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CYCLIC RANDOM MOTIONS IN R
d-SPACE WITH n DIRECTIONS

Aimé Lachal1

Abstract. We study the probability distribution of the location of a particle performing a cyclic
random motion in R

d. The particle can take n possible directions with different velocities and the
changes of direction occur at random times. The speed-vectors as well as the support of the distribution
form a polyhedron (the first one having constant sides and the other expanding with time t). The
distribution of the location of the particle is made up of two components: a singular component
(corresponding to the beginning of the travel of the particle) and an absolutely continuous component.

We completely describe the singular component and exhibit an integral representation for the ab-
solutely continuous one. The distribution is obtained by using a suitable expression of the location of
the particle as well as some probability calculus together with some linear algebra. The particular case
of the minimal cyclic motion (n = d + 1) with Erlangian switching times is also investigated and the
related distribution can be expressed in terms of hyper-Bessel functions with several arguments.
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1. Introduction

Historically, Fok [4], Goldstein [5], Griego and Hersh [6], Kac [7] studied the connection between random
evolutions and hyperbolic partial differential equations (see the monograph by Pinsky [20] for more references).
In this domain, 1-D telegrapher’s process which is related to the 1-D waves equation is certainly the most famous
motion.

Many authors attempt to define similar processes in higher dimensions with possibly variable velocities.
Numerous models in the literature deal with random motions with few directions in low dimension (2 or 3),
constant speed and exponential switching times for the changes of direction. We review several of them (the
list is not exhaustive):

• in dimension 2: Di Crescenzo [3], Kolesnik and Orsingher [8], Leorato et al. [11], Orsingher [13, 14],
Orsingher et al. [15–18] studied random motions with constant speed with three and four directions,
exponential switching times, the changes of direction obeying various rules (cyclic, reflecting, orthogonal
or random deviations);

• in dimension 3: Leorato and Orsingher [10], Orsingher and Sommella [19] considered random motions
with four directions changing with uniform law.

On the other hand, Di Crescenzo [2] studied a generalization of telegrapher’s process (random motion on the
line) getting rid of constraints on the speed and switching times. He introduced alternating velocities and
considered changes of direction occurring at Erlang distributed times.

Aside from this, the case of higher dimension arose in very few papers: Lachal et al. [9], Samoilenko [21, 22]
studied cyclic, minimal random motions in R

d, that is with d + 1 directions forming a regular hyper-hedron,
the directions being taken in a deterministic order.

Such evolutions can adequately describe (in simplified versions):

• particles moving in a turbulent medium, for example in the presence of a vortex (see Orsingher and
Ratanov [17]);

• electrons moving randomly in a conductor and changing direction (with damping of velocities) when
reaching the boundary of the conductor;

• the microscopic behavior of gas particles (or biological microorganisms) changing of direction when
collisions with other particles occur...

More specifically, cyclic random motions can be applied to concrete situations arising in various domains (see [2]):

• in insurance: a company get positive incomes from policyholders and pays indemnities when damages
occur. Incomes are regular but damages occur at random times. The profit gained by the company can
be modeled by a 1-D telegraph-type process with two velocities and random switching times;

• in reliability: consider a system where machines can break down. The profit gained when a machine
works and the cost paid when it is under repair can be modeled by a similar process with two different
random switching times;

• in queues: a single-server queueing system produces a positive gain when the server is busy and have a
cost to pay when the server is idle. This is also an alternating (cyclic) situation. More than two states
(busy-idle) may be considered. We postpone an extension of this example to the application displayed
in Section 2.

Now we describe the cyclic motion which is examined in this paper. Consider a particle moving in the
d-dimensional space R

d according to the following rules:

• the particle follows a finite number n of possible directions D1, . . . , Dn;
• for each direction, the particle moves with a constant velocity depending on the direction: along the

direction Dj , its speed-vector is given by the vector
−→
Vj with a constant norm Vj ∈ (0,+∞) depending

only on j, 1 ≤ j ≤ n;
• the directions change at random instants T1, T2, . . . and the laps of time between two switches, Tk+1−Tk,
k ≥ 1, are independent random variables;
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• the motion is cyclic, that is, the particle moves successively in the direction D1, D2, . . . , Dn, D1, D2, . . .
and so on, in this order; actually we shall write D1, D2, . . . , Dn, Dn+1, Dn+2, . . . with Dn+1 = D1,
Dn+2 = D2 and so on.

We suppose that the particle starts at the origin O at time T0 = 0 with direction D1 and velocity V1. This
assumption is not restrictive. Indeed, the results related to another initial direction may be easily deduced from
the case of D1 as an initial direction by simply translating the indices of the directions. The initial direction
may be chosen randomly as well; see for instance the case of the famous Goldstein-Kac telegraph process ([5]
and Section 4.1). We also suppose that n ≥ d+ 1; the case where n ≤ d is evoked at the beginning of Section 3.

