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BOOTSTRAPPING THE SHORTH FOR REGRESSION

Cécile Durot1 and Karelle Thiébot1, 2

Abstract. The paper is concerned with the asymptotic distributions of estimators for the length and
the centre of the so-called η-shorth interval in a nonparametric regression framework. It is shown that
the estimator of the length converges at the n1/2-rate to a Gaussian law and that the estimator of the
centre converges at the n1/3-rate to the location of the maximum of a Brownian motion with parabolic
drift. Bootstrap procedures are proposed and shown to be consistent. They are compared with the
plug-in method through simulations.
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1. Introduction

This paper is motivated by a practical problem that we explore in the companion paper [3] and that can
briefly be described as follows. Each day, the concentration of a given pollutant in the ambient air is measured
at a given place at 96 equi-spaced times by Airpl, an organization that maintains a network of air pollution
monitoring stations in western France. Visual examinations are daily performed by experts in order to validate
the data. One of them consists in checking that the peak of pollution (that is the period of the day when
pollution is maximal) occurs at some time which is consistent with respect to a given criterion. Our task is to
formalize this visual examination. To do that, we denote by yi the i-th concentration measure, we suppose that
y1, . . . , y96 obey a regression model and we model the peak of pollution by the so-called η-shorth interval for
regression with η = 0.25. Thus our aim is to build statistical tests about the shorth interval for regression. The
present paper is concerned with theoretical aspects (we study the distribution of an estimator for the shorth
interval in a nonparametric regression model) while the companion paper is concerned with an application of
the method to pollution studies.

The usual definition of the shorth interval is based on the empirical distribution function of independent and
identically distributed data X1, . . . , Xn: if η denotes a fixed number in (0, 1), then the η-shorth interval of the
sample is defined as the shortest interval that contains a fraction η of the sample. The asymptotic properties of
the location and length of the η-shorth interval were studied by several authors. Andrews et al. [1] first gave a
heuristic analysis of the η-shorth estimate of location. Shorack and Wellner [14] then obtained the asymptotic
distribution of the estimate. Kim and Pollard [11] finally illustrated the problem where cube root asymptotics
arise, through an application of their main theorem on the η-shorth estimator. They established that the centre
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of the shorth interval converges in law at the rate n1/3 to τ , the location of the maximum of a standard two-sided
Brownian motion W with parabolic drift:

τ = argmax
t∈R

{W (t) − t2}. (1.1)

Grübel [6] proved that the rate of convergence of the length of the shorth is n1/2 and that its limiting distribution
is normal. Janaszewska and Nagaev [10] then studied the joint distribution of the shorth height and length.

This paper is concerned with the asymptotic behaviour of empirical estimators for the length and the centre
of the η-shorth interval in a nonparametric regression framework, that we define as follows. Let y1, . . . , yn be n
observations at time t1, . . . , tn according to the model

yi = f(ti) + εi, 1 � i � n. (1.2)
Here, ti = i/n and the εi’s are independent and identically distributed random variables with zero mean and
unknown variance σ2. The unknown regression function f is assumed to be positive and differentiable on [0, 1].
Furthermore, we assume that there exists a unique shortest interval [µ0 − r0, µ0 + r0] ⊂ (0, 1) that satisfies∫ µ0+r0

µ0−r0

f(s)ds � η

∫ 1

0

f(s)ds (1.3)

for some fixed number η ∈ (0, 1) and we refer to this interval as the η-shorth interval. Thus the η-shorth
interval can be characterized by either the pair {µ0, r0} or the pair {µ0 − r0, µ0 + r0}. In this paper, we provide
consistent estimators µn and rn for µ0 and r0 and we describe their asymptotic distributions: it is proved that
n1/2(rn − r0)/Cr converges to a standard Gaussian law and that n1/3(µn − µ0)/Cµ converges to τ for some
explicit quantities Cr and Cµ that only depend on f and σ. These results are similar to those obtained earlier
in the i.i.d. case, with different normalizing constants. One can conduct inference about the shorth interval (if
n is large enough) by using these convergence results and plug-in estimators for Cr and Cµ. However, Cr and
Cµ depend on the unknown regression function and its first derivative f ′ at the unknown points µ0 − r0 and
µ0 + r0. Since nonparametric estimators of a derivative can converge only slowly to the true derivative (see
Stone [15]), we thus suspected that the plug-in method was inappropriate when n is moderate. In particular, we
suspected that it was inappropriate for the application we had in view, where we recall that n = 96. We thus
propose bootstrap procedures as an alternative to the plug-in method. The bootstrap procedures are shown
to be consistent and are compared with the plug-in method when n = 100 and η = 0.25 through a simulation
study. It can be seen on these simulations that the bootstrap (when properly calibrated) outperforms the plug-in
method when one wishes to conduct inference about the parameter µ0: the bootstrap confidence intervals are
shorter than the plug-in ones and their coverage probability is close to the target confidence level 1−α. On the
other hand, none of the proposed methods is appropriate to conduct inference about r0 when n is moderate and
bootstrap is not better than plug-in in that case. Our conclusion is that for moderate n, one has to consider
the pair {µ0 − r0, µ0 + r0} but not the pair {µ0, r0} in order to conduct inference about the shorth interval.
Indeed, it is easy to see that all of the proposed methods apply for estimating µ0 − r0 and µ0 + r0 and some
simulations showed that the results obtained for these parameters are similar to those obtained for µ0 (so we
did not report these results and we only refer to Thiébot [16] for some simulations about these parameters).

The paper is organized as follows. The estimators µn and rn are defined in Section 2. Their asymptotic
distributions are given and the bootstrap is shown to be consistent under appropriate assumptions E . In
Section 3, we propose several ways to perform the bootstrap so that E hold. A simulation study is reported in
Section 4 and Section 5 is devoted to the proofs.

2. Statement of the main results

Consider the regression model (1.2) where ti = i/n and the εi’s are independent and identically distributed
random variables with mean zero. Assume that f is positive and that there exists a unique shortest interval



218 C. DUROT AND K. THIÉBOT

[µ0 − r0, µ0 + r0] ⊂ (0, 1) that satisfies (1.3) for some fixed η ∈ (0, 1). Our aim in this section is to provide
estimators for µ0 and r0 and to study their asymptotic properties as n → ∞. Then we propose a bootstrap
method and we give conditions under which it is consistent.

2.1. The estimators

We need to introduce some notation in order to define our estimators. For every H : [0, 1] → R let

rH = inf
{

r � 0 : sup
µ
{H(µ + r) − H(µ − r)} � ηH(1)

}
. (2.1)

Thus rH is well defined if the above set is non-empty. If rH is well defined and if moreover the function
µ �→ H(µ + rH) − H(µ − rH) achieves its supremum, then let

µH = argmax
µ

{H(µ + rH) − H(µ − rH)}

where argmax stands for the infimum of the locations of maximum. It is worth noticing that rH is well defined
whenever H(0) = 0 since in that case, the set in (2.1) is non-empty: it contains 1/2 if H(1) � 0 and 0 otherwise.
If furthermore, H is either a continuous or a cadlag step function, then µH is also well defined and it maximizes
µ �→ H(µ + rH) − H(µ − rH).

It is easy to see that (r0, µ0) = (rF , µF ), where F is the cumulative function defined by

F (t) =
∫ t

0

f(s)ds, t ∈ [0, 1].

