + n−1/αt)}
≤ {Hn(t) − Hn(t1)}{Hn(t2) − Hn(t)}
≤ {Hn(t2) − Hn(t1)}2,

where

Hn(s) = n{F (τ + n−1/αs) − F (τ)}
is a nondecreasing and continuous function on [−a, a]. These inequalities also hold for all other choices of
t1 ≤ t ≤ t2 ∈ [−a, a]. Now, the derivation of (15.30) in Billingsley [1] shows that for all n ∈ N

P (ω′′(Sn, δ) ≥ ε) ≤ 2Kε−2[Hn(a) − Hn(−a)]ω(Hn, 2δ),

where K is a positive constant and ω(f, δ) = sup{|f(s) − f(t)| : s, t ∈ [−a, a], |s − t| ≤ δ} is the modulus of
continuity for an element f ∈ D[−a, a]. Note that Hn converges uniformly on [−a, a] to the continuous function
H(s) = 1{s≥0}p(τ)|s|α + 1{s<0}q(τ)|s|α. Therefore, because the mapping f → ω(f, δ) is continuous,

lim sup
n→∞

P (ω′′(Sn, δ) ≥ ε) ≤ 2Kε−2[H(a) − H(−a)]ω(H, 2δ).

Continuity of H ensures that ω(H, 2δ) tends to zero as δ → 0, whence the assertion of the lemma follows. �

We are now in a position to prove the main result of this section: an invariance principle for the sequence (Yn).

Theorem 3.3. Suppose that F satisfies (2.2). Then

Yn
L−→ Y in D[−a, a] as n → ∞ for every a > 0. (3.7)

Proof. Fix a > 0 and put

S(t) :=
{

N1(tα), t ≥ 0
−N2((−t)α), t < 0.

Then P (S(a−) �= S(a)) = 0, because

{S(a−) �= S(a)} ⊆
⋃

i≥1

{ξi = aα},

where ξi, i ≥ 1, are the arrival-times of the Poisson process N1. In view of Lemmas 3.1 and 3.2 we can apply
Theorem 15.4 of Billingsley [1] which yields

Sn
L−→ S in D[−a, a] as n → ∞.

Thus (3.7) is a consequence of (3.1), (3.3) and Slutsky’s theorem. �

Note that according to Lindvall [24] the convergence in (3.7) is equivalent with Yn
L−→ Y in D(R) as n tends

to infinity.
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4. Convergence in distribution

Our proof relies on the following extension of van der Vaart’s and Wellner’s [30] Argmin-Continuous Mapping
Theorem (Argmin-CMT) for D(R)-valued stochastic processes, confer Theorem 3 and Corollary 1 of Ferger [13].

Theorem 4.1 (Argmin-CMT). Assume that every single of the D(R)-valued random variables Mn, n ∈ N, and
M has a set of minimizers which is bounded. Then ĥn = argmin(Mn) and h = argmin(M) are well-defined and
Borel-measurable. Suppose that

Mn
L−→ M in D[−a, a] as n → ∞ for all a > 0, (4.1)

ĥn = OP (1) as n → ∞, (4.2)
h is almost surely unique (4.3)

and
X := {x ∈ R : P (M is continuous at x) = 1} (4.4)

is dense in R. Then ĥn
L−→ h as n → ∞.

In view of (1.2) we will apply Theorem 4.1 to

ĥn = n1/α(τ̂n − τ) = argmin(Yn)

and then obtain our main result

Theorem 4.2. Suppose F and F0 satisfy the conditions (2.2)–(2.5) and τ = argmin(F − F0) is unique. Then

n1/α(τ̂n − τ) L−→ h = argmin(Y ) as n → ∞, (4.5)

where Y is the two-sided time-transformed Poisson-process defined in (3.5).

Proof. In order to apply Theorem 4.1 we must verify the conditions (4.1)–(4.4) there. Theorem 3.3 and Corol-
lary 2.5 guarantee that (4.1) and (4.2) are fulfilled. For the validity of (4.3) we refer to Lemma A.4 in the
appendix. It remains to check (4.4). But it is easy to see that X = R so that this condition is trivially fulfilled.
To sum up we see that all conditions of the Argmin-CMT 4.1 are satisfied, whence (4.5) is proved. �

The random variable h in (4.5) features a simple a.s. representation. To see this define the random integers

l = arg min
i≥1

{i − 1 − c1ξi}

and
m = arg min

i≥1
{i − c2ρi}.