We introduce the points Aj , 1 ≤ j ≤ n, defined by
−−→
OAj =

−→
Vj . Let vj = (v1j , . . . , vdj) be the coordinates

of the point Aj (or, equivalently, the components of the vector
−→
Vj). We also introduce some cyclic notations:

for any i ≥ 0 and 1 ≤ j ≤ n, Din+j = Dj , Ain+j = Aj ,
−→
Vin+j =

−→
Vj and vin+j = vj . We make the following

assumption:

Any ordered cyclic subset {Aj, . . . , Aj+d} of d+1 points within the set {A1, . . . , An} form a d-dimensional
polyhedron. By “d-dimensional”, we mean that this set is not contained inside a hyperplane (i.e. an
affine subvariety of dimension d−1) of R

d. Actually, the polyhedron Aj · · ·Aj+d is convex because d+1
points in dimension d always generate a convex polyhedron.

We call, for any j ≤ d+ 1, P
j
(t) the solid (j − 1)-dimensional convex polyhedron (tA1) · · · (tAj), and Pn(t) the

solid d-dimensional convex hull of the polyhedron (tA1) · · · (tAn); note that this last polyhedron may be convex
or not. The sets P

j
(t) and Pn(t) are analytically defined as

P
j
(t) =

{
j∑

k=1

tkAk with t1, . . . , tj ≥ 0 and
j∑

k=1

tk = t

}
, (1.1)

Pn(t) =

{
n∑
k=1

tkAk with t1, . . . , tn ≥ 0 and
n∑
k=1

tk = t

}
. (1.2)

Write, for any i ≥ 0 and 1 ≤ j ≤ n,

T
(j)
i = Tin+j − Tin+(j−1) and S

(j)
i =

i∑
k=0

T
(j)
k

respectively for the time during which the particle evolves in the direction Dj for the (i+1)th time (the motion
starts in the first cycle, which corresponds to i = 0), and for the total duration that the particle takes the
direction Dj up to the (i + 1)th cycle (the last one being included but possibly not completed). The random
variables T (j)

i , i ≥ 0, are identically distributed random variables with a probability distribution depending only
on the index j of the direction Dj and which is absolutely continuous with support [0,+∞).

Let F
T

(j)
0

(t) = P{T (j)
i > t} be the survival function of T (j)

i (which does not depend on i) and f
S

(j)
i

(t) =

P{S(j)
i ∈ dt}/dt be the probability density function (pdf) of S(j)

i .
Let us denote by X(t) and

−→
V (t) respectively the location and the speed-vector of the particle at time t. We

have

−→
V (t) =

∞∑
k=1

1l{Tk−1≤t<Tk}
−→
Vk
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and then, if Tr−1 ≤ t < Tr (with X(0) = O), the location of the particle at time t writes, noting that∑r−1
k=1(Tk − Tk−1) = Tr−1 (since T0 = 0),

X(t) = X(0) +
∫ t

0

−→
V (s) ds =

r−1∑
k=1

(Tk − Tk−1)vk + (t− Tr−1)vr =
r−1∑
k=1

(Tk − Tk−1)(vk − vr) + tvr .

By considering all the possible cycles and putting r = in+ j (which corresponds to i complete cycles and j di-
rections), this can be rewritten in terms of the n different directions as follows:

If i = 0, for t ∈ [Tj−1, Tj),

X(t) =
j−1∑
k=1

T
(k)
0 vk + (t− Tj−1)vj (1.3)

=
j−1∑
k=1

T
(k)
0 (vk − vj) + tvj . (1.4)

If i ≥ 1, for t ∈ [Tin+j−1, Tin+j),

X(t) =
j−1∑
k=1

S
(k)
i vk +

n∑
k=j

S
(k)
i−1vk + (t− Tin+j−1)vj . (1.5)

For j = 1, it should be understood in (1.3), (1.4) and (1.5) that
∑j−1
k=1 = 0.

The main purpose of this paper is to describe completely the probability distribution of X(t) by expressing
it in terms of those of the durations T (1)

i , . . . , T
(n)
i and S

(1)
i , . . . , S

(j−1)
i , S(j)

i−1, . . . , S
(n)
i−1. For this, we consider

the distribution of X(t) subject to follow the jth direction after having performed i complete cycles:

pij(dx; t) = P{X(t) ∈ dx, i complete cycles and j directions}
= P{X(t) ∈ dx, Tin+j−1 ≤ t < Tin+j}.

Actually, the probability distribution of X(t) is made up of a singular component and an absolutely continuous
component. Indeed, from (1.2), (1.3) and (1.5), we can see that the particle is located inside the time expanding
convex polyhedron Pn(t) (including its boundary). The particle will produce the singular component at the
beginning of its travel, that is, more precisely, during the first cycle (i = 0) with the first d directions (1 ≤ j ≤ d).
By (1.1) and (1.3), the support of this singular component is the hyper-face (tA1) · · · (tAd); this is the (d− 1)-
dimensional polyhedron P

d−1
(t). The rest of the travel—the end of the first cycle (i = 0) with the (n − d)

last directions (d + 1 ≤ j ≤ n), and the other cycles (i ≥ 1)—produce the absolutely continuous part of the
distribution; its support is the d-dimensional polyhedron (tA1) · · · (tAn), that is Pn(t).