Moreover, it is well known that the partial sum process

Fn(t) =
1
n

∑
i�nt

yi, t ∈ [0, 1]

is a good estimator for F . We thus consider rFn and µFn (which are well defined) as estimators for r0 and µ0

and for notational convenience, we denote them by rn and µn respectively.

2.2. Asymptotic distributions

The asymptotic distributions of the estimators are given in the following theorem, where D−→ denotes con-
vergence in distribution as n → ∞.

Theorem 2.1. Assume we are given the regression model (1.2) where ti = i/n, f : [0, 1] → R has a Hölderian
first derivative and where ε1, . . . , εn are centered i.i.d. random variables with E|ε1|p < ∞ for some p > 3.
Assume inft f(t) > 0, σ2 = E(ε2

i ) > 0 and there exists a unique shortest interval [µ0 − r0, µ0 + r0] ⊂ (0, 1) that
satisfies (1.3) for some fixed η ∈ (0, 1). If f ′(µ0 − r0) > f ′(µ0 + r0) then

n1/3(µn − µ0)
D−→ 2σ2/3

(f ′(µ0 − r0) − f ′(µ0 + r0))2/3
τ,

where τ is defined by (1.1). Moreover,

n1/2(rn − r0)
D−→ σ

2f(µ0 + r0)
N (

0, η2 + 2r0(1 − 2η)
)
.
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The distribution of τ has been precisely described by Groeneboom [5] and tabulated by Narayanan and
Sager [12]. The limiting distributions of µn and rn are thus known up to a finite number of parameters so
one can plug-in estimators to get a pivotal asymptotic law. To be more precise, let us denote by σ̂2

n a consistent
estimator for σ2 (see e.g. Hall et al. [9]) and by f̂n,h a differentiable estimator for f with smoothing parameter
h. If f̂n,h is properly chosen then its first derivative f̂ ′

n,h is a reasonable estimator for f ′, see Yatracos [17]. So
let

Ĉµ,hµ =
2σ̂

2/3
n

(f̂ ′
n,hµ

(µn − rn) − f̂ ′
n,hµ

(µn + rn))2/3
and Ĉr,hr =

σ̂n

√
η2 + 2rn(1 − 2η)

2f̂n,hr(µn + rn)
· (2.2)

Then for properly chosen hµ and hr,

n1/3(µn − µ0)/Ĉµ,hµ

D−→ τ and n1/2(rn − r0)/Ĉr,hr

D−→N (0, 1).

One can then use these pivotal statistics to build statistical tests or confidence intervals with prescribed asymp-
totic level. For instance, fix α ∈ (0, 1) and let q be the quantile of order (1−α/2) of τ . The distribution of τ is
symmetrical about zero so [

µn − n−1/3q Ĉµ,hµ , µn + n−1/3q Ĉµ,hµ

]
(2.3)

is a confidence interval for µ0 with asymptotic level α.

2.3. Consistency of the bootstrap

An alternative to the plug-in method described above lies in bootstrap. As is customary, we denote by P
∗

the conditional probability given (y1, . . . , yn) and by E
∗ the associated expectation. Let ε∗1, . . . , ε

∗
n satisfy the

following conditions denoted by E (examples of construction will be given below).

E : Conditionally on (y1, . . . , yn), ε∗1, . . . , ε
∗
n are i.i.d. random variables with mean zero and

finite variance σ∗2
n . Moreover, σ∗2

n stochastically converges to σ2 as n → ∞ and there exists
some constant C > 0 that does not depend on n such that

lim
n→∞ P (E∗|ε∗1|p < C) = 1. (2.4)

In order to build our bootstrap estimators we need to smooth the function Fn. Thus we consider the smoothed
version of Fn given by

Gn(t) =
1
hn

∫
R

Fn(x)K
(

t − x

hn

)
dx, t ∈ [0, 1],

where K is a kernel function, hn > 0 and where we set Fn(t) = Fn(0) = 0 for every t � 0 and Fn(t) = Fn(1)
for every t � 1. Denoting by gn the first derivative of Gn, we then define the bootstrap observations as

y∗
i = gn(ti) + ε∗i , i = 1, . . . , n.

Finally, we consider the bootstrap version of Fn given by

G∗
n(t) =

1
n

∑
i�nt

y∗
i , t ∈ [0, 1]

and we define the bootstrap estimators as rG∗
n

and µG∗
n

(note that they are indeed well defined). It is proved in
Theorem 2.2 below that the conditional asymptotic distributions of the bootstrap estimators (given y1, . . . , yn)
are identical to the asymptotic distributions of the first estimators µn and rn, provided K and hn are well
chosen. To be more specific, we assume in the sequel the following assumptions K.
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K: * K is a symmetric probability density that vanishes outside [−1, 1];
* K is twice differentiable on (−1, 1) with a bounded second derivative;
*
∫

K ′′ = 0,
∫

R
x2K ′′(x)dx = 2 and

∫
R

xK ′(x)dx = −1;
* hn > 0, h−1

n = o(nα) for some α < 1/3 and hn = o(n−1/6/ log(n)).

An example of kernel that satisfies the above conditions is given by the quartic function

K(x) =
15
16
(
1 − x2

)2
1I[−1,1](x). (2.5)

Hereafter, D∗−→ denotes conditional convergence in distribution given (y1, . . . , yn).

Theorem 2.2. Let ε∗1, . . . , ε
∗
n satisfy E and let K and hn satisfy K. Under the assumptions of Theorem 2.1,

rGn and µGn are well defined with probability that tends to one. Moreover,

n1/3(µG∗
n
− µGn) D∗−→ 2σ2/3

(f ′(µ0 − r0) − f ′(µ0 + r0))2/3
τ in probability

and

n1/2(rG∗
n
− rGn) D∗−→ σ

2f(µ0 + r0)
N (0, η2 + 2r0(1 − 2η)) in probability.

The limiting distributions are continuous so one can build statistical tests or confidence intervals with prescribed
asymptotic level using bootstrap. For instance, let q∗1,n,B and q∗2,n,B be the quantiles of order (α/2) and (1−α/2)
of B independent copies of µG∗

n
− µGn conditionally on (y1, . . . , yn). Under the assumptions of Theorem 2.2 we

have

lim
n→∞ lim

B→∞
P(q∗1,n,B � µn − µ0 � q∗2,n,B) = 1 − α.

Thus

[µn − q∗2,n,B, µn − q∗1,n,B] (2.6)

is a confidence interval for µ0 with asymptotic level α.

To conclude this section, let us notice that the bootstrap procedure we propose here involves a smoothing
parameter hn although the first estimators µn and rn are entirely data-driven. It would be best if the bootstrap
procedure were also data-driven so one may wonder whether it is necessary or not to introduce this smoothing
parameter. The answer is positive. Indeed if no smoothing parameter were involved, we shall consider the
bootstrap partial sum process F ∗

n(t) =
∑

i�nt(yi + ε∗i )/n, t ∈ [0, 1], where ε∗1, . . . , ε
∗
n satisfy E . It is proved in

Section 5 that under the assumptions of Theorem 2.1,

n1/2(rF∗
n
− rn) D∗−→ σ

2f(µ0 + r0)
N (0, η2 + 2r0(1 − 2η)) in probability (2.7)

so this data-driven bootstrap procedure is consistent for estimating r0. However, it is proved in Section 5 that

n1/3(µF∗
n
− µn) D∗

−→ 2σ2/3

(f ′(µ0 − r0) − f ′(µ0 + r0))2/3
Z in probability, (2.8)

where Z does not have the same distribution as τ. Thus the data-driven bootstrap is not consistent for estimating
µ0 and one indeed has to smooth for estimating this parameter (and also, for estimating the boundaries µ0 + r0

or µ0 − r0 of the shorth interval).
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3. How to bootstrap

In this section, we propose several possible constructions of the bootstrap residuals so that the assumptions E
hold and we discuss studentized bootstrap.

