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CONDITIONAL PRINCIPLES FOR RANDOM WEIGHTED MEASURES

Nathael Gozlan
1

Abstract. In this paper, we prove a conditional principle of Gibbs type for random weighted measures
of the form Ln = 1

n

∑n
i=1 Ziδxn

i
, (Zi)i being a sequence of i.i.d. real random variables. Our work

extends the preceding results of Gamboa and Gassiat (1997), in allowing to consider thin constraints.
Transportation-like ideas are used in the proof.
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1. Introduction

1.1. Convex methods for solving ill posed inverse problems

Consider the so called Moment-Problem: Find a finite measure Q on X satisfying
∫

X
Φ(x) dQ(x) ∈ C,

where X is a Polish space, Φ = (ϕ1, . . . , ϕk) a vector valued function and C a convex subset of R
k. Such

problems appear in many physical contexts such as tomography, spectroscopy, astronomy, etc.
In order to select an element of

S(Φ, C) :=
{

Q ∈ M(X ) :
∫

X
Φ(x) dQ(x) ∈ C

}

,

where M(X ) is the set of finite Borel measures on X , a classical method consists to choose as a solution the
measure Q∗ that minimises a certain convex cost function I( . ) over S(Φ, C).

When dealing with probability measures, one of the most popular methods is the Minimization of Entropy
method (ME), i.e. I( . ) is defined as the Kullback-Leibler distance with respect to some reference probability R
on X :

I(P ) = H (P |R ) :=

{ ∫
X

dP
dR log

(
dP
dR

)
dR if P � R,P ∈ P(X )

+∞ otherwise,
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where P(X ) denotes the set of probability measures on X .
In the renowned articles [5, 6], I. Csiszar derived precise results on the algebraic form of the minimizer (the

so called I-projection) and in [7], he gave an axiomatic justification for the ME method.
More recently in [2, 3], Borwein and Lewis have studied the minimization of γ-divergences under linear

constraints, that is the minimization of functionals I( . ) having the following form:

I(Q) =
∫

X
γ

(
dQa
dR

)

dR+ bψQ
+
s (X ) − aψQ

−
s (X ),

where R is a probability measure on X , γ : R → [0,+∞] is a convex function, Qa is the absolutely continuous
part of Q with respect to R, and Qs = Q+

s − Q−
s is the Jordan decomposition of the singular part of Q (see

Sect. 2 for the definition of aψ and bψ). For these functionals, they obtained precise results on the algebraic
expression of the minimizers (see [2, 3] and [8] Ths. 2.2 and 2.4). The interest of γ-divergences lies in the
fact that a good choice of γ makes it possible to impose additional non-linear constraints to the density of the
solution (see [8] for more information on this subject).

1.2. A probabilistic interpretation of these methods

Large deviations theory furnishes a nice interpretation of relative entropy and I-projections: Sanov Theorem
and Gibbs Conditioning Principle.

Let us briefly recall these well known results:
• (Sanov theorem) If (Xi)i is a sequence of independent and identically distributed random variables

with law R taking values in some polish space X , then the empirical distribution

Nn =
1
n

n∑

i=1

δXi (1.1)

satisfies a large deviations principle with good rate function H ( . |R ) in P(X ) equipped with the τ -
topology. (see [10], Chap. 6).

• (I-projections) For every subset A of P(X ), define

H (A |R ) := inf{H(P |R ) : P ∈ A}.

If A is a convex subset of P(X ) such that H (A |R ) < +∞, a probability measure R∗ ∈ A such that

H (R∗ |R ) = H (A |R )

is called the I-projection of R on A. Thanks to the strict convexity of H ( . |R ), if such R∗ exists, it
is unique. If A is a convex subset that is closed for the τ -topology, then R admits an I-projection R∗

on A (this is an easy consequence of the lower semi-continuity of H ( . |R ) and the compactness of the
sublevel sets {H( . |R ) ≤ t}, t ≥ 0).

• (Gibbs conditioning principle) Let A be a measurable subset of P(X ) that is closed and convex and

suppose that H (A |R ) = H(
◦
A|R) < +∞, then R⊗n(Nn ∈ A) > 0 for all n sufficiently large, and

L(X1|Nn ∈ A) =
ER⊗n [Nn�A(Nn)]
R⊗n(Nn ∈ A)

−−−−−→
n→+∞ R∗,

where R∗ is the I-projection of R on A (see [10] Sect. 7.3).
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In other words, Gibbs Conditioning Principle expresses: When forcing the empirical measure of
(X1, X2, . . . , Xn) to belong to A, the law of X1 is modified in such a way that it converges to the
I-projection of R on A.

In [15], Gamboa and Gassiat have established that a large classe of γ-divergences enjoys the same kind of
properties: they govern the large deviations of random measures and in this framework some type of Gibbs
conditional principle holds.

Before stating their results, let us introduce some notations:

For every probability measure ν on R
d, let Zν , Λν and Λ∗

ν denote respectively the Laplace transform, the
logarithmic moment generating function and the Cramer transform of ν, defined by:

∀s ∈ R
d, Zν(s) =

∫

exp 〈s, x〉dν(x) ∈ R
+ ∪ {+∞}

∀s ∈ R
d, Λν(s) = logZν(s) ∈ R ∪ {+∞}

∀t ∈ R
d, Λ∗

ν(t) = sup
s∈Rn

{〈s, t〉 − Λν(s)} ∈ R
+ ∪ {+∞}.

Recall that the domain of a convex function f : V → R ∪ {+∞}, denoted by dom f is the set defined by:

dom f = {x ∈ V : f(x) < +∞}.

Theorem 1.1 (Gamboa and Gassiat, [15] Th. 3.4). Let X be a compact metric space, R a probability measure
on X and (xni )i=1...n, n∈N∗ ⊂ X such that,

1
n

n∑

i=1

δxn
i
−−−−−→
n→+∞ R,

in the weak topology.
Let µ be a probability measure on R such that domZµ =] − α, β[, with α, β > 0.
If (Zi)i is a sequence of independent identically distributed random variables with L(Zi) = µ, then the random

weighted measures

Ln =
1
n

n∑

i=1

Ziδxn
i

(1.2)

satisfy a large deviations principle on M(X ) equipped with the topology of weak convergence, with good rate
function

Iµ (Q |R ) =
∫

X
Λ∗
µ

(
dQa
dR

)

dR + αQ−
s (X ) + βQ+

s (X ). (1.3)

(See also [10] Th. 7.2.3, [12, 22] for a more general result.)
Furthermore, assuming that µ⊗n(Ln ∈ S(Φ, C)) > 0 for all n large enough, and letting

Rn = Eµ⊗n [Ln|Ln ∈ S(Φ, C)] :=
E[Ln�S(Φ,C)(Ln)]
µ⊗n(Ln ∈ S(Φ, C))

,

they showed, under appropriate assumptions, that Rn converges to R∗ which is the unique minimizer of Iµ ( . |R )
over S(Φ, C). (See [15] and Sect. 3 Th. 3.1 for precise statements, and for more general results, see the recent
article [20] by Léonard.)
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But, in this framework, it is easily seen that

(
µ⊗n(Ln ∈ S(Φ, C)) > 0, for all n large enough

)
⇔

◦
C 
= ∅.

The aim of this paper is to study the case
◦
C = ∅ (thin constraints).

1.3. The problem of thin constraints

When studying conditional objects of the form

Rn = E[Zn|Zn ∈ A],

where (Zn)n is a sequence of random measures and A a given subset of M(X ), the main difficulty is, of course,
to give a meaning to Rn when P(Zn ∈ A) = 0 and when one cannot use an explicit desintegration of the
measure.