The pdf of the absolutely continuous component of X(t), p(x; t) = p(dx; t)/dx, may be then derived by
summing pij(x; t) = pij(dx; t)/dx with respect to the indices i and j:

p(x; t) =
∞∑
i=1

n∑
j=1

pij(x; t) +
n∑

j=d+1

p0j(x; t)

whereas the singular part is given by the sum
∑d

j=1 p0j(dx; t).
Our method relies on relations (1.3), (1.4) and (1.5) and consists of computing the joint distribution of the

underlying durations S(j)
i . This way has been efficiently used by Di Crescenzo [2, 3] in the cases d = 1, n = 2

and d = 2, n = 3. Let us finally mention that a very close approach has also been used by Leorato and
Orsingher [10], and by Lachal, Leorato and Orsingher [9] in the case of a minimal cyclic motion (n = d + 1)
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with exponential switching times. In that particular case, the joint distribution of the S(j)
i ’s can be evaluated

by invoking order statistics.

2. Application: a multi-files queueing system

Consider a queueing system constituted of n single parallel queues Q1, . . . , Qn and only one server. The
server successively treats the queues Q1, Q2, . . . , Qn, Q1, Q2, . . . and so on in a cyclic order according to the
following rule: for 1 ≤ j ≤ n− 1, the server treats νj customers waiting in queue Qj , the duration T (j) of the
service offered to each customer being exponentially distributed with rate λj , and then instantaneously passes
to next queue Qj+1. As a byproduct, the duration of the service offered to queue Qj is distributed as Erlang’s
law of parameters νj and λj . After completing the service of queue Qn, the server return to queue Q1 and the
process goes on similarly.

On the other hand, the authority of the system have to pay numerous charges: running costs, maintenance
expenses, refund of loans, supplies, taxes, insurances... The authority can also place its profits into a diversified
portfolio. Assume that there are d kinds of charge/profit which have c1, . . . , cd as costs/values per time unit.
Consequently, the profit per time unit gained in queue Qj must be divided into d parts according to different
percentages; so, it is convenient to write this profit per time unit as a d-dimensional vector (v1j , . . . , vdj) in R

d.
Precisely, component vij will be the fraction of the profit per time unit won at queue Qj placed into the asset
of value ci if vij > 0, or devoted to paying charge ci if vij < 0.

Globally, the quantity X(t) represents the total amounts gained in the whole system intended to supply the
portfolio and to refund the various debts at time t.

Other rules may be appended to the foregoing situation:

• the time spent for the server to pass from a queue to the next one may be random and would possibly
generate a supplementary cost to the system. This is the so-called switchover time; see e.g. [1] for more
details about this situation;

• the server may leave a queue only when it is empty and then pass to the next one. In this case, the
duration of service T (j) is the busy time of the server in queue Qj .

Let us point out that this last queueing model may be applied in reliability theory. Indeed, a machine can pass
cyclically by several stages from well-working to the failure through different intermediate working states. The
last state corresponds to the failure and the machine must be repaired before performing a new working cycle.
Each state generates a net profit and/or a maintenance cost which can be modeled by the system depicted
above.

3. Evaluation of the measure pij(dx; t)

In this section, we evaluate the measure pij(dx; t). This study is essentially divided into two parts: the
first one deals with the singular component of the distribution probability of X(t) which is related to the first
cycle (i = 0) with j directions, 1 ≤ j ≤ d. The other part concerns the absolutely continuous component
and corresponds to the case of i complete cycles plus j directions with i ≥ 1 and 1 ≤ j ≤ n, or i = 0 and
d+ 1 ≤ j ≤ n.

We suppose n ≥ d+2. The case n = d+1 will be considered in Section 4 and the case n ≤ d gives raise only
to a singular component which is similar to the case where n ≥ d+ 2, i = 0 and 1 ≤ j ≤ d.

We split this section into four parts: in Section 3.1, we give a preliminary representation for the measure
pij(x; t); in Section 3.2, we achieve the computations of the singular component of pij(x; t) while in Sections 3.3
and 3.4, we achieve those of the absolutely continuous component of pij(x; t).
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3.1. A preliminary representation for pij(dx; t)

We begin this study by providing a first integral representation for pij(dx; t).