3.1. Construction of the bootstrap residuals

Parametric bootstrap. The simplest construction corresponds to the parametric bootstrap and is relevant in
situations where the residuals ε1, . . . , εn are known to be (close to) Gaussian. It consists in generating (con-
ditionally on y1, . . . , yn) ε∗1, . . . , ε∗n as i.i.d. Gaussian variables with mean zero and variance σ̂2

n, where σ̂2
n is a

consistent estimator of σ2 (see e.g. Hall et al. [9] for examples of such estimators).

Naive bootstrap. In the case when nothing is known about the distribution of the residuals, one has to perform
a nonparametric bootstrap. To do so, let us set

ε̃i = ε̂i − 1
n

n∑
j=1

ε̂j , i = 1, . . . , n

where ε̂j = yj − gn(tj) and where we recall that gn = G′
n is an estimator for f . The naive bootstrap consists in

generating (conditionally on y1, . . . , yn) ε∗1, . . . , ε
∗
n as a random sample of size n from the distribution that puts

mass 1/n at each point ε̃1, . . . , ε̃n.

Smoothed bootstrap. With the naive bootstrap, the bootstrap residuals are generated according to a discrete
distribution Pn, the empirical distribution of the centered residuals ε̃1, . . . , ε̃n defined above. It is known that
in some situations, generating the bootstrap residuals according to a smoothed version of Pn instead of Pn

itself may improve rates of convergence, see e.g. Hall et al. [8], De Angelis et al. [2], Falk and Reiss [4]. So we
also consider here a smoothed bootstrap that we define now. Let φ be a probability density and let h′

n > 0.
The smoothed bootstrap consists in generating (conditionally on y1, . . . , yn) ε∗1, . . . , ε

∗
n as a random sample of

size n from the distribution φh′
n
∗ Pn, where φh(t) = φ(t/h)/h. As noticed by Falk and Reiss [4], this remains

to generate independent random variables X1, . . . , Xn, V1, . . . , Vn where the Xi’s have common distribution Pn

and the Vi’s have common density function φ and to take ε∗i = Xi + h′
nVi.

It is stated in the following proposition that the three bootstrap constructions proposed here satisfy E ,
so it follows from Theorem 2.2 that the three methods are consistent. Note that we chose to construct the
nonparametric bootstrap residuals using the estimator gn for simplicity but that other choices of estimators are
allowed.

Proposition 3.1. Assume the assumptions of Theorem 2.1 and let K and hn satisfy K. Assume that ε∗1, . . . , ε
∗
n

are generated by either the parametric bootstrap or the naive bootstrap or the smoothed bootstrap with some
bandwidth h′

n that tends to zero as n → ∞ and some φ that satisfies∫
R

tφ(t)dt = 0,

∫
R

t2φ(t)dt = 1 and
∫

R

|t|pφ(t)dt < ∞.

Then E holds.

3.2. Studentized bootstrap

The studentized bootstrap is known to outperform the ordinary bootstrap in regular models (if one observes
i.i.d. random variables X1, . . . , Xn and one estimates a smooth function of E(Xi), see Hall [7]) so it can be
interesting to use studentized bootstrap instead of ordinary bootstrap in our framework. In the case when
the parameter of interest is µ0, it consists in approximating the distribution of (µn − µ0)/Ĉµ,hµ by that of
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(µG∗
n
− µGn)/C∗

µ,hµ
, where Ĉµ,hµ is defined as in (2.2) and where C∗

µ,hµ
is computed in the same manner as

Ĉµ,hµ but with the observations y1, . . . , yn replaced by the bootstrap observations y∗
1 , . . . , y∗

n. For instance, the
confidence interval for µ0 obtained with the studentized bootstrap is

[µn − p∗2,n,B, µn − p∗1,n,B], (3.9)

where p∗1,n,B and p∗2,n,B are the quantiles of order (α/2) and (1 − α/2) of B independent copies of

Ĉµ,hµ(µG∗
n
− µGn)/C∗

µ,hµ
(3.10)

conditionally on (y1, . . . , yn). It has asymptotic level α if Ĉµ,hµ is P-consistent and C∗
µ,hµ

is P
∗-consistent. One

can define the studentized bootstrap in the same way in the case when the parameter of interest is r0.

4. Simulations

We compared the performances of the proposed methods through some simulations. The methods can be
compared with each other only if they are properly calibrated (if the involved smoothing parameter is not
properly calibrated then the method may behave poorly). Thus each smoothing parameter is calibrated here
so as to be optimal in some sense, see Section 4.2.

4.1. The simulation experiment

The regression functions we considered are the following:

f1(t) = exp(−8(t − 0.5)2)
f2(t) = exp(−8(t − 0.3)2)
f3(t) = 0.05 + exp(−16(t− 0.5)2)
f4(t) = exp(−40(t− 0.3)2) + 1.5 exp(−10(t − 0.7)2)
f5(t) = exp(−40(t− 0.2)2) + 1.5 exp(−10(t − 0.7)2).

For each regression function, we computed the parameters µ0 and r0 using a discretization of [0, 1] into 2000
equi-spaced points. We fixed n = 100, σ = 0.1 F (1) so that the signal/noise ratio remains stable and we
generated ε1, . . . , εn as independent centered Gaussian variables with variance σ2. Throughout the simulations,
K is the quartic function defined by (2.5), σ̂2

n is the optimal 5th-order sequence estimator defined by Hall
et al. [9] and the estimator f̂n,h in (2.2) is equal to gn with bandwidth h. Moreover for the smoothed bootstrap,
we chose φ to be the density function of a standard Gaussian law. For a given regression function and given
smoothing parameters hµ, hn and h′

n, we built a confidence interval for µ0 with asymptotic level α ∈ {0.05, 0.1}
using each of the proposed methods (thus we built the confidence intervals given in (2.3), (2.6) and (3.9) for the
three bootstrap constructions). The bootstrap resampling was performed B = 250 times for each sample. Then
we estimated the probability that µ0 lies in the confidence interval (and also the probability that µ0 is below,
resp. above, the confidence interval) using 3000 replications. We also used these 3000 replications to estimate
the mean length of the confidence interval. We did the same work for the parameter r0.