Here 0 =: ξ0 < ξ1 < ξ2 < . . . and 0 =: ρ0 < ρ1 < ρ2 < . . . denote the arrival-times pertaining to the Poisson-
process N1 and N2, respectively and c1 := p0(τ) and c2 := q0(τ). From (5)–(9) below (see the appendix) one
can deduce that a.s. l and m are finite and unique and that

h =

{
ξ
1/α
l , if l − 1 − c1ξl < −m − c2ρm

−ρ
1/α
m , if l − 1 − c1ξl ≥ −m − c2ρm.

As a simple consequence we obtain that h has a continuous distribution. Thus Pólya’s theorem sharpens (4.5)
to uniform convergence:

sup
x∈R

∣∣∣P (n1/α(τ̂n − τ) ≤ x) − P (h ≤ x)
∣∣∣→ 0

as n → ∞.
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5. Applications in statistics

In this section we apply our results to a semi-parametric location-model. Our model turns out to be a
non-regular statistical experiment. This notion goes back to Ibragimov and Has’minskii [19]. Such models
are non-smooth in some specified sense. Here the asymptotic behavior of estimators differs from the classical
one insofar that there is no

√
n-rate in the distributional convergence and moreover non-normal limit variables

occur.
Let X1, . . . , Xn be independent and identically distributed random variables (life times) with distribution

function F (x) = F0(x − τ), x ∈ R, where τ > 0 is the unknown shift-parameter we wish to estimate. Assume
the error distribution F0 is known and has a density f0, which vanishes on the negative real line. Furthermore
it is supposed to be positive and strictly decreasing on the non-negative real line with limits f(0−) = 0 and
f(0+) > 0. Thus f0 is a non-smooth density with a jump at point zero. In this situation the parameter τ is the
unique minimizer of D(x) = F0(x − τ) − F0(x). To see this note that the derivative D′(x) = f0(x − τ) − f0(x)
is positive by monotonicity, if x > τ and D′(x) = −f0(x) is negative, if 0 ≤ x < τ . Moreover D′(τ−) =
f(0−) − f(τ) = −f(τ) < 0 and D′(τ+) = f(0+) − f(τ) > 0. Consequently D is strictly monotone decreasing
or increasing, respectively, according as 0 ≤ x ≤ τ or x > τ . Obviously D vanishes on (−∞, 0) and

D(τ) = −F0(τ) < 0, (5.1)

whence indeed τ is the unique minimizing point of D. Therefore Corollary 2.3 yields that τ̂n is a strongly
consistent estimator for τ :

τ̂n → τ a.s. as n → ∞ for every τ > 0.

Use the Mean Value Theorem to show that

D(τ) − D(x) ≤ −L|τ − x| for every x ∈ [0, 2τ ], (5.2)

where

L = min
{

inf
0≤t≤τ

f0(t), inf
0≤t≤τ

(f0(t) − f0(τ + t))
}

.

This real number is positive if in addition, e.g., f0 is continuous on [0,∞). Finally another application of the
Mean Value Theorem gives that F and F0 satisfy (2.2) with α = 1, p(τ) = f0(0+), q(τ) = −f0(0−) = 0, p0(τ) =
f0(τ) and q0(τ) = −f0(τ).

It follows that

Y (t) =
{

N1(t) − f0(τ) t, t ≥ 0
−f0(τ) t, t < 0 (5.3)

and N1 is a Poisson process with intensity f0(0+) > 0. Note that the negative part of the limit process Y is
a straight line through the origin with negative slope. This is because q(τ) = 0 and therefore N2 vanishes a.s.
and because −f0(τ) is negative. Since we have verified all necessary conditions we may apply Theorem 4.2 and
obtain convergence in distribution. We summarize our results in the following

Corollary 5.1. Consider the location-model with life-time density f0 which is positive and strictly decreasing
on its support [0,∞). Then

τ̂n → τ a.s. as n → ∞ for every τ > 0.

If in addition f0 is continuous on [0,∞) then

n(τ̂n − τ) L−→ h = argmin(Y ) as n → ∞

with Y given in (5.3). Observe that this Y is more simple than in the general case of Theorem 4.2 insofar that
only a one-sided Poisson-process with linear drift occurs. For such processes Pflug [26] has determined the exact
distribution of the minimizer h.
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We also have results for other kinds of densities f0 including those which are continuous, see Ferger [14]. For
the sake of brevity we do not present them in the most general form. Nevertheless the following theorem makes
it abundantly clear how the asymptotics change if we move from non-smooth models (like in Cor. 5.1 above) to
smooth models. Indeed, cube-root asymptotics now come into play and instaed of a Poisson process with linear
drift the limit process turns out to be a Brownian motion with parabolic drift.

Theorem 5.2. Assume that f0 is continuously differentiable on R \ {0}, symmetric about zero and strictly
decreasing on the positive real line with f0(0+) ≤ ∞. Then

τ̂n → τ/2 a.s. as n → ∞ for every τ > 0.