In the case of Gibbs Conditioning Principle, the classical mean to avoid this problem is to state the conver-
gence in a double limit formulation (see [24] or [10] Sect. 7.3):

lim
ε→0

lim
n→+∞ E[Nn|Nn ∈ Aε] = R∗

where Nn is defined by (1.1), Aε denotes an enlargement of A and R∗ the I-projection of R on A.
In [4], Cattiaux and the author investigated the convergence in a stronger simple limit formulation

lim
n→+∞ E[Nn|Nn ∈ Aεn ] = R∗ (1.4)

where (εn)n is a sequence converging slowly to 0 (see Ths. 2.19 and 2.24 of [4]).
We shall here follow the same route. Our main result (Th. 3.2) is the analog of (1.4) in the setting of random

weighted measures. We will prove that,

lim
n→+∞ Eµ⊗n [Ln|Ln ∈ S(Φ, Cεn)] = R∗,

where Ln is defined by (1.2), Cε denotes a closed blowup of C and R∗ is the unique minimizer of Iµ ( . |R ) over
S(Φ, C). As in [4], we allow small enlargement of size εn � 1√

n
·

Though the statement of Theorem 3.2 is the same as (1.4), the proof is completely different. In [4], the
authors took advantage of a remarkable inequality by I. Csiszar, namely

∀n ∈ N
∗, H(L(X1|Nn ∈ Aε) |R∗

ε ) ≤ − 1
n

log
(

P(Nn ∈ Aε)enH(Aε |R )
)
, (1.5)

where R∗
ε is the I-projection of R on the closed convex set Aε (see [6] (2.17) Th. 1). In Proposition 5.1, we will

obtain, in the setting of random weighted measures, an inequality similar to (1.5). The proof of Proposition
5.1 relies on new ingredients. One of the main ingredient (Prop. 3.1) is inspired by some mass-transportation
ideas, and gives some uniform control for the fluctuation of the mean around µ. These results can be extended
to a more general study of mass-transportation inequalities for the W1 Wasserstein distance (see [16], chaps. 6
and 7). The other tools are an exact deviation lower bound (Lem. 5.3) and a Bernstein-like inequality (Lem.
5.2).
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This paper is organized as follows:
Section 2: this section is devoted to γ-divergences minimization: we recall Borwein and Lewis results
on this subject (Th. 2.1) and present the Minimization of Entropy on the Mean (M.E.M.) (Th. 2.2)
approach of Gamboa and Gassiat;
Section 3: main results;
Section 4: transportation-like inequalities and explicit examples;
Section 5: we apply the preceding inequalities to prove our main result;
Appendix: proof of Theorem 2.2 on M.E.M.

Several applications of these results can be considered: superresolution, fast simulation of rare events, calibration
in finance. Some will be treated in [16].

2. Minimization of γ-divergences and the MEM procedure

In this section, the following assumptions hold:

Assumption 1.
(1) X is a compact metric space; the set M(X ) of finite Borel measures on X is endowed with the topology

of weak convergence;
(2) R is a probability measure on X having full support;
(3) Φ = (ϕ1, . . . , ϕk) : X → R

k is a continuous function on X with linearly independent components;
(4) C is a convex compact subset of R

k.

Recall that

S(Φ, C) =
{

Q ∈ M(X ) :
∫

X
Φ(x) dQ(x) ∈ C

}

.

Theorem 2.1 (Borwein-Lewis, [3]). Let γ : R → [0,+∞] be a closed convex function and denote by aγ < bγ
the endpoints of domγ. Suppose γ is differentiable and strictly convex on the interior of its domain and such
that the minimum of γ is 0, attained at some point y0 of the interior of dom γ.

Let ψ denote the convex conjugate of γ, i.e.

ψ(s) = γ∗(s) = sup
t∈R

{st− γ(t)},

and denote by aψ < 0 < bψ the endpoints of domψ.
Suppose there is Q0 ∈ S(Φ, C) such that Q0 � R and dQ0

dR ∈]aγ , bγ [ R a.s.

Then the functional Iγ ( . |R ), defined on M(X ) by

Iγ (Q |R ) =
∫

X
γ

(
dQa
dR

)

dR+ bψQ
+
s (X ) − aψQ

−
s (X ),

attains its minimum on S(Φ, C).
Further each minimizer R∗ of Iγ ( . |R ) on S(Φ, C) is of the form:

R∗ = g∗R + σ,

where
• g∗(x) = ψ′〈v∗,Φ(x)〉;
• v∗ is the unique minimizer of H(v) =

∫
X ψ〈v,Φ(x)〉dR(x) − infy∈C〈v, y〉;

• σ is singular with respect to R.
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Moreover, if v∗ is an interior point of
{
v :
∫
X ψ〈v,Φ(x)〉dR(x) < +∞

}
, then the unique minimizer of Iγ ( . |R )

on S(Φ, C) is R∗ = g∗R. This is in particular the case when domψ = R.

(For a proof, see [3] or the appendix A of [8] and for generalizations, see [18, 19].)
The following theorem presents the Minimization of Entropy on the Mean (M.E.M) procedure developed

in [9, 13–15] by Dacunha-Castelle, Gamboa an Gassiat, which gives another point of view on γ-divergences
minimization. We need the following

Assumption 2.
(1) µ is a probability measure on R such that dom Λµ =] − α, β[ with α, β ∈ R

∗
+ ∪ {+∞};

(2) (xni )i=1...n,n∈N∗ ⊂ X is such that 1
n

∑n
i=1 δxn

i
−−−−−→
n→+∞ R;

(3) there is g0 : X →]aµ, bµ[ continuous, such that g0R ∈ S(Φ, C), where aµ < bµ are the endpoints of the
closed convex hull of the support of µ;

(4) the function H defined on R
k by:

H(v) =
∫

X
Λµ〈v,Φ(x)〉dR(x) − inf

y∈C
〈v, y〉,

has a unique minimizer v∗ belonging to the interior of its domain.

We put together here different results proved in [14, 15] (Th. 2.1) with a slight refinement at points 4 and 5:

Theorem 2.2. For all n ∈ N
∗, let Ln : R

n → M(X ) be defined by Ln(z) = 1
n

∑n
i=1 ziδxn

i
.

For all ε ≥ 0, let Cε = {x ∈ R
k : ∃y ∈ C, d∞(x, y) ≤ ε} where d∞(x, y) = max(|xi − yi|, i = 1 . . . k).

For all n ≥ 1 and ε ≥ 0, let

Πn(Cε) =
{

ν ∈ P(Rn) : Eν

[∫

X
Φ dLn

]

∈ Cε
}

.

Then, under Assumptions 1 and 2, it holds:
(1) There is n0 ≥ 1 such that for all ε ≥ 0, µ⊗n has an I-projection µ∗

n, ε on Πn(Cε), i.e. µ∗
n, ε is the unique

probability measure belonging to Πn(Cε) satisfying

H
(
µ∗
n, ε

∣
∣µ⊗n ) = inf

{
H
(
ν
∣
∣µ⊗n ) , ν ∈ Πn(Cε)

}
.

(2) For n ≥ n0, µ∗
n, ε has the following expression:

µ∗
n, ε =

exp 〈w∗
n, ε, . 〉

Zµ⊗n(w∗
n, ε)

µ⊗n with w∗
n, ε =






〈v∗n, ε,Φ(xn1 )〉
...

〈v∗n, ε,Φ(xnn)〉






and v∗n, ε is a minimizer of the function Hn, ε defined on R
k by

Hn, ε(v) =
1
n

n∑

i=1

Λµ〈v,Φ(xni )〉 − inf
y∈Cε

〈v, y〉. (2.1)

(3) For all n ≥ n0, one has:

R∗
n, ε := Eµ∗

n, ε
[Ln] =

1
n

n∑

i=1

Λ′
µ〈v∗n, ε,Φ(xni )〉δxn

i
.
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(4) For every sequence εn ∈ R
+ converging to 0, v∗n, εn

converges to v∗ (the unique minimiser of H).
(5) For every sequence εn ∈ R

+ converging to 0, the sequence R∗
n, εn

weakly converges to R∗ the unique
minimizer of Iµ ( . |R ) on S(Φ, C), which satisfies:

R∗ = Λ′
µ〈v∗,Φ( . )〉R.