3.1.1. The case i = 0 and 1 ≤ j ≤ n

For i = 0 and j = 1, we plainly have X(t) = tv1 for t ∈ [0, T1) and then the probability distribution of X(t)
is simply

p01(dx; t) = P{X(t) ∈ dx, t < T1} = P{tv1 ∈ dx, t < T1} = F
T

(1)
0

(t) δ(dx − tv1)

where δ denotes the usual Dirac distribution. For i = 0 and 2 ≤ j ≤ n, the probability distribution of X(t)
writes, in view of (1.3) and by using the independence of the T (k)

0 ’s, 1 ≤ k ≤ j,

p0j(dx; t) = P{X(t) ∈ dx, Tj−1 ≤ t < Tj}

= P

{
Tj−1 ≤ t,

j−1∑
k=1

T
(k)
0 (vk − vj) + tvj ∈ dx, T (j)

0 > t− Tj−1

}

=
∫ t

0

P

{
Tj−1 ∈ ds,

j−1∑
k=1

T
(k)
0 (vk − vj) ∈ dx − tvj , T

(j)
0 > t− s

}

=
∫ t

0

P

{
j−1∑
k=1

T
(k)
0 (vk − vj) ∈ dx − tvj ,

j−1∑
k=1

T
(k)
0 ∈ ds

}
P

{
T

(j)
0 > t− s

}

=
∫ t

0

F
T

(j)
0

(t− s) P

{
j−1∑
k=1

T
(k)
0 (vk − vj) ∈ dx − tvj ,

j−1∑
k=1

T
(k)
0 ∈ ds

}
. (3.1)

Similarly, using (1.4), the probability distribution of X(t) can also be rewritten as

p0j(dx; t) = P

{
Tj−1 ≤ t,

j−1∑
k=1

T
(k)
0 vk + (t− Tj−1)vj ∈ dx, T (j)

0 > t− Tj−1

}

=
∫ t

0

P

{
Tj−1 ∈ ds,

j−1∑
k=1

T
(k)
0 vk ∈ dx − (t− s)vj , T

(j)
0 > t− s

}

=
∫ t

0

F
T

(j)
0

(t− s) P

{
j−1∑
k=1

T
(k)
0 vk ∈ dx − (t− s)vj ,

j−1∑
k=1

T
(k)
0 ∈ ds

}
. (3.2)

In view of (3.1) and (3.2), we are led to introduce the linear maps ϕ, φ : R
j−1 −→ R

d+1 defined by

ϕ(t1, . . . , tj−1) =

(
j−1∑
k=1

(v1k − v1j)tk, . . . ,
j−1∑
k=1

(vdk − vdj)tk,
j−1∑
k=1

tk

)
, (3.3)

φ(t1, . . . , tj−1) =

(
j−1∑
k=1

v1ktk, . . . ,

j−1∑
k=1

vdktk,

j−1∑
k=1

tk

)
. (3.4)

We can rewrite (3.1) and (3.2) as

p0j(dx; t) =
∫ t

0

F
T

(j)
0

(t− s) P

{
ϕ
(
T

(1)
0 , . . . , T

(j−1)
0

)
∈ (dx − tvj) ds

}
(3.5)

=
∫ t

0

F
T

(j)
0

(t− s) P

{
φ
(
T

(1)
0 , . . . , T

(j−1)
0

)
∈ (dx − (t− s)vj) ds

}
. (3.6)
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For computing the probabilities lying in (3.5) and (3.6), we shall use an elementary result concerning the
probability distribution of the linear image of a random vector; the details of that way are postponed to
Appendix A.

We shall use either (3.5) or (3.6) according as j ≤ d + 1 or j ≥ d + 2. The reason for this is that when
2 ≤ j ≤ d+ 1, the map ϕ is injective whereas for d+ 3 ≤ j ≤ n, φ is surjective. When j = d+ 2, φ is bijective.
In order the terminology be clear we recall the definitions of injective, surjective and bijective maps.

Definition 3.1. Let f : E −→ F be a map. This map is said injective (resp. surjective, bijective) when for
every point y ∈ F , there exists at most (resp. at least, exactly) one point x ∈ E such that y = f(x).

3.1.2. The case i ≥ 1

Suppose now that i ≥ 1. In order to reduce the sum
∑j−1

k=1 S
(k)
i vk +

∑n
k=j S

(k)
i−1vk lying in expression (1.5)

to only one sum, we introduce the duration S
(k)

ij defined for 1 ≤ k ≤ n by

S
(k)

ij =

{
S

(k)
i if 1 ≤ k ≤ j − 1,

S
(k)
i−1 if j ≤ k ≤ n.

(3.7)

In these settings, we simply have

j−1∑
k=1

S
(k)
i vk +

n∑
k=j

S
(k)
i−1vk =

n∑
k=1

S
(k)

ij vk.

Observe also that

Tin+j−1 =
j−1∑
k=1

S
(k)
i +

n∑
k=j

S
(k)
i−1 =

n∑
k=1

S
(k)

ij .