4.2. Calibration of the smoothing parameters

Since the regression function f is known (which of course is not the case in practice), we can calibrate the
smoothing parameters so as to minimize a given risk. We first calibrated the smoothing parameters hµ and hr

involved in the plug-in and in the studentized bootstrap procedures: we chose hµ and hr that approximately
minimize

E

(
Ĉµ,h − Cµ

)2

and E

(
Ĉr,h − Cr

)2
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Table 1. Smoothing parameters hµ and hr.

f1 f2 f3 f4 f5

hµ 0.16 0.14 0.07 0.09 0.18
hr 0.03 0.03 0.02 0.04 0.04

respectively over h, where Cµ and Cr are the constants that appear in the asymptotic distributions of µn and
rn. Precisely, we set H = {0.01, 0.02, . . . , 0.3}, we estimated the above expectations using 5000 simulations for
every h ∈ H and then chose hµ and hr that minimize these estimated expectations. The values for hµ and hr

we obtained are given in Table 1.
The calibration of the bootstrap smoothing parameter hn for a given regression function was performed as

follows. For notational convenience we set µG∗
n

= µF∗
n

and µGn = µn when hn = 0 so in that case, µG∗
n

and µGn

are the estimator and parameter obtained with the data-driven bootstrap procedure described at the end of
Section 2.3. We set D = 50 and αi = i/D for every i = 1, . . . , D. We fixed S = 2000 and for every s = 1, . . . , S
we simulated observations, we computed the estimator µn(s) based on these observations and we performed
the bootstrap step with a given bootstrap smoothing parameter h. For every h ∈ H ∪ {0}, let qi(s, h) be the
quantile of order αi of the 250 replications of µG∗

n
− µGn thus obtained. In order to calibrate the ordinary

parametric bootstrap for estimating µ0, we chose hn that minimizes

D∑
i=1

(
1
S

S∑
s=1

1Iµn(s)−µ0�qi(s,h) − αi

)2

over H ∪ {0}. The studentized parametric bootstrap was calibrated in the same way with qi(s, h) defined as
the quantile of order αi of the 250 replications of the variable given in (3.10). The values of hn we obtained
are given in Table 2. We proceeded in the same way for calibrating hn for the ordinary and studentized naive
bootstraps except that we used S = 3000 simulations in that case. The values of hn we obtained are given
in Table 3. Finally for the smoothed bootstrap, we fixed hn as in Table 3, S = 2000 and we chose h′

n that
minimizes the above criterion over

h ∈ {0.001, 0.002, . . . , 0.01} ∪ {0.01, 0.02, . . . , 0.1}.

The values of h′
n we obtained are given in Table 4. We did the same work for the parameter r0.

4.3. Results for µ0

In Tables 2–4, we give in column ∈ the estimated probability that µ0 belongs to the confidence interval
obtained with a given method and in column < (resp. >) the estimated probability that µ0 is below (resp.
above) this confidence interval. The values we used for hn and h′

n are also given in these tables. Note first that
the value hn = 0 has never been chosen so the data-driven bootstrap is not recommended (this is consistent
with our remark at the end of Sect. 2.3). Now compare the coverage probabilities given in columns ∈. All of
the proposed methods provide satisfactory results since the coverage probabilities are rather close to the target
probability 1−α. However, the plug-in method is the less efficient one: the coverage probabilities obtained with
this method are always larger than 1−α so the confidence intervals are too long. The coverage probabilities are
generally less close to 1−α with plug-in than with bootstrap. The different bootstraps perform quite similarly
to each other but the smoothed bootstrap tends to be better than the others. In most cases, the studentized
bootstrap is slightly better than the ordinary one. However surprisingly, the studentized bootstrap does not
perform well when the regression function is f4. It is also interesting to compare the probabilities given in
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Table 2. Plug-in and parametric bootstrap: estimated probabilities that µ0 belongs to the con-
fidence interval with asymptotic level 0.05 (roman) or 0.1 (italic), computed with the smoothing
parameter hn.

plug-in ordinary bootstrap studentized bootstrap
< ∈ > < ∈ > hn < ∈ > hn

f1 0.006 0.980 0.014 0.022 0.962 0.015 0.09 0.025 0.955 0.020 0.15
0.017 0.943 0.040 0.043 0.919 0.038 0.046 0.911 0.042

f2 0.011 0.969 0.020 0.028 0.953 0.019 0.08 0.024 0.951 0.026 0.10
0.021 0.923 0.056 0.048 0.913 0.040 0.045 0.900 0.055

f3 0.007 0.983 0.010 0.013 0.976 0.011 0.07 0.028 0.963 0.009 0.08
0.022 0.948 0.030 0.031 0.943 0.026 0.044 0.943 0.013

f4 0.007 0.974 0.019 0.025 0.959 0.016 0.07 0.019 0.907 0.074 0.08
0.016 0.936 0.048 0.045 0.924 0.031 0.032 0.873 0.095

f5 0.001 0.986 0.012 0.022 0.956 0.021 0.08 0.023 0.945 0.032 0.11
0.004 0.962 0.034 0.040 0.921 0.039 0.041 0.906 0.053

Table 3. Naive bootstrap: estimated probabilities that µ0 belongs to the confidence interval
with asymptotic level 0.05 (roman) or 0.1 (italic), computed with the smoothing parameter hn.

ordinary bootstrap studentized bootstrap
< ∈ > hn < ∈ > hn

f1 0.035 0.935 0.030 0.15 0.037 0.935 0.028 0.15
0.056 0.891 0.052 0.057 0.890 0.053

f2 0.018 0.963 0.019 0.13 0.022 0.955 0.023 0.14
0.038 0.925 0.037 0.043 0.906 0.051

f3 0.024 0.958 0.018 0.14 0.050 0.934 0.016 0.08
0.049 0.914 0.037 0.086 0.880 0.035

f4 0.031 0.945 0.024 0.10 0.022 0.925 0.053 0.11
0.053 0.903 0.043 0.035 0.890 0.075

f5 0.029 0.947 0.025 0.11 0.022 0.945 0.033 0.16
0.054 0.897 0.049 0.038 0.909 0.053

columns < and >: it is expected that they are close to each other and close to (1 − α/2). The plug-in method
is the worst one with respect to this criterion: µ0 is often above the plug-in confidence interval.

Finally, we give in Table 5 the estimated length of the confidence intervals. The plug-in method is the
less efficient one with respect to this criterion. For each of the three bootstrap constructions, the studentized
bootstrap is better than the ordinary one. Moreover, the naive and the smoothed bootstrap are very similar to
each other and are better than the parametric bootstrap.

4.4. Results for r0

Some of the results obtained for r0 are given in Table 6. We did not reported the other results since they
are not better than those given in Table 6. We conclude that asymptotics can not be used for the parameter r0

when n is moderate: none of the proposed methods provides satisfactory results when n = 100.
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Table 4. Smoothed bootstrap: estimated probabilities that µ0 belongs to the confidence in-
terval with asymptotic level 0.05 (roman) or 0.1 (italic), computed with the smoothing param-
eters hn and h′

n.

ordinary bootstrap studentized bootstrap
< ∈ > hn h′

n < ∈ > hn h′
n

f1 0.027 0.949 0.024 0.15 0.02 0.030 0.948 0.022 0.15 0.03
0.051 0.903 0.046 0.051 0.899 0.049

f2 0.021 0.963 0.016 0.13 0.001 0.024 0.956 0.020 0.14 0.009
0.037 0.923 0.040 0.043 0.905 0.051

f3 0.026 0.955 0.019 0.14 0.002 0.041 0.949 0.010 0.08 0.03
0.049 0.915 0.036 0.065 0.913 0.021

f4 0.031 0.945 0.024 0.10 0.006 0.021 0.927 0.052 0.11 0.002
0.054 0.904 0.042 0.036 0.889 0.075

f5 0.031 0.941 0.027 0.11 0.008 0.021 0.949 0.030 0.16 0.001
0.054 0.899 0.047 0.038 0.910 0.052

Table 5. Estimated mean length of the confidence intervals for µ0 with asymptotic level 0.05
(roman) or 0.1 (italic).