(A proof of this result will be given in the appendix.)

Remark 1.
• We will simply write µ∗

n, R
∗
n, v∗n etc., instead of µ∗

n, 0, R
∗
n, 0, v

∗
n, 0 etc.

• The measures R∗
n, ε will be called the M.E.M. estimators.

• When domΛµ = R, Assumption 2 (4) is automatically fulfilled.
• When Assumption 2 (4) does not hold, the M.E.M estimators do not converge in general, (see [15]

Th. 2.1 for precise results on the accumulation points).
• Assume that domΛµ = R and let Rn = 1

n

∑n
i=1 δxn

i
. One can show that the measure R∗

n, ε is the unique
minimizer of the functional:

I
(
Q
∣
∣Rn
)

=
∫

X
Λ∗
µ

(
dQ
dRn

)

dRn

under the constraint Q ∈ S(Φ, Cε) (see Prop. V.10 of [16]).

3. Main results

The result we want to extend is the following:

Theorem 3.1 (Gamboa and Gassiat, [15] Th. 2.3). Under Assumptions 1 and 2, if C has a nonempty interior,
then the Bayesian estimator

Rn :=
Eµ⊗n

[
Ln�S(Φ,C)(Ln)

]

µ⊗n(Ln ∈ S(Φ, C))
is well defined for all n sufficiently large and weakly converges to R∗, the unique minimizer of Iµ ( . |R )
on S(Φ, C).

Our main result is the following

Theorem 3.2. Suppose Assumptions 1 and 2 are fulfilled, and let (εn)n be a sequence of positive real numbers
converging to 0 and such that lim

n→+∞nε2n = +∞.

Then, the Bayesian estimator

Rn, εn :=
Eµ⊗n

[
Ln�S(Φ,Cεn )(Ln)

]

µ⊗n(Ln ∈ S(Φ, Cεn))
is well defined for all n sufficiently large and weakly converges to R∗, the unique minimizer of Iµ ( . |R )
on S(Φ, C).

Let us introduce some additional notations:
• For every u ∈ domZµ, µu is the probability measure defined by:

dµu
dµ

(x) =
exp(ux)
Zµ(u)

,

and for all n ≥ 2 and all u ∈ (domZµ)
n,

µ⊗n
u = µu1 ⊗ · · · ⊗ µun .



290 N. GOZLAN

• Θ is the set of nonnegative, nondecreasing, continuous, concave, unbounded functions defined on R
+

and vanishing at 0.
The proof of Theorem 3.2 makes use of the following proposition, whose proof is very close to the one of
Bobkov-Götze theorem on T1-transportation inequality (cf. [1] Th. 3.1):

Proposition 3.1. For every compact interval K ⊂] − α, β[ , there is θK ∈ Θ such that, for all u ∈ K and
ν ∈ P(R): ∣

∣
∣
∣

∫

xdν(x) −
∫

xdµu(x)
∣
∣
∣
∣ ≤ θK(H (ν |µu )).

Remark 2. If µ is such that Λ′′
µ(t) ≤M for all t ∈ R, (for example if µ has a compact support or µ is a gaussian

measure), one can take θK(x) =
√

2Mx. In this case, the preceding inequality can be seen as a particular case
of the T1-transportation inequality (cf. [1] Th. 3.1). Other explicit bounds can be found in Section 4.2.

Using well known methods of information theory, we will deduce from this result an upper bound for the
total variation distance between Rn, εn and R∗

n, εn
of the following form:

‖Rn, εn −R∗
n, εn

‖TV ≤ θ

(
−1
n

log
[

µ⊗n
(∫

X
Φ dLn ∈ Cεn

)

eH(µ∗
n, εn |µ⊗n )

])

,

where θ ∈ Θ does not depend on n (Prop. 5.1).
Finally, we will majorize the right hand side thanks to an exact deviation lower bound (Lem. 5.3) and a

Berstein-like inequality (Lem. 5.2). The convergence of the Bayesian estimators Rn, εn will then follow from the
convergence of the M.E.M estimators R∗

n, εn
.

4. Transportation-like inequalities

4.1. General results

Recall that Θ denotes the set of nonnegative, nondecreasing, continuous, concave, unbounded functions
defined on R

+ and vanishing at 0. We will need the following lemma:

Lemma 4.1. Let k : [0, r[→ R+, r ∈ R
∗
+ ∪ {+∞} be such that lim

s→0
k(s) = 0 and lim

s→r
k(s) = +∞.

Then the function θ defined for all a ∈ R+ by θ(a) = inf
s∈]0,r[

{a

s
+ k(s)

}
belongs to Θ.

Proof.
– For all a ≥ 0, s �→ a

s + k(s) is nonnegative, so θ(a) = inf0<s<r
{
a
s + k(s)

}
∈ R+, and θ is well defined

on R+. Moreover θ(0) = inf0<s<r{k(s)} and lims→0 k(s) = 0, thus θ(0) = 0.
– The function θ being an infimum of affine functions, it is concave. As θ is finite over R

+, θ is continuous
over ]0,+∞[.

– If 0 ≤ a ≤ a′ < r, then for all 0 < s < r, a
s + k(s) ≤ a′

s + k(s), thus, taking the inf at both sides, one
obtains θ(a) ≤ θ(a′) and θ is therefore nondecreasing.

– Let (an)n be such that an −−−−−→
n→+∞ 0. One has for all 0 < s < r: θ(an) ≤ an

s + k(s), so

lim supn→+∞ θ(an) ≤ k(s). As inf0<s<r k(s) = 0, we get lim supn→+∞ θ(an) = 0 and θ is continuous
at 0.

– Finally, let (an)n be such that an −−−−−→
n→+∞ +∞ and let us prove that θ(an) −−−−−→

n→+∞ +∞. The function θ

being nondecreasing, it suffices to show that θ(an) is unbounded. For all n, s �→ an

s + k(s) tends to +∞
when s tends to 0 or r, thus there is a number sn such that θ(an) = an

sn
+ k(sn). Consequently, we get

lim sup
n→+∞

θ(an) ≥ lim sup
n→+∞

an
sn

∨ lim sup
n→+∞

k(sn).
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If sn is bounded, lim supn→+∞
an

sn
= +∞ and if sn is not (r = +∞), lim supn→+∞ k(sn) = +∞. In

both cases, θ(an) is unbounded. �

Proof of Proposition 3.1.
(1) For all u ∈] − α, β[,

Zµu(s) =
∫

exp(sx) exp(ux) dµ(x)
Zµ(u)

=
Zµ(u + s)
Zµ(u)

so dom Zµu =] − α− u, β − u[.

Let s ∈] − α− u, β − u[, and write

s

(∫

xdν(x) −
∫

xdµu(x)
)

=
∫

hs(x) dν(x) + log
∫

es(x−
∫
y dµu(y)) dµu(x),

denoting

hs(x) = s

(

x−
∫

y dµu(y)
)

− log
∫

es(x−
∫
y dµu(y)) dµu(x).

Clearly, ∫

exphs dµu = 1.

Thanks to the following variational formula for relative entropy (see e.g. [21], Chap. 1, Prop. 4),

H (ν |µu ) = sup
{∫

h dν :
∫

exph dµu ≤ 1
}

,

one gets ∫

hs dν ≤ H (ν |µu ) .

Moreover, noticing that Λ′
µ(u) =

∫
y dµu(y), one gets easily

log
∫

es(x−
∫
y dµu(y)) dµu(x) = Λµ(s+ u) − Λµ(u) − sΛ′

µ(u) := q(s, u),

and q(s, u) is non-negative due to the convexity of Λµ.

