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STEIN ESTIMATION FOR INFINITELY DIVISIBLE LAWS ∗

R. Averkamp1 and C. Houdré2

Abstract. Unbiased risk estimation, à la Stein, is studied for infinitely divisible laws with finite
second moment.
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Let us start by briefly recalling the framework and results of Stein [6]: Let Xi, i = 1, . . . , n, be i.i.d. N(0, σ2)
random variables and let g = (g1, . . . , gn) : Rn −→ Rn, be “weakly differentiable.” Then for all θ ∈ Rn,

E‖X + θ + g(X + θ) − θ‖2
2 = nσ2 + E‖g(X + θ)‖2

2 + 2σ2E
n∑

i=1

∂

∂xi
gi(X + θ), (1)

where ‖ · ‖2 is the Euclidean norm. Thus the risk of the estimator x + g(x) can be estimated unbiasedly by
nσ2+g(x)2+2σ2

∑n
i=1

∂gi

∂xi
(x). This estimate is useful only if the variance of the risk estimate is small compared

to the actual risk. This is especially the case if gi only depends on Xi, since then the strong law of large numbers
kicks in. For normal random variables the existence of the above estimates is based on the identity∫

R

g′(x)e−x2/2dx =
∫

R

xg(x)e−x2/2dx.

Below, we obtain a corresponding identity for infinitely divisible random variables with finite variance, by
replacing g′ with K(g) where K is an operator commuting with translations.

Let f be a density on R, with mean 0 and variance σ2 (for simplicity of notation we concentrate on the
univariate case, but see Rem. 5). Let d(x) = x + g(x) be an estimator in the location model induced by f . Let
F = {f ∗ δθ : θ ∈ R}, and let L2(F ) and L1(F ) have their canonical meaning. We want to estimate the risk of
d unbiasedly:∫

R

(d(x + θ) − θ)2f(x)dx =
∫

R

g(x + θ)2f(x)dx +
∫

R

x2f(x)dx + 2
∫

R

xg(x + θ)f(x)dx.
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In the above right hand side, the first summand can be estimated unbiasedly, the second is a constant, so we
just need to find a function h ∈ L1(F ) such that

∫
R

h(x + θ)f(x)dx =
∫

R

xg(x + θ)f(x)dx. (2)

If g is a polynomial the right-hand side of (2) is itself a polynomial in θ. It is then well-known that there exists
an h satisfying (2). But if g is the soft-thresholding operator, i.e., g(x) = T S

λ (x) = (|x| − λ)+sgn(x), then g
does not even have a power series expansion. Moreover, h does not have to be unique. Indeed, h + q is also a
solution for any function q such that q ∗ f = 0 (if f̂ , the Fourier transform of f , vanishes such q might exists).

Hence, let us assume that f̂ does not have any zero. By computing the generalized Fourier transform of both
sides of ∫

R

g(−x + θ)(−x)f(−x)dx =
∫

R

h(−x + θ)f(−x)dx, (3)

we get:

ĝ(w)(f̂ )′(−w) = iĥ(w)f̂ (−w). (4)

This identity shows that if ĝ converges to 0 fast enough, e.g., if ĝ has compact support, then there exists an h

such that (2) holds. Since f̂ does not vanish, h is uniquely determined. Hence the set

Uf :=
{
g ∈ L2(F ) : ∃h ∈ L1(F ),

∫
R

h(x + θ)f(x)dx =
∫

R

xg(x + θ)f(x)dx, ∀θ ∈ R

}
,

is a vector space and clearly there is a unique linear map Kf : Uf −→ L1(f) with

∫
R

Kf(g)(x + θ)f(x)dx =
∫

R

g(x + θ)xf(x)dx.

Let us present some properties of Kf :

Theorem 1. Let f, f1, f2 be densities with finite second moment, and let Kf , Kf1 and Kf2 be well defined.
Then for all b ∈ R and g ∈ Uf , respectively g ∈ Uf1∗f2 :

(1) Kf(g(· + b)) = Kf(g)(· + b);
(2) Kf∗δb

(g) = Kf(g) + bg(·);
(3) Kf1∗f2(g) = Kf1(g) + Kf2(g);
(4) Kbf(·b)(g) = Kf (g(·/b))(·b)/b, for b > 0.

Proof.
1.

∫
R

g(x + θ + b)xf(x)dx =
∫

R
Kf(g)(x + θ + b)f(x)dx and thus Kf (g(· + b)) = Kf (g)(· + b).