Moreover,
n1/3(τ̂n − τ/2) L−→ h = argmin(Y ) as n → ∞,

with

Y (t) = B(t) − f ′
0(τ/2)√
f0(τ/2)

t2,

where B denotes a two-sided Brownian motion on R.

Note that the parabolic drift is upwards, because f ′
0(τ/2) is negative by the monotonicity assumption on the

density f0. The distribution of the minimizer h of a Brownian motion with parabolic drift has been derived by
Groeneboom [16] who gives an explicit expression of the pertaining density in terms of Airy functions. Dykstra
and Carolan [10] and Groeneboom and Wellner [17] give numerical approximations.

Appendix

We give here the outstanding proofs of statements made in the introduction and of an inequality used in
the proof of Proposition 2.5. Recall that in the whole article we assume continuity of the involved distribution
functions F and F0.

Lemma A.1. Suppose that F0(X1) has no atoms. Then

τ̂n = argmin(Fn − F0) is unique a.s.

Proof. Let Rl denote the rank of Xl in the sample X1, . . . , Xn and R−1
l the pertaining anti-rank, 1 ≤ l ≤ n.

Then we obtain

{τ̂n is not unique} ⊆
⋃

1≤i<j≤n

{
i − 1

n
− F0(Xi:n) =

j − 1
n

− F0(Xj:n)
}

=
⋃

1≤i<j≤n

{
i − 1

n
− F0(XR−1

i
) =

j − 1
n

− F0(XR−1
j

}

⊆
⋃

1≤l �=k≤n

{
Rl − 1

n
− F0(Xl) =

Rk − 1
n

− F0(Xk)
}

⊆
⋃

1≤m≤n−1

⋃

1≤l �=k≤n

{
F0(Xk) − F0(Xl) =

m

n

}
,

which yields the desired result. �

Lemma A.2. If F0 = F , then τ̂n
L= X1, that is

P (τ̂n ≤ x) = F (x) for all x ∈ R.
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Proof. In view of the underlying independence and by the quantile-transformation we can assume that Xi =
F−1(Ui), where U1, . . . , Un are i.i.d. with the uniform distribution function F̄ on (0,1) and G−1 is our notation
for the quantile-function of any distribution function G. Let F̄n denote the empirical distribution function
pertaining to U1, . . . , Un. It is well-known that Fn = F̄n ◦ F and

F−1
n = F−1 ◦ F̄−1

n . (1)

As was pointed out in the introduction

τ̂n = argmin(Fn − F ) = Xr:n (2)

where

r = arg min
1≤i≤n

{
i − 1

n
− F (Xi:n)

}

= arg min
1≤i≤n

{
i − 1

n
− F (F−1

n (
i

n
))
}

= arg min
1≤i≤n

{
i − 1

n
− F (F−1(F̄−1

n (
i

n
)))
}

by (1)

= arg min
1≤i≤n

{
i − 1

n
− (F̄−1

n (
i

n
)
}

by continuity of F

= arg min
1≤i≤n

{
i − 1

n
− Ui:n

}

= arg min
1≤i≤n

{
i − 1

n
− F̄ (Ui:n)

}
,

whence by (2) (applied to F = F̄ )
Ur:n = argmin(F̄n − F̄ ). (3)

On the other hand by (1)

τ̂n = Xr:n = F−1
n (

r

n
) = F−1

(
F̄−1

n

( r

n

))

= F−1(Ur:n). (4)

As was mentioned in the introduction it is known that argmin(F̄n − F̄ ) is uniformly distributed on (0, 1), so
that the assertion follows from (3) and (4). �

Lemma A.3. Let αn =
√

n(F̄n − F̄ ) be the uniform empirical process. Then

P

(
sup

α≤s≤β

|αn(s)|
s

≥ λ

)
≤ (α−1 − β−1)λ−2

for all λ > 0 and for all 0 < α < β ≤ 1.

Proof. We follow Shorack and Wellner [27], on p. 134 and p. 873. Start with the known fact that

{
βn(s) =

αn(s)
1 − s

: 0 ≤ s < 1
}
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is a centered martingale with respect to the filtration Fn(s) = σ(F̄n(u) : 0 ≤ u ≤ s), 0 ≤ s < 1. Let {sk =
α + (β − α)k2−m : 0 ≤ k < 2m}, m ∈ N, be the dyadic partition of [α, β]. Then {Mk = βn(sk) : 0 ≤ k < 2m} is
also a centered martingale with respect to the filtration {Gk = Fn(sk) : 0 ≤ k < 2m}. Therefore

P (α, β, λ) := P

(
sup

α≤s≤β

|αn(s)|
s

≥ λ

)
= P

(
sup

α≤s≤β

1 − s

s
|βn(s)| ≥ λ

)

= lim
m→∞ P

(
max

1≤k<2m

1 − sk

sk
|Mk| ≥ λ

)

≤ λ−2 lim
m→∞

∑

1≤k<2m

(1 − sk)2s−2
k E(Mk − Mk−1)2

(by Hajek’s martingale-inequality)

= λ−2 lim
m→∞

∑

1≤k<2m

(1 − sk)2s−2
k (EM2

k − EM2
k−1).

