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PRESERVATION OF LOG-CONCAVITY ON SUMMATION
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Abstract. We extend Hoggar’s theorem that the sum of two independent discrete-valued log-concave
random variables is itself log-concave. We introduce conditions under which the result still holds for
dependent variables. We argue that these conditions are natural by giving some applications. Firstly,
we use our main theorem to give simple proofs of the log-concavity of the Stirling numbers of the
second kind and of the Eulerian numbers. Secondly, we prove results concerning the log-concavity of
the sum of independent (not necessarily log-concave) random variables.
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1. Introduction and main theorem

The property of log-concavity (LC) for non-negative sequences is defined as follows.

Definition 1.1. A sequence (u(i), i ≥ 0) is log-concave if, for all i ≥ 1,

u(i)2 ≥ u(i − 1)u(i + 1). (1)

Equation (1) is sometimes referred to the quadratic Newton inequality (see Niculescu [13]), and plays a role
in considering when polynomials with real coefficients have real roots (see Sect. 3). Applications of log-concavity
arise in combinatorics, algebra, geometry and computer science, as reviewed by Stanley [17] and Brenti [4,6]. In
probability and statistics, it is related to the notion of negative association of random variables (see Joag-Dev
and Proschan [10]).

Definition 1.2. A random variable V taking values in Z+ is log-concave if its probability mass function
pV (i) = P(V = i) forms a log-concave sequence. That is, V is log-concave if for all i ≥ 1,

pV (i)2 ≥ pV (i − 1)pV (i + 1). (2)

Example 1.3.
(1) We write Geom (p) for the geometric distribution with mass function pX(i) = (1 − p)pi, for i ∈ Z+.

For each p, these random variables represent the “edge case” of the log-concavity property, in that
equation (2) becomes an identity for all i ≥ 1.
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(2) The Poisson(λ) distribution is log-concave for any λ ≥ 0.
(3) Any Bernoulli random variable (that is, only taking values in {0, 1}) is log-concave. Further, any bino-

mial distribution is log-concave. In fact, any random variable S =
∑n

i=1 Xi, where Xi are independent
(not necessarily identical) Bernoulli variables, is log-concave.

This last fact is a corollary of the following theorem, first proved by Hoggar [9].

Theorem 1.4. If V and W are independent log-concave random variables, then their sum V + W is also
log-concave. Equivalently, the convolution of any two log-concave sequences is log-concave.

A similar result was proved by Davenport and Pólya [7], under the condition that the probability mass
functions of V and W , rescaled by binomial coefficients, are log-concave.

Notice that the sum of two independent and identically distributed geometric random variables (both on the
edge case) is a negative binomial distribution (still log-concave, but no longer the edge case), suggesting room
for improvement. In Section 2, we prove the following main theorem, an extension of Theorem 1.4 to the case
of dependent random variables.

Theorem 1.5. If V is a log-concave random variable and random variables V , W satisfy Condition 1 below
then the sum V + W is also log-concave.

We give two distinct applications of Theorem 1.5 in the remaining sections of the paper. Firstly, we consider
the important property of log-concavity of certain combinatorial sequences. It is often desirable to show that
such sequences are unimodal (a sequence c(·) is unimodal if there exists an index j such that c(i) ≤ c(i + 1)
for i ≤ j − 1 and c(i) ≥ c(i + 1) for i ≥ j). Log-concavity is easily shown to imply unimodality and, since
unimodality is not preserved on convolution, log-concavity is often easier to prove. The motivation for Hoggar’s
paper [9] came from the coefficient sequences of chromatic polynomials. For a graph G, the chromatic polynomial
πG(z) =

∑
i c(i)zi gives the number of ways to colour G using exactly z colours. Read [14] conjectured that

(|c(i)|, i ≥ 0) is a unimodal sequence and Welsh [21] conjectured, more strongly, that it is log-concave. Hoggar
proved Theorem 1.4 in a partial attempt to resolve this conjecture. It remains unproven, but progress towards
it is reviewed in Brenti [5].