2. ∫
R

xg(x + θ)f(x − b)dx =
∫

R

(Kf (g)(x + θ + b) + bg(x + θ + b))f(x)dx

=
∫

R

(Kf (g)(x + θ) + bg(x + θ))f(x − b)dx.
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3. Let h1, h2 be such that
∫

R
g(x + θ)xfi(x)dx =

∫
R

hi(x + θ)fi(x)dx, i = 1, 2, then

∫
R

(h1 + h2)(z + θ)(f1 ∗ f2)(z)dz

=
∫

R

∫
R

(h1(x + y + θ) + h2(x + y + θ))f1(x)f2(y)dxdy

=
∫

R

∫
R

h1(x + y + θ)f1(x)dxf2(y)dy +
∫

R

∫
R

h2(y + x + θ)f2(y)dyf1(x)dx

=
∫

R

g(z + θ)z(f1 ∗ f2)(z)dz.

4. ∫
R

g(x + θ)x(bf(bx))dx =
∫

R

g(x/b + θ)xf(x)/bdx

=
∫

R

g((x + bθ)/b)x/bf(x)dx

=
∫

R

Kf (g(·/b))(x + bθ)/bf(x)dx

=
∫

R

Kf (g(·/b))((x + θ)b)/b(bf(xb))dx, �

and thus Kbf(·b)(g) = Kf (g(·/b))(·b)/b.

Note that the third property presented above is very useful for wavelet analysis, since the law of the noise in
a wavelet coefficient is a weighted convolution of the noise in the original data.

For the normal distribution with unit variance the operator K is given by K(g) = g′, i.e.K is the differenti-
ation operator. In general K is quite complicated to compute, however from (4) we see that formally

K̂f (g)(w) = ĝ(w)(f̂ )′(−w)/(f̂(−w)i).

This suggest that h can be computed by a convolution of the estimator and of a function or measure, which is
the inverse Fourier transform of (f̂)′(−w)/(f̂(−w)i). Let us try to further formalize this claim. Assume that
Kf(g) := Kf ∗ g, where Kf ∈ L1(R) and K̂f = (f̂)′(−·)/(f̂(−·)i). If g ∈ L∞(R), then Kf ∗ g does what it is
supposed to do: ∫

R

(Kf ∗ g)(x + θ)f(x)dx =
∫

R

∫
R

Kf (x − t)g(t + θ)dtf(x)dx

=
∫

R

∫
R

Kf (x − t)f(x)dxg(t + θ)dt

=
∫

R

∫
R

Kf (−(t − x))f(x)dxg(t + θ)dt

=
∫

R

(Kf (−·) ∗ f(·))(t)g(t + θ)dt

=
∫

R

tf(t)g(t + θ)dt,
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where the last equality follows from the construction of K:

K̂(−·)f̂ =
(f̂)′

i
= ̂(f(·)id).

If Kf is known, then it can still be a problem to compute Kf (g), since Kf (g) is not necessarily as simple as g′. If
g =

∑
i gi and the Kf(gi) are easy to compute, then we can compute Kf(g) since Kf is linear. For example we

can take g+
λ (x) = (x−λ)+ and g−λ (x) := (x−λ)− as simple building blocks for functions. Note that Kf (g+

λ )(x) =
Kf(g+

0 )(x − λ) and Kf(g−0 )(x) = σ2 − Kf (g+
0 )(x), if

∫
R

xf(x)dx = 0 and
∫

R
x2f(x)dx = σ2. For example the

soft thresholding estimator T S
λ as well as T M

λ given by T M
λ (x) := x1{|x|≥λ} + 2(|x| − λ/2)+sgn(x)1{|x|<λ}, have

the following decompositions:

T S
λ (x) = x − g+

0 (x) + g+
λ (x) − g−0 (x) + g−−λ(x), (5)

T M
λ (x) = x − g+

0 (x) + 2g+
λ/2(x) − g+

λ (x) − g−0 (x) + 2g−−λ/2(x) − g−−λ(x).