Using Tin+j = Tin+j−1 + T
(j)
i and the fact that T (j)

i is independent of the S
(k)

ij ’s, 1 ≤ k ≤ n, we have

pij(dx; t) = P{X(t) ∈ dx, Tin+j−1 ≤ t < Tin+j}

= P

{
Tin+j−1 ≤ t,

n∑
k=1

S
(k)

ij vk + (t− Tin+j−1)vj ∈ dx, T (j)
i > t− Tin+j−1

}

=
∫ t

0

F
T

(j)
i

(t− s) P

{
n∑
k=1

S
(k)

ij vk ∈ dx − (t− s)vj ,
n∑
k=1

S
(k)

ij ∈ ds

}
. (3.8)

Let us introduce the linear map ψ : R
n −→ R

d+1 defined by

ψ(t1, . . . , tn) =

(
n∑
k=1

v1ktk, . . . ,

n∑
k=1

vdktk,

n∑
k=1

tk

)
. (3.9)

Formula (3.8) can be rewritten as

pij(dx; t) =
∫ t

0

F
T

(j)
0

(s) P

{
ψ
(
S

(1)

ij , . . . , S
(n)

ij

)
∈ (dx − svj) (t− ds)

}
. (3.10)

For computing the probability lying in integral (3.10), we shall use again the results of Appendix A and more
specifically those of Appendix A.2 for the map ψ is surjective in this case.
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3.2. Singular component (i = 0, 1 ≤ j ≤ d)

3.2.1. Some settings

We decompose the linear map ϕ defined by (3.3), as described in Appendix A.1, into

ϕ(t1, . . . , tj−1) = (ϕ
1
(t1, . . . , tj−1), ϕ2

(t1, . . . , tj−1)).

The linear maps ϕ
1
: R

j−1 −→ R
j−1 and ϕ

2
: R

j−1 −→ R
d−j+2 (corresponding to the dimensions p = j − 1 and

q = d+ 1 of Appendix A.1) are defined as

ϕ
1
(t1, . . . , tj−1) =

(
j−1∑
k=1

(v1k − v1j)tk, . . . ,
j−1∑
k=1

(vj−1 k − vj−1 j)tk

)
,

ϕ
2
(t1, . . . , tj−1) =

(
j−1∑
k=1

(vjk − vjj)tk, . . . ,
j−1∑
k=1

(vdk − vdj)tk,
j−1∑
k=1

tk

)
.

Set also

ϕ̃
2
(t1, . . . , tj−1) =

(
j−1∑
k=1

(vjk − vjj)tk, . . . ,
j−1∑
k=1

(vdk − vdj)tk

)
.

By hypothesis, the solid polyhedron A1 · · ·Aj is not included in an affine subvariety of dimension (j − 1), so
at least one of its projections on the (j − 1)-dimensional spaces of coordinates has a non-vanishing (j − 1)-
dimensional volume. Let us suppose that, e.g., this condition is fulfilled for the first projection p : R

d −→ R
j−1

defined by p(x1, . . . , xd) = (x1, . . . , xj−1). By means of a well-known formula, the oriented (positive or negative)
volume of the (j − 1)-polyhedron p(A1) · · · p(Aj) is given by

Vj−1 = Vol(p(A1) · · · p(Aj)) =
1

(j − 1)!

∣∣∣∣∣∣∣∣∣

v11 . . . v1j
...

...
vj−1 1 . . . vj−1 j

1 . . . 1

∣∣∣∣∣∣∣∣∣
.

We assume for instance that Vj−1 > 0. On the other hand, we remark that

detϕ
1
=

∣∣∣∣∣∣∣
v11 − v1j . . . v1 j−1 − v1j

...
...

vj−1 1 − vj−1 j . . . vj−1 j−1 − vj−1 j

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣

v11 . . . v1j
...

...
vj−1 1 . . . vj−1 j

1 . . . 1

∣∣∣∣∣∣∣∣∣
= (j − 1)!Vj−1.

So, the map ϕ1 is bijective and the map ϕ is injective. Invoking Lemma A.1, the probability lying in (3.5) is
given by

P

{
ϕ
(
T

(1)
0 , . . . , T

(j−1)
0

)
∈ (dx − tvj) ds

}
=

1
(j − 1)!Vj−1

δ
(
(dxj − tvjj , . . . ,dxd − tvdj, ds)

− (
ϕ

2
◦ ϕ−1

1

)
(x1 − tv1j , . . . , xj−1 − tvj−1 j)

)
× f(

T
(1)
0 ,...,T

(j−1)
0

) (
ϕ−1

1 (x1 − tv1j , . . . , xj−1 − tvj−1 j)
)
dx1 · · ·dxj−1,

(3.11)
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where f(
T

(1)
0 ,...,T

(j−1)
0

) stands for the joint pdf of the random variables T (1)
0 , . . . , T

(j−1)
0 . By independence, we

have
f(
T

(1)
0 ,...,T

(j−1)
0

) = f
T

(1)
0

⊗ · · · ⊗ f
T

(j−1)
0

.