In Section 3, we show how a version of Theorem 1.5 (adapted to apply to sequences rather than just probability
mass functions) can be used to prove the log-concavity of certain combinatorial sequences. In particular, in
Theorem 3.2 we use it to give a simple proof of the log-concavity of the Stirling numbers of the second kind
(Condition 1 is natural here and straightforward to check). In Theorem 3.3, we prove log-concavity of the
Eulerian numbers, even though our Condition 1 fails in this case, by a simple adaptation of our methods.

The second application comes in Section 4, where for fixed log-concave V we consider the set of independent
random variables W such that V +W is log-concave. This means that we weaken one of Hoggar’s assumptions,
since we no longer require W to be log-concave. We prove Lemma 4.3, which gives simple conditions under which
X+Geom(p) is log-concave, for independent X and Geom(p). Further, we extend the arguments of Theorem 1.5
to prove Theorem 4.4, which states that if X + Geom (p1) is log-concave, then so is X + Geom (p2) for p2 ≥ p1.
(This result is not unexpected, but it cannot be stated as a simple corollary of Hoggar’s Theorem). This result
is relevant to the field of reliability theory, where we may wish to establish the log-concavity (and hence bounds
on the hazard rate) of the total lifetime of a collection of components, where some of the components have a
geometric lifetime with unknown (but bounded below) parameter p. This restriction on the geometric parameter
is very natural if we consider trying to infer p from a collection of lifetimes while the trials are ongoing and
some components “haven’t failed yet”.

Log-concavity is a property much used in econometrics, as described in the survey by Bergstrom and
Bagnoli [1]. A previous attempt to generalise Hoggar’s theorem in this context, by Brais, Martimort and
Rochet [2], led to the statement of the incorrect result that for independent V and W if either of V or W is
log-concave then their sum must be (see the discussion in Miravete [12]). It is clear, however, that extensions
of Hoggar’s theorem may have applications here.

A version of Theorem 1.5 where W must be a Bernoulli random variable is proved in a different context by
Sagan [15] (Th. 1). Our conditions reduce to his in this special case. Wang [18] proves that linear transformations
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based on binomial coefficients preserve log-concavity (see also [20]). An anonymous referee brought it to our
attention that, at about the same time as the first draft of this paper, Wang and Yeh had independently
submitted a paper [19] which contains some similar technical results. In particular, our Lemma 2.4 corresponds
to their Lemma 2.1 and our Condition 1 corresponds to their Lemma 2.3.

2. Conditions and proof of Theorem 1.5

We prove a generalized version of Theorem 1.5, which establishes both results about the log-concavity of the
sum of dependent random variables and results about the log-concavity of a extended version of convolutions
of sequences.

In general, given sequences pV (v) and pV +W (x), we will suppose that there exists a two-dimensional array
of coefficients pW |V (w|v) such that

pV +W (x) =
∑

pV (v)pW |V (x − v|v). (3)

In essence, the pW |V act like conditional probabilities, but with no need for the sequences to sum to 1.
We give here an example of a pair of dependent geometric random variables whose sum is also geometric,

motivating Condition 1 below, under which we prove our extension of Hoggar’s theorem.

Example 2.1. For some p ∈ (0, 1) and α ∈ (0, 1), define the joint distribution of V and W by

P(V = i, W = j) =
(

i + j

i

)
(1 − p)pi+jαi(1 − α)j , for i, j ≥ 0.

Using the identities
∑k

i=0

(
k
i

)
αi(1 − α)k−i = 1 and

∑∞
j=0

(
i+j

i

)
tj = (1 − t)−i−1 (for 0 ≤ t < 1), we deduce that

V + W is Geom (p), V is Geom(αp/(αp + (1 − p)) and W is Geom(p/((1 − α)p + (1 − p))). The conditional
probabilities are negative binomial with

pW |V (j|i) = P(W = j|V = i) =
(

i + j

i

)
(1 − p + αp)i+1(p(1 − α))j . (4)

Definition 2.2. Given coefficients pW |V and fixed i, define

a(i)
r,s = pW |V (i − r|r)pW |V (i − s|s) − pW |V (i − r − 1|r)pW |V (i − s + 1|s).

Condition 1. For the quantities a
(i)
r,s defined above, we require that for all 0 ≤ t ≤ m ≤ i,

(a)
t∑

k=−t

a
(i)
m+k,m−k ≥ 0 and (b)

t∑
k=−t−1

a
(i)
m+k+1,m−k ≥ 0.