Thus, for all s ∈]0, β − u[, one has

∫

xdν(x) −
∫

xdµu(x) ≤
H(ν |µu )

s
+
q(s, u)
s

and for s ∈]0, α+ u[ ∫

xdµu(x) −
∫

xdν(x) ≤ H(ν |µu )
s

+
q(−s, u)

s
·

Let K = [a, b] ⊂]α, β[ and r = min(α+ a, β − b) ∈ R
∗
+ ∪ {+∞}, then for all 0 < s < r one has

∣
∣
∣
∣

∫

xdν(x) −
∫

xdµu(x)
∣
∣
∣
∣ ≤

H(ν |µu )
s

+
q(s, u) + q(−s, u) + s2

s
·

Let

k(s) =
maxu∈K(q(s, u) + q(−s, u)) + s2

s
,
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then for all u ∈ K ∣
∣
∣
∣

∫

xdν(x) −
∫

xdµu(x)
∣
∣
∣
∣ ≤

H(ν |µu )
s

+ k(s).

Taking the inf over 0 < s < r, one obtains
∣
∣
∣
∣

∫

xdν(x) −
∫

xdµu(x)
∣
∣
∣
∣ ≤ θK(H (ν |µu )),

with θK defined by

θK(a) = inf
0<s<r

{a

s
+ k(s)

}
.

(2) Let us check that k satisfies the assumptions of Lemma 4.1.
If r = +∞, then k(s) ≥ s and so lim

s→+∞ k(s) = +∞.

If r = α+ a < +∞, then

k(s) ≥ q(−s, a)
s

=
Λµ(a− s) − Λµ(a)

s
+ Λ′

µ(a).

As lim
s→α+a

Λµ(a− s) = +∞, lim
s→α+a

k(s) = +∞.

If r = β − b < +∞, one gets similarly lim
s→β−b

k(s) = +∞. In all cases, lim
s→r

k(s) = +∞.

Let us verify that lim
s→0

k(s) = 0. Let 0 < sn < r be such that sn −−−−−→
n→+∞ 0. For all n, there is un ∈ K such

that

k(sn) =
q(sn, un) + q(−sn, un)

sn
+ sn.

Let us assume that for all n, k(sn) ≥ ε > 0. As (un)n is a bounded sequence, there exists φ such that
uφ(n) → u0 ∈ K. But Λ′′

µ being nonnegative, Taylor formula yields

q(sφ(n), uφ(n)) + q(−sφ(n), uφ(n)) ≤ s2φ(n) sup{Λ′′
µ(u) : u ∈ [uφ(n) − sφ(n), uφ(n) + sφ(n)]},

which implies that k(sφ(n)) −−−−−→
n→+∞ 0. Contradiction, so lim

s→0
k(s) = 0 and θK ∈ Θ. �

Corollary 4.1. For every compact interval K ⊂] − α, β[, one has

∀u ∈ Kn, ∀ν ∈ P(Rn),
1
n

∥
∥
∥
∥

∫

xdν(x) −
∫

xdµ⊗n
u (x)

∥
∥
∥
∥

1

≤ θK

(
H(ν |µ⊗n

u )
n

)

,

denoting µ⊗n
u = µu1 ⊗ · · · ⊗ µun and ‖x‖1 =

n∑

i=1

|xi|.

Proof. We will denote by ν1, ν2, . . . , νn, the one dimensional marginales of ν.
One has:

1
n

∥
∥
∥
∥

∫

xdν(x) −
∫

xdµ⊗n
u (x)

∥
∥
∥
∥

1

=
1
n

n∑

i=1

∣
∣
∣
∣

∫

xi dν(x) −
∫

xi dµ⊗n
u (x)

∣
∣
∣
∣

=
1
n

n∑

i=1

∣
∣
∣
∣

∫

xdνi(x) −
∫

xdµui(x)
∣
∣
∣
∣ .
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As for all i ∈ {1, . . . , n}, ui ∈ K, Proposition 3.1 yields:

∣
∣
∣
∣

∫

xdνi(x) −
∫

xdµui (x)
∣
∣
∣
∣ ≤ θK(H (νi |µui )).

So
1
n

∥
∥
∥
∥

∫

xdν(x) −
∫

xdµ⊗n
u (x)

∥
∥
∥
∥

1

≤ 1
n

n∑

i=1

θK(H (νi |µui )).

The function θK being concave, one gets thanks to Jensen inequality:

1
n

∥
∥
∥
∥

∫

xdν(x) −
∫

xdµ⊗n
u (x)

∥
∥
∥
∥

1

≤ θK

(∑n
i=1 H(νi |µui )

n

)

·

But according to the following identity (see [6] (2.11))

H
(
ν
∣
∣µ⊗n

u

)
= H(ν | ν1 ⊗ · · · ⊗ νn ) +

n∑

i=1

H(νi |µui ) ,

one has
n∑

i=1

H(νi |µui ) ≤ H
(
ν
∣
∣µ⊗n

u

)
.

As θK is nondecreasing, one obtains:

1
n

∥
∥
∥
∥

∫

xdν(x) −
∫

xdµ⊗n
u (x)

∥
∥
∥
∥

1

≤ θK

(
H(ν |µ⊗n

u )
n

)

· �

4.2. Some explicit bounds

Proposition 4.1. Let µ be such that Λ′′
µ(u) ≤M for all u ∈ R, then for all ν ∈ P(R) and all u ∈ R

∣
∣
∣
∣

∫

xdν(x) −
∫

xdµu(x)
∣
∣
∣
∣ ≤
√

2M H(ν |µu ).

Proof. Thanks to Taylor-Lagrange formula, for all u, s ∈ R, there exists a such that:

q(s, u) = Λµ(u+ s) − Λµ(u) − sΛ′
µ(u) =

s2

2
Λ′′
µ(a)

thus q(s, u) ≤ s2M
2 , and one can take k(s) = sM

2 . A simple calculus yields then θ(x) =
√

2Mx. �

Examples.
– µ has its support included in [a, b]: the support of µu is also in [a, b] and Λ′′

µ(u) = Var(µu) ≤ (b− a)2. In this
case, one can take

θ(x) = (b − a)
√

2x.

– µ = Z−1e−Udx, with U ′′ ≥ c > 0: the probability measure µ satisfies then the following Poincaré inequality:

Varµ(f) ≤ 1
c

∫

(f ′)2(x) dµ(x).
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But µu = e−U+ux

ZZµ(u) dx and V = U(x) + ux also satisfies V ′′ ≥ c > 0, so that µu satisfies the same Poincaré
inequality as µ. In particular, choosing f(x) = x, one obtains:

Λ′′
µ(u) = Var(µu) = Varµu(x) ≤ 1

c
·

In this case, one can thus take

θ(x) =

√
2x
c
·

The following lemma will enable us, in certain cases, to majorize the function θ by another function enjoying
the same properties as θ except concavity.

Lemma 4.2. Let k : [0,+∞[→ R+ be a C2 function such that k(0) = k′(0) = 0 and k′′ ≥ c > 0.
Define Ψ(t) =

∫ t
0 uk

′′(u) du = tk′(t) − k(t), then
(1) For all a ∈ R

+,

θ(a) = inf
s∈R+

{
a

s
+
k(s)
s

}

= k′(Ψ−1(a)).

(2) Moreover, for all a ∈ R
+, θ(a) ≤ k′

(√
2a
c

)
·

Proof.

1) For all a > 0, ga : s �→ a
s + k(s)

s goes to +∞ when s goes to 0 or +∞, thus ga attains its minimum at a
point sa such that g′a(sa) = 0, that is to say Ψ(sa) = a. The function Ψ being increasing, sa = Ψ−1(a),
and this remains true for a = 0.

Moreover

θ(a) =
a

sa
+
k(sa)
sa

=
k′(sa)sa − k(sa)

sa
+
k(sa)
sa

= k′(sa) = k′(Ψ−1(a)).