The symbol ⊗ in the foregoing equality denotes the usual tensorial product of functions which is defined by

(f1 ⊗ · · · ⊗ fj)(x1, . . . , xj) =
j∏

k=1

fk(xk).

In (3.11), the variables x1, . . . , xj−1, s must obey the constraint that all the coordinates of ϕ−1
1 (x1 − sv1j , . . . ,

xj−1 − svj−1 j) are positive.
Let us introduce the coordinates τ̃ (j)

k (x1, . . . , xj−1), 1 ≤ k ≤ j − 1, of the (j − 1)-uple ϕ−1
1 (x1, . . . , xj−1),

that is:
ϕ−1

1 (x1, . . . , xj−1) =
(
τ̃

(j)
1 (x1, . . . , xj−1), . . . , τ̃

(j)
j−1(x1, . . . , xj−1)

)
. (3.12)

We also introduce the function ϑ(j) defined by

ϑ(j)(x1, . . . , xj−1) =
j−1∑
k=1

τ̃
(j)
k (x1, . . . , xj−1) (3.13)

so that

(
ϕ

2
◦ ϕ−1

1

)
(x1, . . . , xj−1) =

(
ϕ̃

2

(
τ̃

(j)
1 (x1, . . . , xj−1), . . . , τ̃

(j)
j−1(x1, . . . , xj−1)

)
, ϑ(j)(x1, . . . , xj−1)

)
. (3.14)

Notice that the τ̃ (j)
k ’s and ϑ(j) are temporal variables when the xk’s are spatial variables.

3.2.2. Deriving the singular component

With these settings at hand, we can write down the following equalities, in view to clarifying the Dirac
measure lying in (3.11):

(xj − tvjj , . . . , xd − tvdj , s) −
(
ϕ

2
◦ ϕ−1

1

)
(x1 − tv1j , . . . , xj−1 − tvj−1 j)

=
[
(xj , . . . , xd, s) −

(
ϕ

2
◦ ϕ−1

1

)
(x1, . . . , xj−1)

]− t
[
(vjj , . . . , vdj, 0) − (

ϕ
2
◦ ϕ−1

1

)
(v1j , . . . , vj−1 j)

]
= (xj , . . . , xd, s) − ϕ

2

(
τ̃

(j)
1 (x1, . . . , xj−1), . . . , τ̃

(j)
j−1(x1, . . . , xj−1)

)
− t

[
(vjj , . . . , vdj , 0) − ϕ2

(
τ̃

(j)
1 (v1j , . . . , vj−1 j), . . . , τ̃

(j)
j−1(v1j , . . . , vj−1 j)

)]
=

(
xj − θ

(j)
j (x1, . . . , xj−1; t), . . . , xd − θ

(j)
d (x1, . . . , xj−1; t), s− t+ τ

(j)
j (x1, . . . , xj−1; t)

)
where we set, in the last displayed equality, for j ≤ k ≤ d,

(
θ
(j)
j (x1, . . . , xj−1; t), . . . , θ

(j)
d (x1, . . . , xj−1; t)

)
= ϕ̃

2

(
τ̃

(j)
1 (x1, . . . , xj−1), . . . , τ̃

(j)
j−1(x1, . . . , xj−1)

)
+ t

[
(vjj , . . . , vdj) − ϕ̃

2

(
τ̃

(j)
1 (v1j , . . . , vj−1 j), . . . , τ̃

(j)
j−1(v1j , . . . , vj−1 j)

)]
(3.15)

and
τ

(j)
j (x1, . . . , xj−1; t) = t

[
1 + ϑ(j)(v1j , . . . , vj−1 j)

]
− ϑ(j)(x1, . . . , xj−1). (3.16)
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These computations lead to the following expression for the Dirac measure in (3.11):

δ
(
(dxj − tvjj , . . . ,dxd − tvdj, ds) −

(
ϕ

2
◦ ϕ−1

1

)
(x1 − tv1j , . . . , xj−1 − tvj−1 j)

)
= δ

(
ds− t+ τ

(j)
j (x1, . . . , xj−1; t)

)
×

d∏
k=j

δ
(
dxk − θ

(j)
k (x1, . . . , xj−1; t)

)
. (3.17)

On the other hand, for simplifying the arguments of the densities f
T

(k)
0

in (3.11), it is convenient to introduce
the following notation: for 1 ≤ k ≤ j − 1,

τ
(j)
k (x1, . . . , xj−1; t) = τ̃

(j)
k (x1, . . . , xj−1) − t τ̃

(j)
k (v1j , . . . , vj−1 j). (3.18)

Indeed, the argument in f
T

(k)
0

is

ϕ−1
1 (x1 − tv1j , . . . , xj−1 − tvj−1 j) = ϕ−1

1 (x1, . . . , xj−1) − t ϕ−1
1 (v1j , . . . , vj−1 j)