Remark 2.3. Note that Condition 1 holds in Example 2.1. The key is to observe that, in this case, for any
given i, a

(i)
r,s is proportional to

(
i
r

)(
i
s

) − (
i−1
r

)(
i+1
s

)
. This means that for Condition 1(a), as t increases, the

increment term a
(i)
m+t,m−t + a

(i)
m−t,m+t is proportional to 2

(
i

m+t

)(
i

m−t

) − (
i−1
m+t

)(
i+1
m−t

) − (
i+1
m+t

)(
i−1
m−t

)
, which is

positive for t ≤ T and negative for t > T (for some value T ). Hence, the partial sums,
∑t

k=−t a
(i)
m+k,m−k, form

a sequence which increases for t ≤ T and decreases thereafter. Using the identity
∑

j

(
a
j

)(
b

r−j

)
=

(
a+b

r

)
, we

see that
∑m

k=−m a
(i)
m+k,m−k = 0 and so the sequence of partial sums must be non-negative for any t. A similar

argument holds for Condition 1(b).

In order to prove Theorem 1.5 we require a technical lemma.
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Lemma 2.4. Fix l ≥ m and suppose that (cj) is a sequence such that Cn :=
∑n

j=0 cj ≥ 0 for all 0 ≤ n ≤ m.
For any log-concave sequence p, and for any 0 ≤ i ≤ m,

i∑
j=0

p(l + j)p(m − j)cj ≥ 0.

(This result is obvious if each cj ≥ 0, but the condition Cn ≥ 0 for all 0 ≤ n ≤ m is evidently weaker.)

Proof. We apply Abel’s summation formula (“summation by parts”) to obtain that

i∑
j=0

p(l + j)p(m − j)cj =
i∑

j=0

p(l + j)p(m − j)(Cj − Cj−1)

=
i∑

j=0

(
p(l + j)p(m − j) − p(l + j + 1)p(m − j − 1)

)
Cj + Cip(l + i + 1)p(m − i − 1),

where, by convention, C−1 = 0. The log-concavity of p implies that p(l + j)p(m− j) ≥ p(l + j + 1)p(m− j − 1)
for j ≥ 0 and so, since each Cj ≥ 0, the result follows. �

Proof of Theorem 1.5. For any i, the sequence pV +W defined by (4) satisfies

pV +W (i)2 − pV +W (i − 1)pV +W (i + 1)

=
i∑

j=0

i+1∑
k=0

pV (j)pV (k)
{
pW |V (i − j|j)pW |V (i − k|k) − pW |V (i − j − 1|j)pW |V (i − k + 1|k)

}
=

i∑
j=0

i+1∑
k=0

pV (j)pV (k)a(i)
j,k. (5)

For simplicity, we decompose the above sum into three regions: (a) {j ≥ k} (b) {j = k−1} (c) {j ≤ k−2}. We
relabel the third region, using the new co-ordinates (J, K) = (k − 1, j + 1), which transforms it into {J ≥ K}.
This enables us to rewrite Equation (5) as

i∑
j=0

pV (j)pV (j + 1)a(i)
j,j+1 +

∑
i≥j≥k

(
pV (j)pV (k)a(i)

j,k + pV (j + 1)pV (k − 1)a(i)
k−1,j+1

)
(6)

=
i∑

m=0

{
m∑

k=0

[
pV (m + k)pV (m − k)a(i)

m+k,m−k + pV (m + k + 1)pV (m − k − 1)a(i)
m−k−1,m+k+1

]
+ pV (m)pV (m + 1)a(i)

m,m+1

+
m+1∑
k=1

[
pV (m + k)pV (m − k + 1)a(i)

m+k,m−k+1 + pV (m + k + 1)pV (m − k)a(i)
m−k,m+k+1

]}
. (7)

Here the second term in curly brackets corresponds to the first term in equation (6). The first and third terms
correspond to the second term in equation (6), split according to whether r = j + k is even or odd. If r is even
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then m = r/2; if r is odd then m = (r − 1)/2. Consider now the first term in (7):

m∑
k=0

[
pV (m + k)pV (m − k)a(i)

m+k,m−k + pV (m + k + 1)pV (m − k − 1)a(i)
m−k−1,m+k+1

]

