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ON THE BRUNK-CHUNG TYPE STRONG LAW OF LARGE NUMBERS
FOR SEQUENCES OF BLOCKWISE m-DEPENDENT RANDOM VARIABLES

Le Van Thanh1

Abstract. For a sequence of blockwise m-dependent random variables {Xn, n ≥ 1}, conditions are
provided under which limn→∞(

∑n
i=1 Xi)/bn = 0 almost surely where {bn, n ≥ 1} is a sequence of

positive constants. The results are new even when bn ≡ nr, r > 0. As special case, the Brunk-
Chung strong law of large numbers is obtained for sequences of independent random variables. The
current work also extends results of Móricz [Proc. Amer. Math. Soc. 101 (1987) 709–715], and
Gaposhkin [Teor. Veroyatnost. i Primenen. 39 (1994) 804–812]. The sharpness of the results is
illustrated by examples.
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1. Introduction

The Brunk-Chung strong law of large numbers (SLLN) (see, e.g., Chow and Teicher [2], p. 363) asserts for
a sequence of independent random variables {Xn, n ≥ 1} with EXn = 0, n ≥ 1 that the condition

∞∑
n=1

E|Xn|2p

np+1
<∞ (p ≥ 1)

is sufficient for the SLLN

lim
n→∞

∑n
i=1Xi

n
= 0 almost surely (a.s.).

Móricz [5] introduced the concept of blockwise independence for a sequence of random variables and extended
a classical SLLN of Kolmogorov (see, e.g., Chow and Teicher [2], p. 124) to the blockwise m-dependent case.
Gaposhkin [3] also studied the SLLN problem for sequences of blockwise independent random variables.

In the current work, we provide a Brunk-Chung type SLLN for sequences of blockwise m-dependent random
variables {Xn, n ≥ 1}. Conditions are provided for

lim
n→∞

∑n
i=1Xi

bn
= 0 a.s.
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to hold where {bn, n ≥ 1} is a sequence of positive constants with bn ↑ ∞. The current work also extends results
of Móricz [5], and Gaposhkin [3]. Our proofs are substantially simpler than those of the earlier counterparts
thanks to a recent and elementary result of Chobanyan, Levental, and Mandrekar [1].

The plan of the paper is as follows. Technical definitions, notation, and the lemmas and other results used in
the proofs of the main results or their corollaries are consolidated into Section 2. In Section 3, the main results,
some corollaries and illustrative examples are presented.

2. Preliminaries

Some definitions and preliminary results will be presented in prior to establishing the main result.
Let m be a nonnegative integer. A finite collection of random variables {X1, . . . , Xn} is said to be

m-dependent if either n ≤ m + 1 or n > m + 1 and the random variables {X1, . . . , Xi} are independent of
the random variables {Xj, . . . , Xn} whenever j− i > m. A sequence of random variables {Xn, n ≥ 1} is said to
be m-dependent if for each n ≥ 1, the random variables {X1, . . . , Xn} are m-dependent.

Let {βk, k ≥ 1} be a strictly increasing sequence of positive integers with β1 = 1 and set Bk = [βk, βk+1).
A sequence of random variables {Xn, n ≥ 1} is said to be blockwise m-dependent with respect to the blocks
{Bk, k ≥ 1} if for each k ≥ 1, the random variables {Xi, i ∈ Bk} are m-dependent.

The following notation will be used throughout this paper. For x ≥ 0, let [x] denote the greatest integer less
than or equal to x. We use log to denote the logarithm to the base 2. The symbol C denotes a generic constant
(0 < C <∞) which is not necessarily the same one in each appearance.