2) a =
∫ sa

0 uk′′(u) du ≥
∫ sa

0 cu du = c
s2a
2 ·

Thus sa ≤
√

2a
c a and k′ being increasing, one has

θ(a) = k′(sa) ≤ k′
(√

2a
c

)

· �

Examples.
– µ is the Poisson distribution with parameter λ > 0: Λµ(u) = λ(eu− 1) and Λµ(u+ s) + Λµ(u− s)− 2Λµ(u) =
2λeu[cosh(s) − 1].

Let M > 0 and define k(s) = 2λeM [cosh(s) − 1]. It follows from the proof of Proposition 3.1 that for all
u ∈ [−M,M ] and all ν ∈ P(R),

∣
∣
∣
∣

∫

xdν(x) −
∫

xdµu(x)
∣
∣
∣
∣ ≤ θM (H (ν |µu )),

with θM (a) = inf
{
a
s + k(s)

s

}
.

Moreover k′(s) = 2λeM sinh(s) and k′′(s) = 2λeM cosh(s) ≥ 2λeM , thus, from the preceding lemma, it holds:

θM (a) ≤ 2λeM sinh

√
e−Ma
λ

·
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Consequently, for all u ∈ [−M,M ] and ν ∈ P(R):

∣
∣
∣
∣

∫

xdν(x) −
∫

xdµu(x)
∣
∣
∣
∣ ≤ 2λeM sinh

√
e−M H(ν |µu )

λ
·

– µ is the exponential distribution with parameter λ: Adapting slightly the proof of the preceding lemma, one
gets:

For all u ≤ b < λ and ν ∈ P(R) such that H (ν |µu ) < 1,

∣
∣
∣
∣

∫

xdν(x) −
∫

xdµu(x)
∣
∣
∣
∣ ≤

2
λ− b

√
H(ν |µu )

1 − H(ν |µu )
·

5. Conditional Principle

5.1. Majorization of the total variation distance between the M.E.M. estimator
and the Bayesian estimator

According to Theorem 2.2, there is n0 such that for all n ≥ n0, µ∗
n, ε is well defined for all ε ≥ 0 and

µ∗
n, ε = µ⊗n

w∗
n, ε
.

Lemma 5.1. For every sequence εn of nonnegative numbers converging to 0, there is m ≥ n0 and a compact
interval K ⊂] − α, β[ such that

∀n ≥ m, w∗
n, εn

∈ Kn and ∀x ∈ X , 〈v∗,Φ(x)〉 ∈ K.

Proof. According to Theorem 2.2 (2):

w∗
n, εn

=






〈Φ(xn1 ), v∗n, εn
〉

...
〈Φ(xnn), v∗n, εn

〉




 .

The function Φ being continuous on the compact set X , there is N > 0 such that ‖Φ(x)‖ ≤ N for all x ∈ X .
For all i ∈ {1, . . . , n}, it follows from Cauchy-Schwarz inequality that

∣
∣〈Φ(xni ), v∗n, εn

〉 − 〈Φ(xni ), v∗〉
∣
∣ ≤ N‖v∗n, εn

− v∗‖,

and so
inf
x∈X

〈v∗,Φ(x)〉 −N‖v∗n, εn
− v∗‖ ≤ (w∗

n, εn
)i ≤ sup

x∈X
〈v∗,Φ(x)〉 +N‖v∗n, εn

− v∗‖.

According to Assumption 2 (4), v∗ ∈
◦

domH . Now, it is easily seen that

◦
domH =

{
v ∈ R

k : ∀x ∈ X , 〈v,Φ(x)〉 ∈] − α, β[
}
.

Thanks to the compactness of X , one has

−α < inf
x∈X

〈v∗,Φ(x)〉 ≤ sup
x∈X

〈v∗,Φ(x)〉 < β.

According to Theorem 2.2 (5), v∗n, εn
converges in R

k to v∗, and the result follows easily. �
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Lemma 5.2. There are M > 0 and n1 ≥ n0 such that for all ε > 0 and n ≥ n1,

µ∗
n

(∫

X
Φ dLn ∈ Cε

)

≥ 1 − 2k exp
[

− nε2

2M(2M + ε)

]

·

(Recall that Φ is R
k-valued.)

Proof.
First step. Let us show that for all compact interval K ⊂ ] − α, β[, there is M > 0 such that for all u ∈ K and
j ≥ 2:

∫ ∣
∣
∣
∣z −

∫

xdµu(x)
∣
∣
∣
∣

j

dµu(z) ≤ j!M j.

Denoting τ(x) = e|x| − 1 − |x|, and J(u,M) =
∫
τ
(
z−∫ x dµu(x)

M

)
dµu(z), one gets easily that

sup
u∈K

J(u,M) −−−−−→
M→+∞

0.

Therefore there is M > 0 such that sup
u∈K

J(u,M) ≤ 1.

Now,

J(u,M) =
+∞∑

j=2

∫ ∣
∣z −

∫
xdµu(x)

∣
∣j dµu(z)

M jj!
,

hence for all u ∈ K and k ≥ 2, one has

∫ ∣
∣z −

∫
xdµu(x)

∣
∣j dµu(z)

M jj!
≤ J(u,M) ≤ 1.

Second step. Let us show that for all compact interval K ⊂]−α, β[, and all N > 0, there is M > 0 such that for
all sequence Z1, . . . , Zn of independent random variables such that L(Zi) = µui with ui ∈ K and all sequence
α1, . . . , αn of real numbers with |αi| ≤ N , one has

∀ε > 0, P
(∣
∣Z̄ −m

∣
∣ > ε

)
≤ 2 exp

[

− nε2

2M(2M + ε)

]

,

where Z̄ =
1
n

n∑

i=1

αiZi and m = E
[
Z̄
]
.

According to the first step, there is M0 > 0 depending only on K such that for all i,

∀j ≥ 2, E
[
|Zi − E[Zi]|j

]
≤ j!M j

0 .

From this, it follows that for all i

∀j ≥ 2, E
[
|αi(Zi − E[Zi])|j

]
≤ j!(M0N)j .

Letting M = M0N , the results follows from Bernstein inequality (see e.g. [25], 2.2.11 p. 103).
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Third step. Now let us prove the lemma.
Let cn = (cn,1, . . . , cn,k) := Eµ∗

n

[∫
X Φ dLn

]
∈ C.

Then

µ∗
n

(∫

X
Φ dLn ∈ Cε

)

≥ µ∗
n

(∥
∥
∥
∥

∫

X
Φ dLn − cn

∥
∥
∥
∥
∞

≤ ε

)

= 1 − µ∗
n

(∥
∥
∥
∥

∫

X
Φ dLn − cn

∥
∥
∥
∥
∞
> ε

)

≥ 1 −
k∑

j=1

µ∗
n

(

z :

∣
∣
∣
∣
∣

1
n

n∑

p=1

ziφp(xni ) − cn,p

∣
∣
∣
∣
∣
> ε

)

.