Plug-in parametric bootstrap naive bootstrap smoothed bootstrap
ordinary studentized ordinary studentized ordinary studentized

f1 0.089 0.085 0.079 0.075 0.075 0.078 0.077
0.076 0.073 0.067 0.064 0.063 0.066 0.065

f2 0.086 0.086 0.080 0.082 0.080 0.082 0.080
0.074 0.073 0.067 0.070 0.067 0.070 0.067

f3 0.054 0.060 0.061 0.052 0.045 0.052 0.051
0.046 0.052 0.049 0.044 0.037 0.044 0.041

f4 0.091 0.088 0.077 0.077 0.073 0.077 0.073
0.077 0.074 0.063 0.065 0.060 0.065 0.060

f5 0.082 0.076 0.068 0.068 0.068 0.068 0.068
0.070 0.065 0.058 0.058 0.058 0.058 0.058

5. Proofs

5.1. Some preliminary results

Lemma 5.1 below is useful to prove that Fn and G∗
n are uniformly close to a Brownian motion with smooth

deterministic drift. The approximation result concerning G∗
n is stated in Lemma 5.2. Finally, Lemma 5.3 is an

analytic tool that is useful to prove Theorems 2.1 and 2.2.

Lemma 5.1. Let ε1, . . . , εn be i.i.d. variables with mean zero and variance 1. Assume E|ε1|p < C for some
C > 0 and p � 2. If the εi’s are defined on some rich enough probability space then there exist some standard
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Table 6. Plug-in and parametric bootstrap: estimated probabilities that r0 belongs to the con-
fidence interval with asymptotic level 0.05 (roman) or 0.1 (italic), computed with the smoothing
parameter hn.

plug-in ordinary bootstrap studentized bootstrap
< ∈ > < ∈ > hn < ∈ > hn

f1 0.683 0.317 0.000 0.400 0.299 0.301 0.05 0.231 0.754 0.014 0.22
0.683 0.317 0.000 0.403 0.279 0.318 0.441 0.507 0.052

f2 0.239 0.761 0.000 0.259 0.476 0.265 0.10 0.259 0.407 0.335 0.10
0.239 0.761 0.000 0.259 0.443 0.298 0.259 0.348 0.393

f3 0.195 0.805 0.000 0.192 0.751 0.058 0.10 0.189 0.807 0.004 0.12
0.195 0.805 0.000 0.192 0.751 0.058 0.190 0.804 0.006

f4 0.176 0.821 0.003 0.183 0.769 0.048 0.14 0.188 0.782 0.030 0.12
0.176 0.821 0.003 0.190 0.673 0.137 0.192 0.670 0.138

f5 0.090 0.899 0.010 0.098 0.891 0.011 0.09 0.099 0.890 0.011 0.05
0.090 0.898 0.012 0.101 0.883 0.016 0.099 0.886 0.015

Brownian motion Wn and some positive number Cp that only depends on p and C such that for all x > 0

P

⎛⎝ sup
t∈[0,1]

∣∣∣∣∣∣ 1n
∑
i�nt

εi − 1√
n

Wn(t)

∣∣∣∣∣∣ > x

⎞⎠ � Cpn
1−px−p.

Proof. By Sakhanenko’s [13] construction there exist some standard Brownian motion Bn and some Ap > 0
that only depends on p such that

E

(
sup

1�k�n

∣∣∣∣∣
k∑

i=1

εi − Bn(k)

∣∣∣∣∣
p)

� ApnE|εi|p,

provided the εi’s are defined on some rich enough probability space. For every u � 0, let [u] denote the integer
part of u. By exponential inequality we have for every x > 0

P

(
sup

t∈[0,1]

|Bn(nt) − Bn([nt])| > nx

)
� 2n exp

(
−n2x2

2

)
.

There thus exists some Cp > 0 that does not depend on n such that for every x > 0

P

⎛⎝ sup
t∈[0,1]

∣∣∣∣∣∣
∑
i�nt

εi − Bn(nt)

∣∣∣∣∣∣ > 2nx

⎞⎠ � 2n exp
(
−n2x2

2

)
+ Apn

1−p
E|εi|px−p

� Cpn
1−px−p.

Setting Wn(t) = Bn(nt)/
√

n yields Lemma 5.1. �
Lemma 5.2. Under the assumptions of Theorem 2.2,

sup
t∈[hn,1−hn]

|gn(t) − f(t)| = oP(1) and sup
t∈[hn,1−hn]

|g′n(t) − f ′(t)| = oP(1). (5.1)
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Moreover, there exists some P
∗-Brownian motion W ∗

n such that

n2/3 sup
t∈[0,1]

∣∣∣∣G∗
n(t) − Gn(t) − σ∗

n

W ∗
n(t)√
n

∣∣∣∣ = oP(1). (5.2)

Proof. We assume without loss of generality that y1, . . . , yn are defined on some rich enough probability space.
Both f and f ′ are assumed to be bounded so

sup
t∈[0,1]

∣∣∣∣∣∣ 1n
∑
i�nt

f(ti) − F (t)

∣∣∣∣∣∣ = O

(
1
n

)
.

By Lemma 5.1 there thus exists some standard Brownian motion Wn such that

n2/3 sup
t∈[0,1]

∣∣∣∣Fn(t) − F (t) − σ√
n

Wn(t)
∣∣∣∣ = oP(1). (5.3)

Let H denote either K ′ or K ′′. Then
∫

H = 0, H is bounded and vanishes outside [−1, 1]. There thus exists
some c > 0 such that

sup
t∈[0,1]

∣∣∣∣∫
R

Wn(t − xhn)H(x)dx

∣∣∣∣ � c sup
t∈[0,1], |t−u|�hn

|Wn(t) − Wn(u)|,

where the latter term is of order of magnitude OP((hn log(1/hn))1/2). It is assumed that h−1
n = o (nα) for some

α < 1/3 so
1√
nh2

n

sup
t∈[0,1]

∣∣∣∣∫
R

Wn(t − xhn)H(x)dx

∣∣∣∣ = oP(1).

By (5.3) we thus have

sup
t∈[hn,1−hn]

∣∣∣∣gn(t) − 1
hn

∫ 1

−1

F (t − xhn)K ′(x)dx

∣∣∣∣ = oP(1)

and

sup
t∈[hn,1−hn]

∣∣∣∣g′n(t) − 1
h2

n

∫ 1

−1

F (t − xhn)K ′′(x)dx

∣∣∣∣ = oP(1).

It is assumed that f ′ is bounded so F (t − xhn) = F (t) − xhnf(t) + O(h2
n) where O(h2

n) is uniform in t and
x ∈ [−1, 1]. We obtain

sup
t∈[hn,1−hn]

|gn(t) − f(t)| = oP(1)

by using
∫

K ′ = 0 and
∫

R
xK ′(x) = −1. Since f ′ is Hölderian we also have

F (t − xhn) = F (t) − xhnf(t) + x2h2
nf ′(t)/2 + o(h2

n),

where o(h2
n) is uniform in t and x ∈ [−1, 1]. But K ′′ is symmetric about zero so

∫
R

xK ′′(x)dx = 0 and we get

sup
t∈[hn,1−hn]

|g′n(t) − f ′(t)| = oP(1),

which completes the proof of (5.1).
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For all t � 0, Fn(t) = 0 so

sup
t∈[0,hn]

|gn(t)| = sup
t∈[0,hn]

1
hn

∣∣∣∣∣
∫ t/hn

−1

Fn(t − xhn)K ′(x) dx

∣∣∣∣∣ ,
which is stochastically bounded since F (t − xhn) � |t − xhn| sups |f(s)|. One can prove in the same way that
supt∈[1−hn,1] |gn(t)| is stochastically bounded so

sup
t∈[0,1]

|gn(t)| = OP(1). (5.4)

We also obtain in the same way that supt∈[0,1] |g′n(t)| = OP(h−1
n ) and therefore,

sup
t∈[0,1]

∣∣∣∣∣∣ 1n
∑
i�nt

gn(ti) − Gn(t)

∣∣∣∣∣∣ = oP

(
n−2/3

)
. (5.5)

But under the assumptions of Theorem 2.2, there exists some C > 0 such that

lim
n→∞ P (E∗|ε∗1/σ∗

n|p < C) = 1.