For {βk, k ≥ 1} and {Bk, k ≥ 1} as above, we introduce the following notation:

B(l) = {k : 2l ≤ k < 2l+1}, l ≥ 0,

B
(l)
k = Bk ∩B(l), k ≥ 1, l ≥ 0,

Il = {k ≥ 1 : B(l)
k �= ∅}, l ≥ 0,

r
(l)
k = min{r : r ∈ B

(l)
k }, k ∈ Il, l ≥ 0,

cl = cardIl, l ≥ 0,

dl = max
k∈Il

cardB(l)
k , l ≥ 0,

ϕ(n) =
∞∑
l=0

clIB(l)(n), n ≥ 1,

φ(n) =
∞∑
l=0

dlIB(l)(n), n ≥ 1,

ψ(n) = max
k≤n

ϕ(k), n ≥ 1

where IB(l) denotes the indicator function of the set B(l), l ≥ 0.
It is easy to verify that the following relations prevail.
(i) If βk = 2k−1, k ≥ 1, then

sl = 1, l ≥ 0, ϕ(n) = 1, n ≥ 1, and n/2 ≤ φ(n) ≤ n, n ≥ 1. (2.1)

(ii) If βk = [qk−1] for all large k where q > 1, then

sl = O(1), ϕ(n) = O(1), and φ(n) = O(n). (2.2)
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(iii) If βk = [2(k−1)α

] for all large k where 0 < α < 1, then

sl = O(l(1−α)/α), ϕ(n) = O((log n)(1−α)/α), and φ(n) = O(n(log n)α−1). (2.3)

(iv) If βk = [kα], k ≥ 1 where α > 1, then

sl = O(2l/α) and ϕ(n) = O(n1/α), and φ(n) = O(n(α−1)/α). (2.4)

(v) If βk = k, k ≥ 1, then

sl = 2l, l ≥ 0, n/2 ≤ ϕ(n) ≤ n, n ≥ 1, and φ(n) = 1, n ≥ 1. (2.5)

(vi) For any sequence {βk, k ≥ 1}

ϕ(n) ≤ n, n ≥ 1, and φ(n) ≤ n, n ≥ 1. (2.6)

Lemma 2.1. Let {Xn, n ≥ 1} be a sequence of independent random variables with EXn = 0, n ≥ 1 and let
p > 1. Then

E

((
max

1≤j≤n

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣
)p)

≤ CE

(
n∑

i=1

X2
i

)p/2

(2.7)

where the constant C does not depend on n.

Proof. By Doob’s submartingale maximal inequality (see, e.g., Chow and Teicher [2], p. 255)) and the
Marcinkiewicz-Zygmund inequality (see, e.g., Chow and Teicher [2], p. 386)), for n ≥ 1

E

((
max

1≤j≤n

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣
)p)

≤
(

p

p− 1

)p

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p

≤ CE

(
n∑

i=1

X2
i

)p/2

establishing (2.7). �

Lemma 2.2. Let {Xi, 1 ≤ i ≤ n} be a collection of m-dependent random variables with EXi = 0, 1 ≤ i ≤ n
and let p ≥ 1. Then there exists a constant C depending only on m and p such that

E

((
max

1≤j≤n

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣
)p)

≤ C
n∑

i=1

E|Xi|p, 1 ≤ p ≤ 2. (2.8)

E

((
max

1≤j≤n

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣
)p)

≤ Cnp/2−1
n∑

i=1

E|Xi|p, p ≥ 2. (2.9)

Proof. If n ≤ m+ 1, then Lemma 2.2 is trivial. So let n > m+ 1.



STRONG LAW OF LARGE NUMBERS 261

In the case p = 1, note that for all n ≥ 1

E

(
max

1≤j≤n

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣
)

≤ E

(
max

1≤j≤n

j∑
i=1

|Xi|
)

= E

(
n∑

i=1

|Xi|
)

=
n∑

i=1

E|Xi|

establishing (2.8).
In the case p > 1, for n ≥ m+ 1

E

((
max

1≤j≤n

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣
)p)

≤ E

((
m+1∑
j=1

max
0≤k(m+1)≤n−j

∣∣∣∣∣
k∑

i=0

Xi(m+1)+j

∣∣∣∣∣
)p)

≤ (m+ 1)p−1
m+1∑
j=1

E

((
max

0≤k(m+1)≤n−j

∣∣∣∣∣
k∑

i=0

Xi(m+1)+j

∣∣∣∣∣
)p)

≤ C
m+1∑
j=1

E

(( ∑
0≤i(m+1)≤n−j

X2
i(m+1)+j

)p/2)
(by Lem. 2.1). (2.10)