For a further example, assume that g : R+ −→ R, is twice continuously differentiable with g(0) = 0, then
g(x) = g′(0+)x+ +

∫ ∞
0

(x − y)+g′′(y)dy.
Another simple example is provided by compound Poisson distributions. Indeed, let F be a compound

Poisson distribution with Fourier transform exp(λ(Ψ(w) − 1)), where Ψ is the characteristic function of the
density f . Then

K̂F =
λΨ′(−w)

i
,

and thus KF (x) = −λf(−x)x, i.e.KF (g) = KF ∗ g. Since compound distributions are building blocks for
infinitely divisible ones, and since infinitely divisible characteristic functions have no real zeros, we are led to:

Theorem 2. Let f be an infinitely divisible density with finite second moment, i.e., let

f̂(t) = exp
(

ibt +
∫

R

(
exp(ixt) − 1 − ixt

x2

)
M(dx)

)
, (6)

where M , the Lévy measure, is a finite positive measure. Let M({0}) = 0, let b = 0 and let g be Lipschitz.
Then,

K(g)(t) :=
∫

R

g(t + x) − g(t)
x

M(dx), (7)

is a well defined real valued function, which is moreover bounded and continuous. Furthermore,∫
R

K(g)(x + θ)f(x)dx =
∫

R

xg(x + θ)f(x)dx.

Proof. It is clear that K(g) is well defined, bounded and continuous. If g has compact support then
∫

R
|g(x +

y) − g(x)|/|y|M(dy) and K(g) are in L1(R) and

K̂(g)(t) =
∫

R

∫
R

g(y + x) − g(y)
x

M(dx) exp(ity)dy

=
∫

R

∫
R

g(y + x) − g(y)
x

exp(ity)dyM(dx)

= ĝ(t)
∫

R

exp(−ixt) − 1
x

M(dx).

Since
∫

R
(exp(−ixt) − 1)/xM(dx) = (f̂)′(−t)/(f̂(−t)i), the Fourier transforms of

∫
R

K(g)(x + θ)f(x)dx and
of

∫
R

g(x + θ)xf(x)dx are equal and thus these two terms are themselves equal, for all θ ∈ R.
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If g is Lipschitz but does not have compact support, then let gn(x) := (1 − |x|/n)+g(x). Then the Lipschitz
constants of the gn form a bounded set. Moreover, gn and K(gn) converge pointwise, respectively, to g and
to K(g). Clearly, since ‖K(gn)‖∞ is bounded, limn−→∞

∫
R

gn(x + θ)xf(x)dx =
∫

R
g(x + θ)xf(x)dx, while

limn−→∞
∫

R
K(gn)(x + θ)f(x)dx =

∫
R

K(g)(x + θ)f(x)dx, for all θ. Hence,∫
R

K(g)(x + θ)f(x)dx =
∫

R

g(x + θ)xf(x)dx.

�

Remark 3. The assumption b = 0, is not serious, b is a location parameter of the density and thus we can
appeal to Theorem 1. The condition M({0}) = 0 is not restrictive either. If M({0}) = σ2, then the distribution
is the convolution of a centered normal distribution with variance σ2 and of an infinitely divisible distribution
with Lévy measure without atom at the origin. Again we can use Theorem 1 in this situation. Hence in the
general case we obtain:

K(g)(t) := bg(t) + M({0})g′(t) +
∫

R\{0}

g(t + x) − g(t)
x

M(dx).

We also note here that although of little interest to us since we are dealing with mean square errors, the operator
K in (7) could as well be defined (slightly modified) just under a finite first moment assumption on X (in this
case, the representation (6) should be slightly changed, and so should be the requirements on M).

Remark 4. Let f be a density with mean zero and variance σ2. Without loss of generality let also Kf(1) = 0.
Let fn = ∗n

i=1

√
nf(·√n). By the central limit theorem fn converges in distribution to a normal density. So one

would expect Kfn to converge in some sense to σ2d/dx. Assume that Kf(g)(x) =
∫

R
(g(x+ y)− g(x))/yM(dy).

Note that if Kf(g) = Q ∗ g, where Q is a finite real measure, then with the notation Q−(A) := Q(−A),

(Q ∗ g)(x) =
∫

R

(g(x − y) − g(x)) Q(dy)

=
∫

R

g(x + y) − g(x)
y

yQ−(dy),

where the first equality holds since Kf (1) = 0, i.e.,
∫

R
1Q(dx) = 0. Next, since

∫
R

x(x+θ)f(x)dx =
∫

R
x2f(x)dx,

taking g(x) = x := id(x) gives Kf (x) := Kf (id)(x) = M(R) and thus
∫

R
Kf (x)f(x)dx =

∫
R

x2f(x)dx = σ2.
But, from Theorem 1, we know that Kfn(g)(x) = nKf(g(·/√n))(x

√
n)/

√
n. Using the form of Kf , this gives:

Kfn(g)(x) =
∫

R

g(x + y/
√

n) − g(x)
y/

√
n

M(dy).