The functions φp being continuous on the compact X , there is N > 0 such that |φp(x)| ≤ N for all p and x.
Moreover, according to Lemma 5.1 applied to the sequence εn = 0, there is n1 ≥ n0 and a compact interval
K ⊂ ] − α, β[ such that for all n ≥ n1, w∗

n ∈ Kn. Thus, according to the second step, one can conclude that
there is M > 0 such that for all ε > 0 and all integer n ≥ n1, one has:

µ∗
n

(∫

X
Φ dLn ∈ Cε

)

≥ 1 − 2k exp
[

− nε2

2M(2M + ε)

]

· �

Now we are ready to prove the

Proposition 5.1. Let εn be a sequence of positive real numbers converging to 0 such that nε2n → +∞.
Then the following holds

(1) There is n2 ≥ n0 such that for all n ≥ n2, Rn, εn and R∗
n, εn

are well defined.
(2) There is θ ∈ Θ such that for all n ≥ n2:

∥
∥Rn, εn −R∗

n, εn

∥
∥
TV

≤ θ

(
−1
n

log
[

µ⊗n
(∫

X
Φ dLn ∈ Cεn

)

eH(µ∗
n, εn |µ⊗n )

])

·

Proof.
(1) For n ≥ n0, µ∗

n and µ∗
n, εn

are well defined.
Moreover, according to Lemma 5.2, there is n1 ≥ n0 and M > 0 such that for all n ≥ n1,

µ∗
n

(∫

X
Φ dLn ∈ Cεn

)

≥ 1 − 2k exp
[

− nε2n
2M(2M + εn)

]

·

As nε2n −−−−−→
n→+∞ +∞, it is clear that µ∗

n

(∫
X Φ dLn ∈ Cεn

)
−−−−−→
n→+∞ 1. In particular, there is m1 ≥ n1 such

that for all n ≥ m1, µ∗
n

(∫
X Φ dLn ∈ Cεn

)
> 0. As µ⊗n is equivalent to µ∗

n, it follows that for all n ≥ m1,
µ⊗n (∫

X Φ dLn ∈ Cεn
)
> 0 and thus Rn, εn is well defined.

(2) According to Lemma 5.1, there are a compact interval K ⊂] − α, β[ and m2 ≥ n0 such that for all n ≥ m2,
w∗
n, εn

∈ Kn. Let νn, εn ∈ P(Rn) be defined by νn, εn = �S(Φ,Cεn )(Ln)

µ⊗n(Ln∈S(Φ,Cεn )) .µ
⊗n. According to Corollary 4.1, one

has for all n ≥ n2 = max(m1,m2), letting θ = θK :

1
n

∥
∥
∥
∥

∫

xdνn, εn(x) −
∫

xdµ∗
n, εn

(x)
∥
∥
∥
∥

1

≤ θ

(
H
(
νn, εn

∣
∣µ∗

n, εn

)

n

)

· (5.1)
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But

‖Rn, εn −R∗
n, εn

‖TV =

∥
∥
∥
∥
∥

1
n

n∑

i=1

(∫

zi dνn, εn(z) −
∫

zi dµ∗
n, εn

(z)
)

.δxn
i

∥
∥
∥
∥
∥
TV

≤ 1
n

n∑

i=1

∣
∣
∣
∣

∫

zi dνn, εn(z) −
∫

zi dµ∗
n, εn

(z)
∣
∣
∣
∣

=
1
n

∥
∥
∥
∥

∫

xdνn,εn(x) −
∫

xdµ∗
n, εn

(x)
∥
∥
∥
∥

1

.

Thus, according to (5.1), for all n ≥ n2,

‖Rn, εn −R∗
n, εn

‖TV ≤ θ

(
H
(
νn, εn

∣
∣µ∗

n, εn

)

n

)

·

But one easily sees that
νn, εn ∈ Πn(Cεn).

Applying Csiszar inequality (cf. [5] Th. 2.2), it holds

H
(
νn, εn

∣
∣µ⊗n ) ≥ H

(
νn, εn

∣
∣µ∗

n, εn

)
+ H
(
µ∗
n, εn

∣
∣µ⊗n ) .

Moreover, a simple calculus yields

H
(
νn,εn

∣
∣µ⊗n ) = − logµ⊗n

(∫

X
Φ dLn ∈ Cεn

)

,

hence

H
(
νn, εn

∣
∣µ∗

n, εn

)
≤ − log

[

µ⊗n
(∫

X
Φ dLn ∈ Cεn

)

eH(µ∗
n, εn |µ⊗n )

]

and θ being nondecreasing, one obtains for all n ≥ n2:

‖Rn, εn −R∗
n, εn

‖TV ≤ θ

(
−1
n

log
[

µ⊗n
(∫

X
Φ dLn ∈ Cεn

)

eH(µ∗
n, εn |µ⊗n )

])

. �

5.2. Convergence of the Bayesian estimators

We need the following lemma

Lemma 5.3. As soon as µ∗
n

(∫
X Φ dLn ∈ Cε

)
> 0, it holds:

1
n

log
[

µ⊗n
(∫

X
Φ dLn ∈ Cε

)

eH(µ∗
n |µ⊗n )

]

≥ H (µ∗
n |µ⊗n )
n

(

1 − 1
µ∗
n

(∫
X Φ dLn ∈ Cε

)

)

+
1
n

logµ∗
n

(∫

X
Φ dLn ∈ Cε

)

− 1
ne

1
µ∗
n

(∫
X Φ dLn ∈ Cε

) ·

Proof. (see also [11], Ex. 3.3.23 p. 76) The probability measure µ⊗n being equivalent to µ∗
n,

µ∗
n

(∫

X
Φ dLn ∈ Cε

)

> 0 ⇒ µ⊗n
(∫

X
Φ dLn ∈ Cε

)

> 0.
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It holds:

1
n

logµ⊗n
(∫

X
Φ dLn ∈ Cε

)

=
1
n

log
∫

�Cε

(∫

X
Φ dLn

)

dµ⊗n =
1
n

log
∫

�Cε

(∫

X
Φ dLn

)
dµ⊗n

dµ∗
n

dµ∗
n

=
1
n

log
∫

dµ⊗n

dµ∗
n

�Cε

(∫
X Φ dLn

)

µ∗
n(
∫
X Φ dLn ∈ Cε)

dµ∗
n +

1
n

logµ∗
n

(∫

X
Φ dLn ∈ Cε

)

.

As
�Cε(

∫
X ΦdLn)

µ∗
n(
∫
X Φ dLn∈Cε)µ

∗
n is a probability measure, Jensen inequality yields

1
n

log
∫

dµ⊗n

dµ∗
n

�Cε

(∫
X Φ dLn

)

µ∗
n

(∫
X Φ dLn ∈ Cε

) dµ∗
n ≥ 1

n

∫

log
dµ⊗n

dµ∗
n

�Cε

(∫
X Φ dLn

)

µ∗
n

(∫
X Φ dLn ∈ Cε

) dµ∗
n.

Moreover, letting In = 1
n

∫
log dµ⊗n

dµ∗
n

�Cε(
∫
X Φ dLn)

µ∗
n(
∫
X Φ dLn∈Cε) dµ∗

n, one has

In =
1

nµ∗
n

(∫
X Φ dLn ∈ Cε

)

∫

log
dµ⊗n

dµ∗
n

dµ∗
n − 1

n

∫

log
dµ⊗n

dµ∗
n

�(Cε)c

(∫
X Φ dLn

)

µ∗
n

(∫
X Φ dLn ∈ Cε

) dµ∗
n

= − 1
nµ∗

n

(∫
X Φ dLn ∈ Cε

) H
(
µ∗
n

∣
∣µ⊗n )+

1
n

∫
dµ∗

n

dµ⊗n log
dµ∗

n

dµ⊗n
�(Cε)c

(∫
X Φ dLn

)

µ∗
n

(∫
X Φ dLn ∈ Cε

) dµ⊗n.

But x �→ x log(x) is always greater than −1
e
, so

1
n

∫
dµ∗

n

dµ⊗n log
dµ∗

n

dµ⊗n
�(Cε)c

(∫
X Φ dLn

)

µ∗
n

(∫
X Φ dLn ∈ Cε

) dµ⊗n ≥ −
µ⊗n (∫

X Φ dLn /∈ Cε
)

neµ∗
n

(∫
X Φ dLn ∈ Cε

)

≥ − 1
neµ∗

n

(∫
X Φ dLn ∈ Cε

) ·

Hence

1
n

logµ⊗n
(∫

X
Φ dLn ∈ Cε

)

≥ − H(µ∗
n |µ⊗n )

nµ∗
n

(∫
X Φ dLn ∈ Cε

) +
1
n

logµ∗
n

(∫

X
Φ dLn ∈ Cε

)

− 1
ne

1
µ∗
n

(∫
X Φ dLn ∈ Cε

)

and adding
H (µ∗

n |µ⊗n )
n

at both sides, the result follows. �

Proof of Theorem 3.2. It suffices to show that

‖Rn, εn −R∗
n, εn

‖TV −−−−−→
n→+∞ 0.