If 1 < p ≤ 2, then

m+1∑
j=1

E

(( ∑
0≤i(m+1)≤n−j

X2
i(m+1)+j

)p/2)
≤

m+1∑
j=1

E

( ∑
0≤i(m+1)≤n−j

|Xi(m+1)+j |p
)

=
n∑

i=1

E|Xi|p. (2.11)

The conclusion (2.8) follows immediately from (2.10) and (2.11).
If p ≥ 2, then

m+1∑
j=1

E

(( ∑
0≤i(m+1)≤n−j

X2
i(m+1)+j

)p/2)
≤ np/2−1

m+1∑
j=1

E

( ∑
0≤i(m+1)≤n−j

|Xi(m+1)+j |p
)

(since (n− j)/(m+ 1) ≤ n, j = 1, . . . ,m+ 1)

= np/2−1
n∑

i=1

E|Xi|p. (2.12)

The conclusion (2.9) follows immediately from (2.10) and (2.12). �
Lemma 2.3 (Chobanyan, Levental, and Mandrekar [1]). Let {Xn, n ≥ 1} be a sequence of random variables,
let {bn, n ≥ 1} be a nondecreasing sequence of positive constants, and let {kn, n ≥ 0} be a sequence of positive
integers such that

inf
n≥0

bkn+1

bkn

> 1 and sup
n≥0

bkn+1

bkn

<∞. (2.13)
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Then

lim
n→∞

∑n
i=1Xi

bn
= 0 a.s. (2.14)

if and only if

lim
n→∞

maxkn≤k<kn+1 |
∑k

i=kn
Xi|

bkn+1 − bkn

= 0 a.s. (2.15)

Remark 2.4.
(i) Note that the first half of (2.13) ensures that {kn, n ≥ 0} is strictly increasing and limn→∞ bn = ∞.
(ii) It follows that if (2.15) holds for some sequence of positive integers {kn, n ≥ 0} satisfying (2.13),

then (2.15) holds for every sequence of positive integers {kn, n ≥ 0} satisfying (2.13). Thus, in order to
prove the SLLN (2.14), nothing is lost in working with a convenient sequence such as kn = 2n, n ≥ 0. This
remark was made by Chobanyan, Levental, and Mandrekar [1].

3. Results

With the preliminaries accounted for, the main results may now be established. When p = 1, m = 0,
and bn ≡ n, Theorem 3.1 was obtained by Gaposhkin [3] using a substantially more complicated argument.
Gaposhkin’s [3] result is an extension of an earlier result of Móricz [5] which was apparently the first SLLN for
a sequence of blockwise m-dependent random variables.

Theorem 3.1. Let {Xn, n ≥ 1} be a sequence of random variables with EXn = 0, n ≥ 1, let p ≥ 1 and let
{bn, n ≥ 1} be a nondecreasing sequence of positive constants such that

inf
n≥0

b2n+1

b2n

> 1 and sup
n≥0

b2n+1

b2n

<∞. (3.1)

If {Xn, n ≥ 1} is blockwise m-dependent with respect to the blocks {Bk, k ≥ 1} and if

∞∑
n=1

E|Xn|2p

b2p
n

(ϕ(n))2p−1(φ(n))p−1 <∞, (3.2)

then the SLLN

lim
n→∞

1
bn

n∑
i=1

Xi = 0 a.s. (3.3)

obtains.

Proof. Set

T
(l)
k = max

j∈B
(l)
k

∣∣∣∣∣∣∣
j∑

i=r
(m)
k

Xi

∣∣∣∣∣∣∣ , k ∈ Il, l ≥ 0

and

Tl =
1

b2l+1

∑
k∈Il

T
(l)
k , l ≥ 0.
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Note that for l ≥ 0,

E(Tl)2p ≤ 1
b2p
2l+1

c2p−1
l

∑
k∈Il

E(T (l)
k )2p

≤ 1
b2p
2l+1

c2p−1
l C

∑
k∈Il

∑
i∈B

(l)
k

(cardB(l)
k )p−1E|Xi|2p (by Lem. 2.2)

≤ 1
b2p
2l+1

c2p−1
l dp−1

l

2l+1−1∑
i=2l

E|Xi|2p

≤ C

2l+1−1∑
i=2l

E|Xi|2p

b2p
i

(ϕ(i))2p−1(φ(i))p−1.