Lemma 5.2 then follows from Lemma 5.1 (where εi stands for ε∗i /σ∗
n) and from (5.5). �

Lemma 5.3. Let H : [0, 1] → R. If rH is well defined then under the assumptions of Theorem 2.1,

|rH − r0| � C sup
t∈[0,1]

|H(t) − F (t)|

for some C > 0 that only depends on f .

Proof. Let c be some positive real number with c < 2 inft f(t) and let ∆ and δ be defined by ∆ = supt |H(t) −
F (t)| and δ = 3∆/c respectively. It follows from Taylor’s expansion that for all positive γ,

sup
µ
{F (µ + r0 − γ) − F (µ + r0) − F (µ − r0 + γ) + F (µ − r0)} < −cγ.

By definition of r0 and µ0, F (µ+r0)−F (µ−r0) � F (µ0+r0)−F (µ0−r0) for any µ and F (µ0+r0)−F (µ0−r0) =
ηF (1) and therefore

sup
µ
{F (µ + r0 − γ) − F (µ − r0 + γ)} < ηF (1) − cγ.

We thus have for all positive γ

sup
µ
{H(µ + r0 − γ) − H(µ − r0 + γ)} < ηH(1) − cγ + 3∆,

which implies
sup

µ
{H(µ + r0 − γ) − H(µ − r0 + γ)} < ηH(1)

for all γ � δ. So r0 − δ � rH . It follows from Taylor’s expansion that

F (µ0 + r0 + δ) − F (µ0 + r0) − F (µ0 − r0 − δ) + F (µ0 − r0) > cδ,

and therefore
H(µ0 + r0 + δ) − H(µ0 − r0 − δ) > ηH(1) + cδ − 3∆.

So r0 + δ � rH . We thus have |rH − r0| � δ, which proves the lemma. �
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5.2. Proof of Theorem 2.1

We assume without loss of generality that σ = 1 and that ε1, . . . , εn are defined on some rich enough
probability space so that Lemma 5.1 applies. Then there exists some standard Brownian motion Wn such that

sup
t∈[0,1]

∣∣∣∣Fn(t) − F (t) − 1√
n

Wn(t)
∣∣∣∣ = oP

(
n−2/3

)
. (5.6)

Therefore, supt |Fn(t) − F (t)| = OP(n−1/2) so by Lemma 5.3 (where H stands for Fn)

rn − r0 = OP

(
n−1/2

)
. (5.7)

For every a > 0, there exists some ε > 0 such that

sup
|x|�a

{F (µ0 + r0 + x) − F (µ0 + r0) − F (µ0 − r0 + x) + F (µ0 − r0)} < −ε, (5.8)

since the supremum in the latter inequality is achieved and since µ0 and r0 are uniquely defined. By (5.7) it
follows that for every a > 0, there exists some ε > 0 such that

sup
|x|�a

{F (µ0 + rn + x) − F (µ0 + rn) − F (µ0 − rn + x) + F (µ0 − rn)} < −ε + oP(1).

By assumption µ0 maximizes µ �→ F (µ+r0)−F (µ−r0) and the supremum is achieved in the open set (r0, 1−r0)
so f(µ0 + r0) = f(µ0 − r0). We recall furthermore that f ′ is Hölderian and that

f ′(µ0 + r0) < f ′(µ0 − r0).

By using again Taylor’s expansion and (5.7), we obtain that there exist some a > 0 and b > 0 such that for any
C > 0 and any t with C � |t| � an1/3,

F
(
µ0 + rn + tn−1/3

)
− F (µ0 + rn) − F

(
µ0 − rn + tn−1/3

)
+ F (µ0 − rn)

< −bt2n−2/3 + t2n−2/3oP(1).

Here, oP(1) is uniform in t, where C � |t| � an1/3. So there exists some b > 0 such that for any C > 0 and any
t with |t| � C,

F
(
µ0 + rn + tn−1/3

)
− F (µ0 + rn) − F

(
µ0 − rn + tn−1/3

)
+ F (µ0 − rn)

< −bt2n−2/3 + t2n−2/3oP(1), (5.9)

where oP(1) is uniform in t, |t| � C. Let

In =
[
n1/3(rn − µ0), n1/3(1 − rn − µ0)

]
and let Mn be the process defined for t ∈ In by

Mn(t) = n2/3
{

Fn

(
µ0 + rn + tn−1/3

)
− Fn

(
µ0 − rn + tn−1/3

)}
.
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Then n1/3(µn − µ0) is the location of the maximum of Mn so for every C > 0,

P

(
n1/3|µn − µ0| > C

)
� P

(
sup

|t|>C, t∈In

{Mn(t)} � Mn(0)

)
.

By scaling and time homogeneity properties of Brownian motion, it follows from (5.7) that the process{
n1/6

(
Wn

(
µ0 + rn + tn−1/3

)
− Wn (µ0 + rn)

)
, t ∈ In

}
is asymptotically identical in law to a Brownian motion restricted to In. It thus follows from (5.6), (5.7) and (5.9)
that there exists some b > 0 such that for every C > 0

P

(
n1/3|µn − µ0| > C

)
� 2P

(
sup
|t|�C

{
Wn(t) − bt2

}
� 0

)
+ o(1). (5.10)

By using time inversion and scaling properties of Brownian motion, one can easily prove that for all positive
numbers b and C,

P

(
sup
|t|�C

{
Wn(t) − bt2

}
� 0

)
� 2 exp(−b2C3/2). (5.11)

Therefore, the right hand term of (5.10) converges to zero as n and C go to infinity, which proves that

µn − µ0 = OP(n−1/3).

We now derive the asymptotic distributions of µn and rn. Let M be the process defined for |t| � log n by

M(t) = −t2
f ′(µ0 − r0) − f ′(µ0 + r0)

2
+
√

2W1(t),

where the process W1(t) is defined for t ∈ [− log n, log n] by

n1/6

√
2

(
Wn

(
µ0 + r0 + tn−1/3

)
− Wn (µ0 + r0) − Wn

(
µ0 − r0 + tn−1/3

)
+ Wn (µ0 − r0)

)
. (5.12)

In the sequel, we assume n large enough so that W1 is a standard Brownian motion restricted to [− log n, log n].
Let Tn and τn be defined by

Tn = argmax
|t|�log n

{Mn(t) − Mn(0)} and τn = argmax
|t|�log n

{M(t)}.