According to Proposition 5.1 (2), there are θ ∈ Θ and n2 such that for all n ≥ n2
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‖Rn, εn −R∗
n, εn

‖TV ≤ θ

(
−1
n

log
[

µ⊗n
(∫

X
Φ dLn ∈ Cεn

)

eH(µ∗
n, εn |µ⊗n )

])

.

The function θ being continuous nondecreasing vanishing at 0 it suffices to majorize

Bn :=
−1
n

log
[

µ⊗n
(∫

X
Φ dLn ∈ Cεn

)

eH(µ∗
n, εn |µ⊗n )

]

by a quantity converging to 0.
Let us write

Bn = B1
n +B2

n,

with

B1
n =

−1
n

log
[

µ⊗n
(∫

X
Φ dLn ∈ Cεn

)

eH(µ∗
n |µ⊗n )

]

,

and

B2
n =

1
n

[
H
(
µ∗
n

∣
∣µ⊗n )− H

(
µ∗
n, εn

∣
∣µ⊗n )] .

A simple calculus yields

H (µ∗
n |µ⊗n )
n

=
1
n

n∑

i=1

[
〈Φ(xni ), v∗n〉Λ′

µ〈Φ(xni ), v∗n〉 − Λµ〈Φ(xni ), v∗n〉
]

and
H
(
µ∗
n, εn

∣
∣µ⊗n )

n
=

1
n

n∑

i=1

[
〈Φ(xni ), v∗n, εn

〉Λ′
µ〈Φ(xni ), v∗n, εn

〉 − Λµ〈Φ(xni ), v∗n, εn
〉
]
.

Using Assumption 2 (2), Theorem 2.2 (4), and Lemma 5.1 one easily concludes that
H(µ∗

n |µ⊗n )
n and

H(µ∗
n, εn |µ⊗n )
n

converge to the same limit �, as n tends to +∞1:

� =
∫

〈Φ(x), v∗〉Λ′
µ〈Φ(x), v∗〉dR(x) −

∫

Λµ〈Φ(x), v∗〉dR(x).

In particular,
B2
n −−−−−→

n→+∞ 0.

Finally, thanks to Lemmas 5.2 and 5.3, one can easily see that B1
n is majorized by a quantity converging to 0. �

Appendix A. Proof of Theorem 2.2

This proof of Theorem 2.2 is contained in several parts of the paper by Gamboa and Gassiat [9, 13–15]. For
the sake of completeness and reader’s convenience, we give below a complete proof, slightly improving their
results for points (4) and (5).

We need the following results to prove Theorem 2.2:

Proposition A.1. C ⊂ R
k is convex and compact, A is a k × n matrix and ν a probability measure on R

n.
Suppose domZµ is open and let Sν denote the support of ν.

If
A−1(C) ∩ ◦

coSν 
= ∅,

1 Remark: � = Iµ (R∗ |R ).
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(
◦
coSν denoting the interior of the convex hull of Sν), then ν has an I-projection ν∗ on

Π(C) = {α ∈ P(Rn) : AEα[X ] ∈ C}.

Moreover,
dν∗

dν
=

exp 〈Atu∗, . 〉
Zν(Atu∗)

,

where u∗ minimises the function H defined on R
k by

H(u) = logZν(Atu) − inf
y∈C

〈u, y〉.

This proposition is proved in [14].
The following lemma gives the convergence of solutions of a sequence of minimisation problems (see Chap. 7

of [23] for more general results).

Lemma A.1. Let (Hn)n be a sequence of convex functions on R
k with values in R ∪ {+∞}, and H a convex

function on R
k with values in R ∪ {+∞}.

Suppose that

• for all n, ∅ 
=
◦

domH ⊂ domHn;
• for all n sufficiently large, the set ArgminHn of all minimizers of Hn is nonempty;

• H has only one minimizer v∗ belonging to
◦

domH;

• (Hn)n converges pointly to H on
◦

domH,
then for all ε > 0, there is N ∈ N such that for all n ≥ N ,

ArgminHn ⊂ B(v∗, ε).

Proof. As ArgminH = {v∗}, the convex function H has bounded sublevel sets (see e.g. Prop. 3.2.4 p. 107 of
[17]). Thus, Lemma A.1 follows from Theorems 7.33, 7.17 and point (c) of exercise 7.32 of [23]. For reader
convenience, we give bellow a simple proof of Lemma A.1 relying only on basic convex analysis.

Let us assume that there is an r > 0 such that B(v∗, r) ⊂
◦

domH and a sequence v∗n ∈ ArgminHn satisfying
‖v∗n − v∗‖ > r for all n ∈ N.

Let vn ∈ B
(
v∗, r3

)
be such that

Hn(vn) = min
{
Hn(v) : v ∈ B

(
v∗,

r

3

)}
·

The sequence (vn)n is bounded; let v be an accumulation point of vn and φ such that lim
n→+∞ vφ(n) = v.

As (Hn)n is a sequence of convex functions converging pointwise to H on
◦

domH, it converges uniformly on

every compact subset of
◦

domH (see [17], Th. 3.1.4 p. 105 or Th. 7.17 of [23]). In particular,
∣
∣Hφ(n)(vφ(n)) −H(vφ(n))

∣
∣ ≤ sup

v∈B(v∗, r
3 )

∣
∣Hφ(n)(v) −H(v)

∣
∣ −−−−−→
n→+∞ 0.

Moreover, H being continuous, H(vφ(n)) −−−−−→
n→+∞ H(v), so Hφ(n)(vφ(n)) −−−−−→

n→+∞ H(v). Now, for all n, one has

Hφ(n)(vφ(n)) ≤ Hφ(n)(v∗), thus letting n → +∞, one gets: H(v) ≤ H(v∗). As v∗ is the only one minimizer
of H , one has v = v∗. Thus, v∗ is the only one accumulation point of the bounded sequence (vn)n. From this
follows that (vn)n converges to v∗.
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For all n ∈ N, let hn be defined by

hn : [0, 1] → R : t �→ Hn(v∗n + t(vn − v∗n)).

The function hn is convex and attains its minimal value at 0. Consequently, hn is nondecreasing. Let tn ∈ [0, 1]
be such that 2r

3 ≤ |v∗n + tn(vn − v∗n) − v∗| ≤ r and define zn = v∗n + tn(vn − v∗n). For all n, one has

Hn(zn) ≤ Hn(vn) and
2r
3

≤ |zn − v∗| ≤ r.

Thanks to compactness, one can assume that (zn)n converges to some z satisfying 2r
3 ≤ |z − v∗| ≤ r.

As (Hn) converges uniformly to H on B(v∗, r), one easily concludes that lim
n→+∞Hn(zn) = H(z), and letting

n→ +∞ in the last inequality, one gets H(z) ≤ H(v∗), and so z = v∗ - absurd. �

Proof of Theorem 2.2.
Proof of (1) and (2). For all ν ∈ P(Rn),

Eν

[∫

X
Φ dLn

]

= Eν

[
1
n

n∑

i=1

ziϕ1(xni ), . . . ,
1
n

n∑

i=1

ziϕk(xni )

]

=
1
n






ϕ1(xn1 ) . . . ϕ1(xnn)
... . . .

...
ϕk(xn1 ) . . . ϕk(xnn)




Eν [X ]

= AnEν [X ],

so
Πn(Cε) = {ν ∈ P(Rn) : AnEν [X ] ∈ Cε}.