It follows from (3.2) that
∑∞

l=0ET
2p
l <∞ and so by the Markov inequality and the Borel-Cantelli lemma

lim
l→∞

Tl = 0 a.s.

Now it follows from the first half of (3.1) that

max2l≤k<2l+1 |∑k
i=2l Xi|

b2l+1 − b2l

≤ Cmax2l≤k<2l+1 |∑k
i=2l Xi|

b2l+1
≤ CTl → 0 a.s.

The conclusion (3.3) follow immediately from Lemma 2.3. �

Remark 3.2.
(i) The slower bn ↑ ∞, the stronger is the assumption (3.2) but so is the conclusion (3.3).
(ii) When (3.1) holds where 0 < bn ↑, n = O(bn) and

cl = o(al) for all a > 1, (3.4)

then a sufficient condition for (3.2) to hold is that

∞∑
n=1

E|Xn|2p

bq+1
n

<∞ for some 0 < q < p. (3.5)

To see this, it follows from the first half of (3.1) that b2n+1/b2n ≥ 1 + δ for some δ > 0 and all n ≥ 0. Thus for
all l ≥ 1,

b2l = b1

l−1∏
j=0

b2j+1

b2j

≥ b1(1 + δ)l. (3.6)
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Hence

∞∑
n=1

E|Xn|2p

b2p
n

(ϕ(n))2p−1(φ(n))p−1 ≤
∞∑

n=1

E|Xn|2p

bp+1
n

(ϕ(n))2p−1

(
n

bn

)p−1

(by (2.6))

≤ C

∞∑
n=1

E|Xn|2p

bp+1
n

(ϕ(n))2p−1 (since n = O(bn))

= C

∞∑
l=0

2l+1−1∑
i=2l

E|Xi|2p(ϕ(i))2p−1

bq+1
i bp−q

i

≤ C

∞∑
l=0

2l+1−1∑
i=2l

E|Xi|2pc2p−1
l

bq+1
i bp−q

2l

≤ C

∞∑
l=0

2l+1−1∑
i=2l

E|Xi|2pc2p−1
l

bq+1
i bp−q

1 (1 + δ)(p−q)l
(by (3.6))

≤ C
∞∑

l=0

2l+1−1∑
i=2l

E|Xi|2p

bq+1
i

(by (3.4) with a = (1 + δ)(p−q)/(2p−1))

= C

∞∑
n=1

E|Xn|2p

bq+1
n

<∞ (by (3.5))

thereby establishing (3.2).
We next present alternative version of Theorem 3.1.

Theorem 3.3. Let {Xn, n ≥ 1} be a sequence of random variables with EXn = 0, n ≥ 1, let p ≥ 1 and let
{bn, n ≥ 1} be a nondecreasing sequence of positive constants satisfying (3.1). If {Xn, n ≥ 1} is blockwise
m-dependent with respect to the blocks {Bk, k ≥ 1} and if

∞∑
n=1

E|Xn|2p

b2p
n

(φ(n))p−1 <∞, (3.7)

then the SLLN

lim
n→∞

∑n
i=1Xi

bn(ψ(n))(2p−1)/(2p)
= 0 a.s. (3.8)

obtains.

Proof. Define T (l)
k , k ∈ Il, l ≥ 0 as in the proof of Theorem 3.1 and set

τl =
1

(b2l+1 − b2l)(ψ(2l))(2p−1)/(2p)

∑
k∈Il

T
(l)
k , l ≥ 0.
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Note that for l ≥ 0,

Eτ2p
l ≤ C

b2p
2l+1(ψ(2l))2p−1

c2p−1
l

∑
k∈Il

E(T (l)
k )2p (by the first half of (3.1))

≤ C

b2p
2l+1

∑
k∈Il

E(T (l)
k )2p

≤ C

b2p
2l+1

∑
k∈Il

∑
i∈B

(l)
k

(cardB(l)
k )p−1E|Xi|2p (by Lem. 2.2)

≤ C

b2p
2l+1

dp−1
l

2l+1−1∑
i=2l

E|Xi|2p

≤ C
2l+1−1∑

i=2l

E|Xi|2p

b2p
i

(φ(i))p−1.