Note that according to scaling property of Brownian motion, the distribution of the location of the maximum
of {W1(t) − c

3/2
0 t2, t ∈ R} is identical to that of c−1

0 τ , where

c0 =
1
2

(f ′(µ0 − r0) − f ′(µ0 + r0))
2/3

. (5.13)

Similar to (5.11), the probability that τn differs from the location of the maximum of {W1(t) − c
3/2
0 t2, t ∈ R}

tends to zero as n goes to infinity. Therefore, τn converges in distribution to c−1
0 τ as n goes to infinity. Since

f(µ0 + r0) = f(µ0 − r0), it follows from (5.6) that

sup
|t|�log n

|Mn(t) − Mn(0) − M(t)|
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converges in probability to zero as n goes to infinity so Tn − τn converges to zero in probability. Finally,
n1/3(µn − µ0) differs from Tn if and only if n1/3|µn − µ0| > log n. But µn − µ0 = OP(n−1/3) so we get

n1/3(µn − µ0) − Tn
D−→ 0 as n → ∞

and we obtain
n1/3(µn − µ0)

D−→ c−1
0 τ as n → ∞.

Let Un be the random variable defined by

Un = inf
{

t, |t| � log n, Fn

(
µn + r0 + tn−1/2

)
− Fn

(
µn − r0 − tn−1/2

)
� ηFn(1)

}
. (5.14)

We have f(µ0 − r0) = f(µ0 + r0) and ηF (1) = F (µ0 + r0) − F (µ0 − r0). Since µn = µ0 + OP(n−1/3), we thus
obtain by using (5.6), Taylor’s expansion and standard properties of Brownian motion that Un is the smallest
t such that |t| � log n and

2tf(µ0 + r0) + Wn (µ0 + r0) − Wn (µ0 − r0) � ηWn(1) + oP(1).

So Un converges in probability as n goes to infinity towards

U =
1

2f(µ0 + r0)
(ηW (1) − W (µ0 + r0) + W (µ0 − r0))

where W is a standard Brownian motion. By definition of rn and µn we have

rn = inf {r � 0, Fn(µn + r) − Fn(µn − r) � ηFn(1)}

and therefore,

√
n(rn − r0) = inf

{
t, Fn

(
µn + r0 + tn−1/2

)
− Fn

(
µn − r0 − tn−1/2

)
� ηFn(1)

}
.

It thus follows from (5.7) that n1/2(rn − r0) − Un converges in probability to zero as n goes to infinity. So
n1/2(rn−r0) converges in distribution to U as n goes to infinity. For any real numbers s and t, cov(W (s), W (t)) =
min(s, t), so 2f(µ0 + r0)U is a centered Gaussian variable with variance η2 + 2r0(1 − 2η), which completes the
proof of Theorem 2.1.

5.3. Proof of Theorem 2.2

We assume without loss of generality σ = 1 and there exists some P
∗-Brownian motion W ∗

n such that (5.2)
holds. We assume moreover that there exists some P-Brownian motion Wn with (5.6). Expanding F proves
that Gn converges in probability to F in the supremum-distance sense, which ensures that rGn and µGn are
well defined with probability that tends to one. Moreover, rGn − r0 = oP(1) by Lemma 5.3. Let C be some
positive number. By definition, we can have |µGn − µ0| > C only if

sup
|t|>C

{Gn(µ0 + t + rGn) − Gn(µ0 + t − rGn)} � Gn(µ0 + rGn) − Gn(µ0 − rGn).

The latter inequality implies

sup
|t|>C

{F (µ0 + t + r0) − F (µ0 + t − r0)} � F (µ0 + r0) − F (µ0 − r0) + oP(1).



232 C. DUROT AND K. THIÉBOT

It thus follows from (5.8) that µGn − µ0 = oP(1). By (5.2), G∗
n − F converges in probability to zero in the

supremum-distance sense, so we obtain in the same way as above µG∗
n
− µ0 = oP(1) and rG∗

n
− r0 = oP(1). The

kernel K is assumed to be symmetric about zero so
∫

xK(x) dx = 0. Moreover, hn = o(n−1/6/ logn) so

sup
t∈[hn,1−hn]

|Gn(t) − F (t)| = oP

(
n−1/3/(log n)2

)
.

Lemma 5.3 then yields rGn − r0 = oP

(
n−1/3/(log n)2

)
and rG∗

n
− r0 = oP(n−1/3/(log n)2).

It is assumed that [µ0 − r0, µ0 + r0] ⊂ (0, 1) so we have with probability that tends to one [µGn − rGn , µGn +
rGn ] ⊂ (0, 1) and gn(µGn + rGn) = gn(µGn − rGn) (since µGn maximizes µ �→ Gn(µ + rGn)−Gn(µ− rGn) in an
open set). We thus assume in the sequel

gn(µGn + rGn) = gn(µGn − rGn).

Let
I∗n =

[
n1/3(hn + rG∗

n
− µGn), n1/3(1 − hn − rG∗

n
− µGn)

]
.

By Taylor’s expansion and (5.1) there exist some positive a and b such that for all C > 0 and all t ∈ I∗n with
C < |t| < an1/3,

Gn

(
µGn + rG∗

n
+ tn−1/3

)
− Gn(µGn + rG∗

n
) − Gn

(
µGn − rG∗

n
+ tn−1/3

)
+Gn(µGn − rG∗

n
) < −bt2n−2/3 + t2n−2/3oP(1),

where oP(1) is uniform in t. Since Gn converges to F in the supremum-distance sense, it follows from (5.8) and
the previous inequality that there exists some positive b such that for all C > 0 and all t ∈ I∗n with |t| > C,

Gn

(
µGn + rG∗

n
+ tn−1/3

)
− Gn

(
µGn + rG∗

n

)− Gn

(
µGn − rG∗

n
+ tn−1/3

)
+Gn(µGn − rG∗

n
) < −bt2n−2/3 + t2n−2/3oP(1), (5.15)

where oP(1) is uniform in t. Let M∗
n be the process defined for t ∈ I∗n by

M∗
n(t) = n2/3

{
G∗

n

(
µGn + rG∗

n
+ tn−1/3

)
− G∗

n

(
µGn − rG∗

n
+ tn−1/3

)}
.

With probability that tends to one, [rG∗
n
−µG∗

n
, rG∗

n
+µG∗

n
] ⊂ [hn, 1−hn] so we may assume that n1/3(µG∗

n
−µGn)

is the location of the maximum of M∗
n. Therefore, for any C > 0,

P
∗
(
n1/3|µG∗

n
− µGn | > C

)
� P

∗
(

sup
|t|>C, t∈I∗

n

{M∗
n(t)} � M∗

n(0)

)
.

With probability that tends to one, n1/3(log n)2(rG∗
n
−rGn) � 1 so it follows from scaling and time-homogeneity

properties of Brownian motion that the process{
n1/6

(
W ∗

n

(
µGn + rG∗

n
+ tn−1/3

)
− W ∗

n

(
µGn + rG∗

n

))
, t ∈ I∗n

}
is asymptotically distributed under P

∗ as a restricted Brownian motion. By using (5.15) and the same arguments
as in the proof of Theorem 2.1 we thus obtain

n1/3(µG∗
n
− µGn) = OP∗(1), (5.16)
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so n1/3(µG∗
n
−µGn) has the same asymptotic distribution as the location of the maximum of {M∗

n(t)−M∗
n(0), t ∈

[− logn, log n]} and we obtain

n1/3(µG∗
n
− µGn) D∗

−→ c0
−1τ in probability

as in the proof of Theorem 2.1. Let U∗
n be the random variable defined as the smallest t with |t| � n1/6 and

G∗
n

(
µG∗

n
+ rGn + tn−1/2

)
− G∗

n

(
µG∗

n
− rGn − tn−1/2

)
� ηG∗

n(1).