Thus, if g is Lipschitz and differentiable, limn−→∞ Kfn(g)(x) = σ2g′(x).

Examples 1. Let f(x) = exp(−√
2|x|)/√2 be the variance normalized Laplace density. It is easy to see that,

f̂(w) = 2/(2 + w2). Thus

(f̂)′(w)

if̂(w)
=

2iw

2 + w2
,

and

K̂f (w) =
−2iw

2 + w2
= −iwf̂(w) = (̂f ′)(w).
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Thus Kf (x) = − exp(−√
2|x|)sgn(x) ∈ L1(R). Tedious but simple computations yield

Kf ∗ x+ =

{
exp(

√
2x)

2 : x ≤ 0
1 − exp(−√

2x)
2 : x > 0

}
:= h(x).

Using (5) we obtain

Kf (T S
λ (x) − x) = −h(x) − (1 − h(x)) + h(x − λ) + (1 − h(x + λ))

= h(x − λ) − h(x + λ).

Combining these results, we see that if X has a Laplace distribution,

E(T S
λ (X + θ) − θ)2 = 1 + E min((X + θ)2, λ2) + 2(h(X + θ − λ) − h(X + θ + λ)).

2. Let ft(x) = exp(−x)xt−1/Γ(t)1R+(x) be the density of the Gamma distribution. Since the mean of this dis-
tribution is t we want to compute Kft∗δ−t . Then by Feller [5], p. 567 log f̂t(x) = t

∫ ∞
0 (exp(iyx)−1)/y exp(−y)dy

and thus (log f̂t)′(x) = it
∫ ∞
0

exp(iyx) exp(−y)dy. Hence Kft(g) = Q ∗ g where Q ∈ L1(R) is given via

Q̂(x) = t

∫ ∞

0

exp(−iyx) exp(−y)dy = t

∫ 0

−∞
exp(ixy) exp(y)dy.

Hence Kft∗δ−t(g)(x) = t
∫ 0

−∞ exp(y)g(x − y)dy − tg(x).

3. Another example is the cosine hyperbolic density, f(x) = 1/ cosh(πx/2), again [5] p. 567

log(f̂(x)) =
∫

R

exp(ixy) − 1 − iyx

y2

y

exp(y) − exp(−y)
dy

and thus
Kf(g)(x) =

∫
R

g(x + y) − g(x)
y

y

exp(y) − exp(−y)
dy.

All the examples presented above are infinitely divisible and so K has a relatively nice form. Let us con-
sider a case which is not: The uniform distribution with density 2−11(−1,1). Assume g : [−1, 1] −→ R and
2−1

∫ 1

−1
g(x)dx = 0. If ḡ is the 2–periodic extension (to R) of g then 2−1ḡ ∗ 1(−1,1) = 0. Thus unbiased risk

estimators are not uniquely determined. Let

r(θ) = 2−1

∫ 1

−1

x(x + θ)+dx =

⎧⎪⎨⎪⎩
0 : θ ≤ −1
1
6 + θ

4 − θ3

12 : θ ∈ (−1, 1),
1
3 : θ ≥ 1.

After a few failed attempts one finds that with

h(x) =

{
0 : x ≤ 0
− (x−[x/2]2)(x−[x/2]2−2)

2 : x ≥ 0.

(h is the 2-periodic extension, to R+, of −x(x−2)/2 which is defined on [0, 2].) 2−1
∫ 1

−1
h(x+θ)dx = r(θ). So with

the help of (5) we can now compute an unbiased risk estimator for soft thresholding. Figure 1 shows the unbiased
risk estimators for soft thresholding with threshold 2 for the normal distribution, the Laplace distribution, the
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Figure 1. The unbiased risk estimators for soft thresholding.

gamma distribution with t = 2 and the uniform distribution. The distributions were transformed to have mean
zero and variance one. The horizontal axis corresponds to the observed values while the vertical one gives the
estimated risks.