=
m∑

k=0

pV (m + k)pV (m − k)a(i)
m+k,m−k +

m−1∑
k=0

pV (m + k + 1)pV (m − k − 1)a(i)
m−k−1,m+k+1

= pV (m)2a(i)
m,m +

m∑
k=1

pV (m + k)pV (m − k)
{
a
(i)
m+k,m−k + a

(i)
m−k,m+k

}
=

m∑
k=0

pV (m + k)pV (m − k)ck, (8)

where c0 = a
(i)
m,m and ck = a

(i)
m+k,m−k+a

(i)
m−k,m+k for 1 ≤ k ≤ m. Then Condition 1(a) tells us that

∑t
k=0 ck ≥ 0

for all 0 ≤ t ≤ m and so, by Lemma 2.4 with l = m, i = m, equation (8) is positive. In the same way, we can
show that sum of the second and third terms in (7) equals

m∑
k=0

pV (m + k + 1)pV (m − k)dk, (9)

where dk = a
(i)
m+k+1,m−k + a

(i)
m−k,m+k+1 for 0 ≤ k ≤ m. Then Condition 1(b) tells us that

∑t
k=0 dk ≥ 0 for all

0 ≤ t ≤ m and so, by Lemma 2.4 with l = m + 1, i = m, equation (9) is positive.
Hence, pV +W (i)2 − pV +W (i − 1)pV +W (i + 1) ≥ 0 for all i ≥ 0.
We now identify which properties of independent random variables allow Hoggar’s result, Theorem 1.4, to

be proved. In particular, Condition 1 holds under Hoggar’s assumptions, so Theorem 1.5 implies Theorem 1.4.

Remark 2.5. For independent random variables V and W , the a
(i)
j,k have the following properties: (a) for all

j, a
(i)
j,j+1 ≡ 0 (b) for j ≥ k, a

(i)
k−1,j+1 = −a

(i)
j,k (c) if W is log-concave then a

(i)
j,k ≥ 0 for j ≥ k.

Hence, if we fix i and define cj and dj as in the proof of Theorem 1.5, for V and W independent and
log-concave we can write:

t∑
j=0

cj = a(i)
m,m +

t∑
j=1

a
(i)
m+j,m−j −

t∑
j=1

a
(i)
m+j−1,m−j+1

= a(i)
m,m +

t∑
j=1

a
(i)
m+j,m−j −

t−1∑
j=0

a
(i)
m+j,m−j = a

(i)
m+t,m−t ≥ 0.

Similarly:

t∑
j=0

dj =
t∑

j=0

a
(i)
m+1+j,m−j −

t∑
j=0

a
(i)
m+j,m−j+1

= a
(i)
m+1+t,m−t − a

(i)
m,m+1 = a

(i)
m+1+t,m−t ≥ 0.

Thus, Condition 1 holds for independent and log-concave V and W .



PRESERVATION OF LOG-CONCAVITY ON SUMMATION 211

3. Log-concavity of combinatorial sequences

Many common combinatorial sequences, such as the binomial coefficients (
(
n
k

)
, 0 ≤ k ≤ n), are log-concave

in k. A key result for proving the log-concavity of combinatorial sequences is the following.

Lemma 3.1. If all the roots of the generating function p(x) = c(0)xn + c(1)xn−1 + c(2)xn−2 + · · · + c(n) are
real and negative, then its coefficients c(k) form a log-concave sequence.

The proof can be regarded as an application of Theorem 1.4. See Niculescu [13] for a review of this and
similar properties.

Section 4.5 of Wilf [22] contains proofs of log-concavity for the binomial coefficients and the Stirling numbers
of the first and second kinds. He shows that the generating function of each sequence has real and negative
roots, and then appeals to Lemma 3.1 to deduce log-concavity of the sequence.