= (τ (j)
1 (x1, . . . , xj−1; t), . . . , τ

(j)
j−1(x1, . . . , xj−1; t)). (3.19)

Remark 3.2. We observe, using successively (3.18), (3.13) and (3.16), that

j∑
k=1

τ
(j)
k (x1, . . . , xj−1; t) =

j−1∑
k=1

τ
(j)
k (x1, . . . , xj−1; t) + τ

(j)
j (x1, . . . , xj−1; t)

= τ
(j)
j (x1, . . . , xj−1; t) +

j−1∑
k=1

τ̃
(j)
k (x1, . . . , xj−1) − t

j−1∑
k=1

τ̃
(j)
k (v1j , . . . , vj−1 j)

= τ
(j)
j (x1, . . . , xj−1; t) + ϑ(j)(x1, . . . , xj−1) − t ϑ(j)(v1j , . . . , vj−1 j) = t.

As a byproduct, we have proved the following relation which will be used later:

j∑
k=1

τ
(j)
k (x1, . . . , xj−1; t) = t. (3.20)

Remark 3.3. The τ (j)
k (x1, . . . , xj−1; t)’s, 1 ≤ k ≤ j, which are defined successively by (3.16), (3.18), (3.12)

and (3.13), and which are related to the inverse of the map ϕ1 with matrix

A1 =

⎛
⎜⎝

v11 − v1j . . . v1 j−1 − v1j
...

...
vj−1 1 − vj−1 j . . . vj−1 j−1 − vj−1 j

⎞
⎟⎠,

can be more directly obtained by inverting the map φ
1

whose matrix is

⎛
⎜⎜⎜⎝

v11 . . . v1j
...

...
vj−1 1 . . . vj−1 j

1 . . . 1

⎞
⎟⎟⎟⎠.
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The linear maps ϕ
1

and φ
1

are linked by the following relation:

φ
1
(t1, . . . , tj) =

(
j∑

k=1

v1ktk, . . . ,

j∑
k=1

vj−1 ktk,

j∑
k=1

tk

)

=

(
j−1∑
k=1

(v1k − v1j)tk, . . . ,
j−1∑
k=1

(vj−1 k − vj−1 j)tk, 0

)
+

(
j∑

k=1

tk

)
(v1j , . . . , vj−1 j , 1)

= (ϕ
1
(t1, . . . , tj−1), 0) +

(
j∑

k=1

tk

)
(v1j , . . . , vj−1 j , 1). (3.21)

We claim that the τ (j)
k (x1, . . . , xj−1; t)’s, 1 ≤ k ≤ j, are also characterized by the simple relation

φ−1
1 (x1, . . . , xj−1, t) =

(
τ

(j)
1 (x1, . . . , xj−1; t), . . . , τ

(j)
j (x1, . . . , xj−1; t)

)
. (3.22)

To prove this, we compute, using (3.21),

φ
1

(
τ

(j)
1 (x1, . . . , xj−1; t), . . . , τ

(j)
j (x1, . . . , xj−1; t)

)
=

(
ϕ

1

(
τ

(j)
1 (x1, . . . , xj−1; t), . . . , τ

(j)
j−1(x1, . . . , xj−1; t)

)
, 0

)

+

(
j∑

k=1

τ
(j)
k (x1, . . . , xj−1; t)

)
(v1j , . . . , vj−1 j , 1). (3.23)

But we have

ϕ
1

(
τ

(j)
1 (x1, . . . , xj−1; t), . . . , τ

(j)
j−1(x1, . . . , xj−1; t)

)
= ϕ

1

(
τ̃

(j)
1 (x1, . . . , xj−1) − t τ̃

(j)
1 (v1j , . . . , vj−1 j), . . . , τ̃

(j)
j−1(x1, . . . , xj−1) − t τ̃

(j)
j−1(v1j , . . . , vj−1 j)

)
= ϕ

1

(
τ̃

(j)
1 (x1, . . . , xj−1), . . . , τ̃

(j)
j−1(x1, . . . , xj−1)

)
− t ϕ

1

(
τ̃

(j)
1 (v1j , . . . , vj−1 j), . . . , τ̃

(j)
j−1(v1j , . . . , vj−1 j)

)
= (x1, . . . , xj−1) − t (v1j , . . . , vj−1 j). (3.24)

In the last above equality, we used the reciprocal formula (3.12). Now, putting (3.24) into (3.23) and using (3.20)
yield

φ
1

(
τ

(j)
1 (x1, . . . , xj−1; t), . . . , τ

(j)
j (x1, . . . , xj−1; t)

)
= (x1, . . . , xj−1, 0) − t (v1j , . . . , vj−1 j , 0) + t (v1j , . . . , vj−1 j , 1)

= (x1, . . . , xj−1, t)

which proves (3.22).