Remark 5. As we have seen with (1), for normal random variables, unbiased risk estimation is possible for
multivariate means, even if the estimators for the coordinates are not independent. This is also possible for
other types of distributions, one has only to apply the operator K coordinatewise. Indeed, let Xi, i = 1, . . . , n
be random variables such that Xi has distribution Fi and EX1 = 0, EX2

1 = σ2
1 . Assume that an operator

K1 exists such that EX1g(X1 + θ1) = EK1(g)(X1 + θ1) for some g. If g : Rn −→ R and θ ∈ Rn then
E(X1 + g(X + θ) − θ1)2 = σ2

1 + Eg(X + θ)2 + 2EX1g(X + θ). Then, under the proper conditions on g,

EX1g(X + θ) =
∫

Rn−1

∫
R

x1g(x1 + θ1, . . . , xn + θn)F1(dx) ⊗n
i=2 Fi(d(x2, . . . , xn))

=
∫

Rn−1

∫
R

K1(g(·, x2 + θ2, . . . , xn + θn))(x1 + θ1)F1(dx) ⊗n
i=2 Fi(d(x2, . . . , xn)).

Thus E(X1 + g(X + θ) − θ1)2 = σ2
1 + Eg(X + θ)2+ 2EK1(g(·, X2 + θ2, . . . , Xn + θn)(X1 + θ1).

Actually, the multivariate infinitely divisible case can be done at once. Multivariate unbiased risk estimation
for θ := (θ1, . . . , θn) can be reduced to unbiased risk estimation for the coordinates θi ∈ R. The estimator for
θ ∈ Rn is given by d(x) := x+ g(x), x ∈ Rn, where g := (g1, . . . , gn) : Rn −→ Rn. Next, for the i-th component,
set

Ki(gi)(t) :=
∫

Rn

xi(gi(t + x) − gi(t))
‖x‖2

M(dx),

where now the Lévy measure M is a positive measure on Rn, without atom at the origin. It then follows that∫
Rn

Ki(gi)(x + θ)f(x)dx =
∫

Rn

xigi(x + θ)f(x)dx,

and from there we define the operator K := (K1, . . . , Kn).
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Remark 6. As the reader might have figured out by now, the motivation for the present paper comes from
thresholding methods in wavelet denoising (see [4]). In a function space approach to denoising, the thresholds
depend on the sample size n, on the Besov space to which the target functions belong to, and also on the Besov
norm of these targets. In practice it is often not known which threshold is appropriate since the function space
to which the signal belongs as well as the value of its norm are unknown. To bypass this problem, Donoho
and Johnstone developed a procedure called SureShrink where thresholds are chosen automatically (see [3]).
Their method, based on Stein’s unbiased risk estimate is as follows: for each level (except the highest levels)
in the noisy wavelet transform, the largest threshold (smaller than

√
2 log n) which minimizes the unbiased risk

estimate is chosen. For soft thresholding finding this minimum is simple and takes O(n log n) time.
As noticed in [1], the central limit theorem works fast for wavelet coefficients, so it is reasonable to apply the

normal adaptive results to the general non Gaussian framework. However, it is also of interest to understand
the scope of SureShrink beyond the normal framework. To do so, we needed to find unbiased risk estimates
for other types of distributions. This is what we did here for infinitely divisible and related noise. Indeed,
the (noisy) wavelet coefficients are linear combinations of the (noisy) input signal. Hence, if we are able to
compute the unbiased risk estimator, i.e., the operator K for the original (input) noise, then with the help of
Theorem 1 this can also be done for the noise in the wavelet coefficients. However, unlike in the Gaussian case,
the coordinatewise unbiased risk estimators are no longer independent. Also, our methods enable us to compute
the bias when applying the unbiased risk estimator for Gaussian noise to other kind of noise. Remark 4 gives
some hints that this bias becomes smaller for higher level, i.e., coarser, wavelet coefficients. With the approach
just briefly described, the scope of SureShrink could then be potentially extended using also the corresponding
threshold levels found in [1] and [2].
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[2] R. Averkamp and C. Houdré, Wavelet Thresholding for non necessarily Gaussian Noise: Functionality. Ann. Statist. 33 (2005)
2164–2193.

[3] D.L Donoho and I.M. Johnstone, Adapting to Unknown Smoothness via Wavelet Shrinkage. J. Amer. Statist. Assoc. 90 (1995)
1200–1224.

[4] D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard, Wavelet Shrinkage: Asymptotia? J. Roy. Statist. Soc. Ser. B
57 (1995) 301–369.

[5] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II. John Wiley & Sons (1966).
[6] C. Stein, Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 (1981) 1135–1151.