Let Sµ⊗n denote the support of µ⊗n and let us admit that

∃n0, ∀n ≥ n0, A−1
n (C) ∩ ◦

coSµ⊗n 
= ∅. (A.1)

We will prove (A.1) later; note that for all ε ≥ 0, we have also

∀n ≥ n0, A−1
n (Cε) ∩ ◦

coSµ⊗n 
= ∅. (A.2)

As domZµ⊗n =] − α, β[n is open, one can apply Proposition A.1:

• µ⊗n has an I-projection µ∗
n, ε on Πn(Cε), which proves (1).

• µ∗
n, ε satisfies:

dµ∗
n, ε

dµ⊗n =
exp 〈Atnu∗n, ε, . 〉
Zµ⊗n(Atnu∗n, ε)

,

where u∗n, ε ∈ R
k is a minimizer of:

Gn, ε(u) = Λµ⊗n(Atnu) − inf
y∈Cε

〈u, c〉.

Now for all x ∈] − α, β[n

Λµ⊗n(x) = Λµ(x1) + · · · + Λµ(xn)
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and for all u ∈ R
k,

Atnu =






1
n 〈Φ(xn1 ), u〉

...
1
n 〈Φ(xnn), u〉




 .

Therefore,

Gn, ε(u) = n

[
1
n

n∑

i=1

Λµ
〈
Φ(xni ),

u

n

〉
− inf
y∈Cε

〈u

n
, y
〉
]

= nHn, ε

(u

n

)
,

so u∗n, ε minimises Gn, ε if and only if
u∗n, ε
n

minimises the functions Hn, ε defined by (2.1).

Letting v∗n, ε =
u∗n, ε
n

and w∗
n, ε =






〈Φ(xn1 ), v∗n, ε〉
...

〈Φ(xnn), v∗n, ε〉




, one obtains point (2).

Proof of (3).

R∗
n, ε = Eµ∗

n, ε
[Ln] =

1
n

n∑

i=1

∫

zi dµ∗
n, ε(z)δxn

i
,

but for all w ∈] − α, β[,
∫

xdµw(x) = Λ′
µ(w),

thus for all i: ∫

zi dµ∗
n, ε(z) =

∫

z dµ(w∗
n, ε)i

(z) = Λ′
µ((w

∗
n, ε)i) = Λ′

µ〈v∗n, ε,Φ(xni )〉

and

R∗
n, ε =

1
n

n∑

i=1

Λ′
µ〈v∗n, ε,Φ(xni )〉δxn

i
.

Proof of (A.1). Let Jµ denote the closed convex hull of the support of µ. It is easily seen that coSµ⊗n = (Jµ)n.

Let us show that for n sufficiently large, there is zn ∈ (
◦
Jµ)n such that Anzn ∈ C.

Let Cµ(X ) denote the set of continuous functions on X with values in
◦
Jµ. For g ∈ Cµ(X ), we define

zn(g) = (g(xn1 ), . . . , g(xnn)) ∈ (
◦
Jµ)n.

Notice that, for g ∈ Cµ(X )

Anz
n(g) =

[
1
n

n∑

i=1

g(xni )ϕ1(xni ), . . . ,
1
n

n∑

i=1

g(xni )ϕk(x
n
i )

]

.

Thus, according to Assumption 2 (2),

Anz
n(g) −−−−−→

n→+∞

∫

X
g(x)Φ(x) dR(x).
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Now Assumption 2 (3) tells us there is g0 ∈ Cµ(X ) such that

c0 :=
∫

X
g0(x)Φ(x) dR(x) ∈ C.

Assume that there is an increasing sequence of integers (np)p such that for all p and g ∈ Cµ(X )

Anpznp(g) 
= c0.

For all p, {Anpznp(g) : g ∈ Cµ(X )} ⊂ R
k is convex and does not contain c0. The separation theorem yields

unp ∈ R
k such that ‖unp‖ = 1 and

〈unp , c0〉 ≥ sup
g∈Cµ(X )

〈unp , Anpznp(g)〉.

Thanks to compactness, one can suppose that unp converges to u. For all g ∈ Cµ(X ), 〈unp , c0〉 ≥ 〈unp , Anpznp(g)〉,
thus letting n→ +∞ in this inequality, one gets

〈u, c0〉 ≥
〈

u,

∫

X
g(x)Φ(x) dR(x)

〉

.

Therefore, for all g ∈ Cµ(X ), 〈

u,

∫

X
(g − g0)(x)Φ(x) dR(x)

〉

≤ 0.

Let B be the unit ball of C(X ) (the set of continuous real valued functions on X ). For sufficiently small r > 0,
g0 + rB ⊂ Cµ(X ). Hence for all g ∈ rB,

〈

u,

∫

X
g(x)Φ(x) dR(x)

〉

≤ 0,

and thanks to symmetry and homogeneity,
∫

X
g(x)〈u,Φ(x)〉dR(x) = 0

holds for all g ∈ C(X ).
Consequently,

R(〈u,Φ(x)〉 = 0) = 1
and according to Assumption 1 (2),

〈u,Φ(x)〉 = 0 for all x ∈ X . (A.3)

As u 
= 0, (A.3) contradicts Assumption 1 (3). Therefore, for all n sufficiently large, there is zn ∈ (
◦
Jµ)n such

that Anzn ∈ C.

Proof of (4). The map

H( . ) =
∫

X
Λµ〈 . ,Φ(x)〉dR(x) − inf

y∈C
〈 . , y〉

satisfies ◦
domH =

{
v ∈ R

k : ∀x ∈ X , 〈v,Φ(x)〉 ∈] − α, β[
}

and clearly
◦

domH ⊂ domHn, εn ,
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where Hn, εn is defined by

Hn, εn(v) =
1
n

n∑

i=1

Λµ〈v,Φ(xni )〉 − inf
y∈Cεn

〈v, y〉.

Using the convexity of Λµ, one can easily verify that the functions H and Hn, εn are convex. For all v ∈
◦

domH ,
the function Λµ〈v,Φ( . )〉 is bounded, so according to Assumption 2 (2), (Hn, εn)n converges pointwise to H

on
◦

domH . Moreover, according to Assumption 2 (4), H has only one minimizer v∗ ∈
◦

domH. Applying
Lemma A.1, one concludes that v∗n, εn

converges to v∗.

Proof of (5).
For all g ∈ C(X ), one has

∫

X
g dR∗

n, εn
=

1
n

n∑

i=1

Λ′
µ〈v∗n, εn

,Φ(xni )〉g(xni ).

Lemma 5.1 implies there are a compact interval K ⊂] − α, β[ and m such that, for all n ≥ m, one has

∀n ≥ m, 〈v∗n, εn
,Φ(xni )〉 ∈ K and ∀x ∈ X , 〈v∗,Φ(x)〉 ∈ K.

If M = sup
x∈K

Λ′′
µ(x), it holds:

∣
∣
∣
∣
∣

∫

X
g dR∗

n, εn
− 1
n

n∑

i=1

Λ′
µ〈v∗,Φ(xni )〉g(xni )

∣
∣
∣
∣
∣
≤M sup |g| sup ‖Φ‖ ‖v∗ − v∗n, εn

‖ −−−−−→
n→+∞ 0.

Finally,
1
n

n∑

i=1

Λ′
µ〈v∗,Φ(xni )〉g(xni ) =

∫

X
Λ′
µ〈v∗,Φ( . )〉g( . ) d

(
1
n

n∑

i=1

δxn
i

)

and as Λ′
µ〈v∗,Φ( . )〉g( . ) ∈ C(X ), it follows from Assumption 2 (2) that

∫

X
g dR∗

n, εn
−−−−−→
n→+∞

∫

X
Λ′
µ〈v∗,Φ(x)〉g(x) dR(x),

for all g ∈ C(X ). �
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Nanterre (2004).
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