We have gn(µGn + rGn) = gn(µGn − rGn) and

ηGn(1) = Gn(µGn + rGn) − Gn(µGn − rGn)

with probability that tends to one. Moreover it follows from Lemma 5.2 that supt∈[hn,1−hn] |g′n(t)| is stochasti-
cally bounded. By (5.2) and (5.16) , U∗

n is thus the smallest t such that |t| � n1/6 and

2tgn(µGn + rGn) + σ∗
nW ∗

n (µGn + rGn) − σ∗
nW ∗

n (µGn − rGn) � ησ∗
nW ∗

n(1) + oP∗(1).

By Lemma 5.2, gn(µGn + rGn) approaches f(µGn + rGn) as n goes to infinity. Moreover, µGn and rGn converge
in probability to µ0 and r0 respectively and σ∗

n converges in probability to σ, so we obtain the asymptotic
distribution of

√
n(rG∗

n
− rGn) by using the same arguments as in the proof of Theorem 2.1. �

5.4. Proof of Proposition 3.1

Note first that the bootstrap residuals are conditionally i.i.d. and that E
∗(ε∗i ) = 0 with the three bootstrap

constructions.
If the bootstrap residuals are generated with the parametric bootstrap then their common variance under P

∗

is σ∗2
n = σ̂2

n, which stochastically converges to σ2. Moreover, ε∗i /σ̂n is well defined and standard Gaussian with
probability that tends to one so (2.4) holds for some C > 0.

If the bootstrap residuals are generated with the naive bootstrap then σ∗2
n = σ̃2

n, where

σ̃2
n =

1
n

n∑
i=1

ε̃2
i =

1
n

n∑
i=1

ε̂2
i −

(
1
n

n∑
i=1

ε̂i

)2

.

It follows from (5.1), (5.4) and law of large numbers that σ̃2
n stochastically converges to σ2. Moreover

E
∗|ε∗i |p =

1
n

n∑
i=1

∣∣∣∣∣ε̂i − 1
n

n∑
i=1

ε̂i

∣∣∣∣∣
p

� 4p−1

(
1
n

n∑
i=1

(|εi|p + |gn(ti) − f(ti)|p)
)

+ 2p−1

∣∣∣∣∣ 1n
n∑

i=1

ε̂i

∣∣∣∣∣
p

so we obtain with the same arguments that (2.4) holds for some C > 0.
If the bootstrap residuals are generated with the smoothed bootstrap then σ∗2

n = σ̃2
n + h′2

n stochastically
converges to σ2 provided h′

n → 0. Moreover, denoting by V1, . . . , Vn independent variables with common
density φ we get

E
∗|ε∗i |p =

1
n

n∑
i=1

|ε̃i + h′
nVi|p � 2p−1

(
1
n

n∑
i=1

|ε̃i|p +
h′

n
p

n

n∑
i=1

|Vi|p
)

so (2.4) holds for some C > 0.
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5.5. Proof of (2.7) and (2.8)

Arguments involved here are close to those involved in the proof of Theorem 2.1 so we do not explain them
in full details. Once again, we assume σ = 1 and (5.3) holds for some P-Brownian motion Wn. By Sakhanenko’s
construction we may assume furthermore that there exists some P

∗-Brownian motion W ∗
n such that

n2/3 sup
t∈[0,1]

∣∣∣∣F ∗
n(t) − Fn(t) − σ∗

n

W ∗
n(t)√
n

∣∣∣∣ = oP(1). (5.17)

For every a > 0 there exists some ε > 0 with (5.8). Moreover, by Theorem 2.1 and Lemma 5.3 we have

n1/3(µn − µ0) = OP(1) and
√

n(rF∗
n
− r0) = OP(1).

So for every a > 0 there exists some ε > 0 such that

sup
|x|�a

{
F (µn + rF∗

n
+ x) − F (µn + rF∗

n
) − F (µn − rF∗

n
+ x) + F (µn − rF∗

n
)
}

< −ε + oP(1).

Fix α ∈ (0, 1/3). It follows from the latter inequality, (5.3) and Taylor’s expansion that there exists some b > 0
such that

Fn(µn + rF∗
n

+ tn−1/3) − Fn(µn + rF∗
n
) − Fn(µn − rF∗

n
+ tn−1/3) + Fn(µn − rF∗

n
)

� −bn−2/3t2 + t2n−2/3oP(1)

for all t with |t| � nα. Let β ∈ (α, 1/3), let M∗
n be the process defined by

M∗
n(t) =

{
n2/3

(
F ∗

n

(
µn + rF∗

n
+ tn−1/3

)
− F ∗

n

(
µn − rF∗

n
+ tn−1/3

))}
and let T ∗

n be the location of the maximum of {M∗
n(t), |t| � nβ}. Then, n1/3(µF∗

n
− µn) is the location of

the maximum of M∗
n so we have n1/3(µF∗

n
− µn) = T ∗

n with probability that tends to one. By expanding F in
both neighbourhoods of µ0 + r0 and µ0 − r0 and by setting β small enough, we obtain that T ∗

n has the same
distribution as the location of the maximum of{

−c
3/2
0 (n1/3(µn − µ0) + t)2 + W1(n1/3(µn − µ0) + t) + σ∗

nW ∗
n(t) + Rn(t), |t| � nβ

}
,

where Rn is negligeable and where c0 and W1 are given by (5.13) and (5.12) respectively. But we can approximate
n1/3c0(µn − µ0) with the location of the maximum of{−t2 + W2(t), |t| � nβ

}
,

where W2(t) = c
1/2
0 W1(c−1

0 t). Denoting by Tn this location of maximum, we get that c0T
∗
n has the same

distribution as the location of the maximum of

{−(Tn + t)2 + W2(Tn + t) + σ∗
nW ∗

n(t) + R′
n(t), |t| � c0n

β}

where R′
n is negligeable. There thus exist a Brownian path W and a P

∗-Brownian motion W ∗ such that the
asymptotic conditional distribution of n1/3c0(µF∗

n
− µn) is that of the location of the maximum of{−(T + t)2 + W (T + t) + W ∗(t), t ∈ R

}
,
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where T is the location of the maximum of {−t2 +W (t), t ∈ R}. This has not the same distribution as τ , which
proves (2.8). To prove (2.7), consider the random variable Un defined by (5.14) and let

U∗
n = inf

{
t, |t| � log n, F ∗

n

(
µF∗

n
+ rn + tn−1/2

)
− F ∗

n

(
µF∗

n
− rn − tn−1/2

)
� ηF ∗

n(1)
}

.

Then
√

n(rn − r0) = Un + oP∗(1) so

2n1/2(rn − r0)f(µ0 + r0) = ηWn(1) − Wn(µ0 + r0) + Wn(µ0 − r0) + oP∗(1).

So we obtain from (5.17), Taylor’s expansion and standard properties of Brownian motion that U∗
n is the smallest

t such that |t| � log n and

2tf(µ0 + r0) + σ∗
nW ∗ (µ0 + r0) − σ∗

nW ∗
n (µ0 − r0) � ησ∗

nW ∗
n (1) + oP∗(1).

The result then follows from the fact that n1/2(rF∗
n
− rn) − U∗

n converges in probability to zero as n goes to
infinity. �
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