It follows from (3.7) that
∑∞

l=0Eτ
2p
l <∞ and so by the Markov inequality and the Borel-Cantelli lemma

lim
l→∞

τl = 0 a.s. (3.9)

Note that for n ≥ 1, letting M ≥ 0 be such that 2M ≤ n < 2M+1,

|∑n
i=1Xi|

bn(ψ(n))(2p−1)/(2p)
≤

∑M
l=0

∑
k∈Il

T
(l)
k

b2M (ψ(2M ))(2p−1)/(2p)

≤
M∑
l=0

b2l+1 − b2l

b2M

τl. (3.10)

The conclusion (3.8) follow immediately from the second half of (3.1), (3.9), (3.10) and the Toeplitz lemma (see,
e.g., Loève [4], p. 250). �

Some particular cases may now be presented as corollaries. When p = 1, m = 0, and bn ≡ n, Corollaries 3.4,
3.5, and 3.6 reduce to results of Gaposhkin [3]. This special case of Corollary 3.4 is also the SLLN for a sequence
of blockwise m-dependent random variables obtained by Móricz [5].

Corollary 3.4. Let {Xn, n ≥ 1} be a sequence of random variables with EXn = 0, n ≥ 1 and let {bn, n ≥ 1} be
a nondecreasing sequence of positive constants such that (3.1) holds. If {Xn, n ≥ 1} is blockwise m-dependent
with respect to the blocks {[2k−1, 2k), k ≥ 1} (or, more generally, with respect to the blocks {[βk, βk+1), k ≥ 1}
where βk = [qk−1] for all large k and q > 1) and if

∞∑
n=1

np−1E|Xn|2p

b2p
n

<∞, (3.11)

then the SLLN (3.3) obtains.

Proof. Recalling (2.1) and (2.2), the assumption (3.11) ensures that (3.2) holds. The conclusion follows directly
from Theorem 3.1. �

Corollary 3.5. Let {Xn, n ≥ 1} be a sequence of random variables with EXn = 0, n ≥ 1 and let {bn, n ≥ 1} be
a nondecreasing sequence of positive constants such that (3.1) holds. If {Xn, n ≥ 1} is blockwise m-dependent
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with respect to the blocks {[βk, βk+1), k ≥ 1} where βk = [2(k−1)α

] for all large k where 0 < α < 1 and if

∞∑
n=1

np−1E|Xn|2p

b2p
n

(logn)(1−α)(2p+α−αp−1)/α <∞, (3.12)

then the SLLN (3.3) obtains.

Proof. Recalling (2.3), the assumption (3.12) ensures that (3.2) holds. The conclusion follows directly from
Theorem 3.1. �

Corollary 3.6. Let {Xn, n ≥ 1} be a sequence of random variables with EXn = 0, n ≥ 1 and let {bn, n ≥ 1} be
a nondecreasing sequence of positive constants such that (3.1) holds. If {Xn, n ≥ 1} is blockwise m-dependent
with respect to the blocks {[βk, βk+1), k ≥ 1} where βk = [kα] for all large k where α > 1 and if

∞∑
n=1

n(pα+p−α)/αE|Xn|2p

b2p
n

<∞, (3.13)

then the SLLN (3.3) obtains.

Proof. Recalling (2.4), the assumption (3.13) ensures that (3.2) holds. The conclusion follows directly from
Theorem 3.1. �

The following corollary extends the Brunk-Chung strong law of large numbers to the blockwise m-dependent
case.

Corollary 3.7. Let {Xn, n ≥ 1} be a sequence of random variables with EXn = 0, n ≥ 1. If {Xn, n ≥ 1} is
blockwise m-dependent with respect to the blocks {Bk, k ≥ 1} and if

∞∑
n=1

E|Xn|2p

np+1
(ϕ(n))2p−1 <∞, (3.14)

then the SLLN

lim
n→∞

∑n
i=1Xi

n
= 0 a.s. (3.15)

obtains.