For the first two examples he considers, this is relatively straightforward. That is, in Corollary 4.5.1 he uses
the fact that the binomial coefficients

(
n
k

)
have generating function (1 + x)n, and in Corollary 4.5.2 he uses the

fact that the Stirling numbers of the first kind have generating function (x + 1)(x + 2) . . . (x + n − 1).
However, the fact that these generating functions factorise into products of independent terms indicate that

both these examples can equally well be dealt with via Hoggar’s Theorem. As remarked in Example 1.3.3, the
binomial distribution is log-concave. Further, the fact that the Stirling numbers of the first kind satisfy the
recurrence relation s(n+1, k) = s(n, k−1)+ns(n, k) means that we can write s(n, k) = n!P(X1 + . . .+Xn = k)
(the normalization is irrelevant here), where Xi are independent with P(Xi = 0) = (i−1)/i and P(Xi = 1) = 1/i,
so the result derived by Wilf is simply another case of Example 1.3.3.

Indeed, Hoggar’s theorem can prove log-concavity in cases where the method described by Wilf fails. For
fixed n, let b(n, k) be the number of permutations of n objects with exactly k inversions (that is, the permutation
σ has exactly k pairs i < j such that σ(i) > σ(j)). Equation (4.5.7) of [22] shows that the generating function
of b(n, k) takes the form

p(x) =
n−1∏
i=1

(1 + x + . . . + xi).

This means that the sequence b(n, k) can be expressed as the convolution of independent log-concave sequences
of the form (1, 1, . . . , 1), and so is log-concave. However, for n ≥ 3, the generating function p(x) has imaginary
roots, so Lemma 3.1 does not apply.

The Stirling numbers of the second kind provide an example where Wilf’s proof is relatively complicated
and where Hoggar’s result does not apply. However, our Theorem 1.5 gives a simple proof in this case, using
only the property that S(n, k) = S(n − 1, k − 1) + kS(n − 1, k). In fact, this property is used by Sagan [15] in
his proof of the same result; however, his techniques only apply in the case where W is a {0, 1}-valued random
variable, whereas our Theorem 1.5 will prove log-concavity of a more general family of combinatorial sequences.

Theorem 3.2. For given n, the Stirling numbers of the second kind, S(n, k) form a log-concave sequence in k.

Proof. In the notation of equation (3), if pV (i) = S(n− 1, i) then pV +W (i) = S(n, i), where for each j ≤ n− 1,

pW |V (x|j) =

⎧⎨⎩
j if x = 0,
1 if x = 1,
0 otherwise,

(so that V and W are not “independent”). Given i, for j ≥ k, the only non-zero a
(i)
j,k are

a
(i)
j,k k = i − 1 k = i k = i + 1

j = i − 2 0 −1 −(i + 1)
j = i − 1 1 i − (i − 1) −(i + 1)(i − 1)

j = i i i2 0
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Hence, the only non-zero sequences of partial sums in Condition 1(a) are the case m = i − 1, where(∑t
k=−t a

(i)
m+k,m−k, t ≥ 0

)
is (1, 0, 0, . . .), and the case m = i, where

(∑t
k=−t a

(i)
m+k,m−k, t ≥ 0

)
is (i2, 1, 1, . . .).

In Condition 1(b), the only non-zero sequence of partial sums occurs for m = i − 1, where(∑t
k=−t−1 a

(i)
m+k+1,m−k, t ≥ 0

)
is (i, i+1, 0, 0, . . .). These are all positive, so Condition 1 holds, as required. �

This result was first proved by Lieb [11]; see Wang and Yeh [20] for an alternative approach.
The proof of Theorem 3.2 can also be used to show that the q-Stirling numbers of the second kind,

(S(q)(n, k), 0 ≤ k ≤ n), form a log-concave sequence for 0 ≤ q ≤ 1 (see Sagan [16] for the definition of the
q-Stirling numbers and a proof of this fact for all q ≥ 0).

Indeed, our methods can sometimes be adapted to prove log-concavity of combinatorial sequences even when
Condition 1 and Theorem 1 of [15] fail. For example, consider the Eulerian numbers E(n, k), the number
of permutations of n objects with exactly k ascents (that is, the permutation σ has exactly k places j such
that σ(j) < σ(j + 1)). We prove the following well-known result (see, for example, Gasharov [8] or Bóna and
Ehrenborg [3] for alternative proofs).

Theorem 3.3. For given n, the Eulerian numbers E(n, k) form a log-concave sequence in k.