Since Eβn(s) = s
1−s =: L(s) und L′(s) = (1 − s)−2 it follows that

P (α, β, λ) ≤ λ−2 lim
m→∞

∑

1≤k<2m

(1 − sk)2s−2
k (L(sk) − L(sk−1))

= λ−2

β∫

α

(1 − s)2s−2L(ds)

= λ−2

β∫

α

s−2ds,

which gives the desired inequality. �

Lemma A.4. Suppose (2.5) holds. Then h := argmin(Y ) exists and is a.s. unique.

Proof. Introduce

Y1(t) = N1(tα) − c1t
α, t ≥ 0

and

Y2(t) = −N2(tα) − c1t
α, t ≥ 0,

where c1 = p0(τ) and c2 = q0(τ). Thus Y admits the representation

Y (t) = 1{t≥0}Y1(t) + 1{t<0}Y2(−t),

whence

inf
t∈R

Y (t) = min{inf
t≥0

Y1(t), inf
t≥0

Y2(t)}. (5)

Let 0 =: ξ0 < ξ1 < ξ2 < . . . and 0 =: ρ0 < ρ1 < ρ2 < . . . denote the arrival-times pertaining to the Poisson-
process N1 and N2, respectively. The process N1(tα) has a.s. jumps exactly at the points ξ

1/α
i , i ≥ 1, so

that

inf
t≥0

Y1(t) = inf
i≥1

Y1(ξ
1/α
i −) = inf

i≥1
{i − 1 − c1ξi} a.s.
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Consider the interarrival-times ηj = ξj −ξj−1, j ≥ 1, which are known to be independent and to have a common
exponential distribution with parameter λ1 = p(τ). Therefore

Y1(ξ
1/α
i −) = i − 1 − c1ξi =

i∑

j=1

(1 − c1ηj) − 1, i ≥ 1,

which by the Strong Law of Large Numbers tends to infinity a.s. as i → ∞, because E(1− c1ηj) = 1− c1/λ1 is
positive by (2.5). Consequently

inf
t≥0

Y1(t) = min
i≥1

Y1(ξ
1/α
i −) = min

i≥1
{i − 1 − c1ξi} a.s. (6)

The first equality in (6) shows that the event F1 := {Y1 has no minimizer} has probability zero. Next note that

E1 := {Y1 has no unique minimizer} ⊆ F1 ∪ G1,

where

G1 := {Y1 has at least two minimizer}
⊆

⋃

1≤i<j<∞

{
Y1(ξ

1/α
i −) = Y1(ξ

1/α
j −)

}

=
⋃

1≤i<j<∞

{
ξj − ξi =

j − i

c1

}
.

Since ξj −ξi, j > i, have a continuous distribution (namely a Gamma-distribution) we can infer that P (G1) = 0.
It follows that

P (E1) = P (Y1 has no unique minimizer) = 0. (7)
Recall that N2 is left-continuous with right-hand limits. Then in the same way one proves that

inf
t≥0

Y2(t) = min
i≥1

Y2(ρ
1/α
i ) = min

i≥1
{−i − c2ρi} a.s. (8)

and that
P (E2) = P (Y2 has no unique minimizer) = 0. (9)

Conclude from (5), (6) and (8) that

inf
t∈R

Y (t) = min
i≥1

{
Y (ξ1/α

i −), Y (−ρ
1/α
i )

}
a.s.

which in view of (1.3) immediately yields the a.s. existence of argmin(Y ). As to the a.s. uniqueness consider

G := {Y has at least two minimizer, h1 < h2 say}
and observe that G∩{h1 ≥ 0} ⊆ E1 and G∩{h2 ≤ 0} ⊆ E2 both have probability zero by (7) and (9). Finally,

G ∩ {h2 < 0 < h1} ⊆
⋃

1≤i,j<∞

{
Y1(ξ

1/α
i −) = Y2(ρ

1/α
i )

}

=
⋃

1≤i,j<∞
] {i − 1 − c1ξi = j − c2ρj} ,

where the last event also has probability zero, because for every i, j ∈ N the random variables ξi and ρj are
independent and have a continuous distribution. This shows the assertion of the lemma. �
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