Proof. Recalling (2.6), the assumption (3.14) ensures that (3.2) holds for bn = n, n ≥ 1. The conclusion (3.15)
follows directly from Theorem 3.1. �

We close by presenting two examples. These examples show that Theorem 3.1 can fail if the series in (3.2) di-
verges. More specifically, Examples 3.8 shows that we can not replace (3.2) by the weaker condition
(E|Xn|2p(ϕ(n))2p−1(φ(n))p−1)/b2p

n = o(1).

Example 3.8. Let bn ≡ n and let X be a random variables with P{X = 1} = P{X = −1} = 1/2. Set
Xn = X,n ≥ 1. Then {Xn, n ≥ 1} is blockwise m-dependent with respect to the blocks {[k, k + 1), k ≥ 1}.
Recalling (2.5),

∞∑
n=1

E|Xn|2p

n2p
(ϕ(n))2p−1(φ(n))p−1 ≥ C

∞∑
n=1

1
n2p

n2p−1

= ∞
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and so (3.2) fails. Note that for all n ≥ 1∑n
i=1Xi

n
=
nX

n
= X �= 0 a.s.

Thus (3.3) fails. Again recalling (2.5),

E|Xn|2p

n2p
(ϕ(n))2p−1(φ(n))p−1 = C

1
n2p

n2p−1

=
C

n
→ 0 as n→ ∞.

As Example 3.8, Example 3.9 also shows that Theorem 3.1 can fail if the series in (3.2) diverges.

Example 3.9. Let p ≥ 1, and let {Yn, n ≥ 1} be a sequence of 0-dependent random variables such that
EYn = 0, n ≥ 1 and

P{|Yn| = (2n− 1)(p+1)/(2p)} =
1

1 + log n
, P{|Yn| = 0} = 1 − 1

1 + log n
, n ≥ 1.

Let Xn = Yn−2l+1, 2l ≤ n < 2l+1, l ≥ 0 and let bn = n(p+1)/(2p), n ≥ 1. Then EXn = 0, n ≥ 1 and {Xn, n ≥ 1}
is blockwise 0-dependent with respect to the blocks {[2k−1, 2k), k ≥ 1}. Now X2l+1−1 = Y2l , l ≥ 0 and so
{X2l+1−1, l ≥ 0} is a sequence of independent random variables with

P{|X2l+1−1| = (2l+1 − 1)(p+1)/(2p)} =
1

l + 1
, P{X2l+1−1 = 0} =

l

l + 1
, l ≥ 0.

Then recalling (2.1),

∞∑
n=1

E|Xn|2p

b2p
n

(ϕ(n))2p−1(φ(n))p−1 ≥ C

∞∑
n=1

E|Xn|2p

np+1
np−1

≥ C
∞∑

l=0

E|X2l+1−1|2p

(2l+1 − 1)2

= C

∞∑
l=0

(2l+1 − 1)p+1

(l + 1)(2l+1 − 1)2
= ∞

and so (3.2) fails. Also since

∞∑
l=0

P{|X2l+1−1| = (2l+1 − 1)(p+1)/(2p)} =
∞∑
l=0

1
l + 1

= ∞,

by the Borel-Cantelli lemma

P{|X2l+1−1| = (2l+1 − 1)(p+1)/(2p) i.o. (l)} = 1.

Thus,

1 = lim sup
l→∞

|X2l+1−1|
(2l+1 − 1)(p+1)/(2p)

≤ lim sup
n→∞

|Xn|
n(p+1)/(2p)

≤ lim sup
n→∞

|∑n
i=1Xi|

n(p+1)/(2p)
+ lim sup

n→∞
|∑n−1

i=1 Xi|
(n− 1)(p+1)/(2p)

a.s.
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implying

lim sup
n→∞

|∑n
i=1Xi|
bn

= lim sup
n→∞

|∑n
i=1Xi|

n(p+1)/(2p)
≥ 1

2
a.s.

Thus (3.3) fails.
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