Proof. The recurrence relation E(n, k) = (k + 1)E(n − 1, k) + (n − k)E(n − 1, k − 1), implies that

pW |V (x|j) =

⎧⎨⎩
j + 1 if x = 0,
n − j if x = 1,
0 otherwise.

Given i, for j ≥ k, the only non-zero a
(i)
j,k are

a
(i)
j,k k = i − 1 k = i k = i + 1

j = i − 2 0 −(n − i)(n − i + 2) −(i + 2)(n − i + 2)
j = i − 1 (n − i + 1)2 n + 1 −i(i + 2)

j = i (i + 1)(n − i + 1) (i + 1)2 0

For m = i − 1, Condition 1(b) fails. However, since we are attempting to show that
∑

j,k a
(i)
j,kpV (j)pV (k) is

positive, it will be sufficient to show that this sum minus a positive quantity is positive. If we define

i∑
j=0

i+1∑
k=0

ã
(i)
j,kpV (j)pV (k) =

i∑
j=0

i+1∑
k=0

a
(i)
j,kpV (j)pV (k) − (pV (i − 1) − pV (i))2,

then the new coefficients are

ã
(i)
j,k k = i − 1 k = i k = i + 1

j = i − 2 0 −(n − i)(n − i + 2) −(i + 2)(n − i + 2)
j = i − 1 (n − i + 1)2 − 1 (n + 1) + 1 −i(i + 2)

j = i (i + 1)(n − i + 1) + 1 (i + 1)2 − 1 0

These new coefficients ã
(i)
j,k do satisfy Condition 1, so we deduce that the original difference pV +W (i)2−pV +W (i−

1)pV +W (i + 1) is positive. �
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4. Development for the independent case

We now use a version of Theorem 1.5 to give results about when the sum of independent random variables
V and W is log-concave, even though V and W need not be.

To give a concrete example of an independent pair of random variables V and W such that V + W ∈ LC
but W �∈ LC, let W have probability mass function pW (0) = 5/8, pW (1) = 1/4, pW (2) = 1/8. Then pW (1)2 −
pW (0)pW (2) = −1/64 and so W is not log-concave. However, pW (1)/pW (0) = 2/5 and pW (2)/pW (1) = 1/2
and so, by Lemma 4.3 below, W + Geom (p) is log-concave for any p ≥ 1/2.

Definition 4.1. For each random variable V , define the set

CV = { W independent of V : V + W is log-concave }.

Define a partial order on random variables by V1 � V2 if and only if CV1 ⊆ CV2 . Write LC for the set of
log-concave variables.

We first give some simple properties of the sets CV , before going on to consider properties of the sets CGeom(p).

Proposition 4.2. For the sets CV defined above:
(1) If W ∈ CV then V ∈ CW .
(2) For each V , CV is a closed set.
(3) The CV are partial order ideals with respect to �. That is, given W1 � W2, if W1 ∈ CV then W2 ∈ CV .
(4)

⋂
V ∈LC

CV = LC.

(5) If V2 = V1 + U , where V1 and U are independent and U is log-concave, then V1 � V2.

Proof. The first result is trivial. For each i, the set of W with pV +W (i)2 ≥ pV +W (i − 1)pV +W (i + 1) is closed,
since it can be expressed as the inverse image of the closed set [0,∞) under a continuous map which depends
only on pW (0), . . . , pW (i+1). This means that CV is a countable intersection of closed sets and so Part 2 follows.

Part 3 is an application of Part 1, since

W1 ∈ CV ⇒ V ∈ CW1 ⇒ V ∈ CW2 ⇒ W2 ∈ CV .

To prove Part 4, note that Theorem 1.4 entails that for all V ∈ LC, LC ⊆ CV , so LC ⊆ ⋂
V ∈LC CV . Further,

since for V ≡ 0 we have CV = LC, this set inclusion must be an equality.
For any W ∈ CV1 , the random variable V1+W is log-concave and so by Theorem 1.4 (V1 +W )+U = (V2+W )

is log-concave. Hence W ∈ CV2 and Part 5 follows. �
Lemma 4.3. For a random variable X with probability mass function pX(i):

(1) If pX(i + 1)/pX(i) ≤ p for all i ≥ 1, then X ∈ CGeom(p).
(2) If there is a gap in the support of X (that is for some i, pX(i) = 0, but pX(i−1) > 0 and pX(i+1) > 0)

then X /∈ CGeom(p) for any p.

Proof. Write qp(i) for the probability mass function of X + Geom (p). Note that since

qp(i) =
i∑

j=0

(1 − p)pi−jpX(j) = (1 − p)pX(i) + pqp(i − 1), (10)

we have

qp(i)2 − qp(i + 1)qp(i − 1)
= qp(i){(1 − p)pX(i) + pqp(i − 1)} − qp(i − 1){(1 − p)pX(i + 1) + pqp(i)}
= (1 − p){qp(i)pX(i) − qp(i − 1)pX(i + 1)}. (11)
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This means that the sum X + Geom (p) is log-concave if and only if for all i ≥ 1,

qp(i)pX(i) − qp(i − 1)pX(i + 1) ≥ 0. (12)

By (10), we have that qp(i) ≥ pqp(i − 1) and so if pX(i + 1)/pX(i) ≤ p for all i ≥ 1, then

pX(i + 1)
pX(i)

≤ p ≤ qp(i)
qp(i − 1)

,

and so X + Geom (p) is log-concave.
If pX(i − 1) > 0 then qp(i − 1) > 0. Hence, if pX(i) = 0 and pX(i + 1) > 0 then the inequality (12) fails to

hold for this particular i, so X + Geom(p) is not log-concave. �
We now use arguments suggested by the proof of Theorem 1.5 to show that the property that X + Geom(p)

is log-concave holds monotonically in p. The key, as in Equation (5), is to expand qp2(i)2 − qp2(i − 1)qp2(i + 1)
as a sum of terms of the form qp1(j)qp1 (k)a(i)

j,k. This is achieved in Equation (14).

Theorem 4.4. The partial order � induces a total order on the set of geometric random variables, that is:

Geom (p1) � Geom (p2) if and only if p1 ≤ p2.

Proof. With the notation of Lemma 4.3, if p1 ≤ p2, there exist positive constants br, where b0 = (1−p2)/(1−p1),
br = ((p2 − p1)(1 − p2)/(1 − p1)) pr−1

2 , such that

qp2(i) =
i∑

r=0

brqp1(i − r). (13)

This follows using a standard coupling argument, or since

(p2 − p1)(1 − p2)
(1 − p1)

i∑
r=0

pr−1
2 qp1(i − r) =

(p2 − p1)(1 − p2)
p2

i∑
j=0

q(j)
i−j∑
j=0

pr
2p

i−r−j
1

=
(1 − p2)

p2

i∑
j=0

q(j)
(
pi−j+1
2 − pi−j+1

1

)
= qp2(i) −

p1(1 − p2)
p2(1 − p1)

qp1(i).

Now, we can combine equations (10), (11) and (13) to obtain:

qp2(i)
2 − qp2(i + 1)qp2(i − 1) = (1 − p2){qp2(i)pX(i) − qp2(i − 1)pX(i + 1)}

=
(1 − p2)
(1 − p1)

i∑
r=0

br

{
qp1(i − r)

(
qp1(i) − p1qp1(i − 1)

)
−qp1(i − r − 1)

(
qp1(i + 1) − p1qp1(i)

)}
. (14)

Now, each term in curly brackets is positive, since qp1(i) − p1qp1(i − 1) ≥ 0, so by log-concavity of qp1 , for all
r ≥ 0:

qp1(i − r)
qp1(i − r − 1)

≥ . . . ≥ qp1(i)
qp1(i − 1)

≥ qp1(i + 1) − p1qp1(i)
qp1(i) − p1qp1(i − 1)

,

and so qp2(i)2 − qp2(i + 1)qp2(i − 1) ≥ 0. �



PRESERVATION OF LOG-CONCAVITY ON SUMMATION 215

Acknowledgements. We are grateful to anonymous referees whose comments led to considerable improvements in the
presentation of this paper.

References

[1] T. Bergstrom and M. Bagnoli, Log-concave probability and its applications. Econom. Theory 26 (2005) 445–469.
[2] B. Biais, D. Martimort and J.-C. Rochet, Competing mechanisms in a common value environment. Econometrica 68 (2000)

799–837.
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