Remark 3.4. In the same spirit as in the previous remark, the θ(j)k (x1, . . . , xj−1; t)’s, j ≤ k ≤ d, which are
defined by (3.15) and (3.14), and which are related to the map ϕ̃

2
◦ ϕ−1

1 with matrix

A1 =

⎛
⎜⎝
vj1 − vjj . . . vj j−1 − vjj

...
...

vd1 − vdj . . . vd j−1 − vdj

⎞
⎟⎠×

⎛
⎜⎝

v11 − v1j . . . v1 j−1 − v1j
...

...
vj−1 1 − vj−1 j . . . vj−1 j−1 − vj−1 j

⎞
⎟⎠
−1

,
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can be more directly obtained with the aid of the map φ
2
◦ φ−1

1 whose matrix is

⎛
⎜⎝
vj1 . . . vjj
...

...
vd1 . . . vdj

⎞
⎟⎠×

⎛
⎜⎜⎜⎝

v11 . . . v1j
...

...
vj−1 1 . . . vj−1 j

1 . . . 1

⎞
⎟⎟⎟⎠
−1

.

We just have introduced new linear maps φ1 : R
j −→ R

j and φ2 : R
j −→ R

d−j+1 defined by

φ
1
(t1, . . . , tj) =

(
j∑

k=1

v1ktk, . . . ,

j∑
k=1

vj−1 ktk,

j∑
k=1

tk

)
,

φ
2
(t1, . . . , tj) =

(
j∑

k=1

vjktk, . . . ,

j∑
k=1

vdktk

)
.

The linear maps ϕ̃
2

and φ
2

are linked by the following relation:

φ
2
(t1, . . . , tj) =

(
j−1∑
k=1

(vjk − vjj)tk, . . . ,
j−1∑
k=1

(vdk − vdj)tk

)
+

(
j∑

k=1

tk

)
(vjj , . . . , vdj)

= ϕ̃
2
(t1, . . . , tj−1) +

(
j∑

k=1

tk

)
(vjj , . . . , vdj). (3.25)

We claim that the θ(j)k (x1, . . . , xj−1; t)’s, 1 ≤ k ≤ j, are also characterized by the simple relation

(
φ

2
◦ φ−1

1

)
(x1, . . . , xj−1, t) =

(
θ
(j)
j (x1, . . . , xj−1; t), . . . , θ

(j)
d (x1, . . . , xj−1; t)

)
. (3.26)

To prove (3.26), we compute, using successively (3.22), (3.25), (3.20), (3.18) and (3.15),

(
φ2 ◦ φ−1

1

)
(x1, . . . , xj−1; t) = φ2

(
τ

(j)
1 (x1, . . . , xj−1; t), . . . , τ

(j)
j (x1, . . . , xj−1; t)

)
= ϕ̃

2

(
τ

(j)
1 (x1, . . . , xj−1; t), . . . , τ

(j)
j−1(x1, . . . , xj−1; t)

)

+

(
j∑

k=1

τ
(j)
k (x1, . . . , xj−1; t)

)
(vjj , . . . , vdj)

= ϕ̃
2

(
τ̃

(j)
1 (x1, . . . , xj−1; t), . . . , τ̃

(j)
j−1(x1, . . . , xj−1; t)

)
− t ϕ̃

2

(
τ̃

(j)
1 (v1j , . . . , vj−1 j ; t), . . . , τ̃

(j)
j−1(v1j , . . . , vj−1 j ; t)

)
+ t (vjj , . . . , vdj)

=
(
θ
(j)
j (x1, . . . , xj−1; t), . . . , θ

(j)
d (x1, . . . , xj−1; t)

)
.

The θ(j)k (x1, . . . , xj−1; t)’s may be explicitly written as (see Appendix A.1.2)

θ
(j)
k (x1, . . . , xj−1; t) =

1
(j − 1)!Vj−1

(
j−1∑
l=1

∆klxl + ∆kjt

)
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with

∆kl =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v11 . . . v1j
...

...
vl−1 1 . . . vl−1 j

vk1 . . . vkj
vl+1 1 . . . vl+1 j

...
...

vj−1 1 . . . vj−1 j

1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if 1 ≤ l ≤ j − 1, ∆kj =

∣∣∣∣∣∣∣∣∣

v11 . . . v1j
...

...
vj−1 1 . . . vj−1 j

vk1 . . . vkj

∣∣∣∣∣∣∣∣∣
if l = j.

Plugging now (3.17) and (3.19) into (3.11), we obtain

P

{
ϕ
(
T

(1)
0 , . . . , T

(j−1)
0

)
∈ (dx − tvj) ds

}
=

1
(j − 1)!Vj−1

j−1∏
k=1

f
T

(k)
0

(
τ

(j)
k (x1, . . . , xj−1; t)

)
dxk

× δ
(
ds− t+ τ

(j)
j (x1, . . . , xj−1; t)

)
×

d∏
k=j

δ
(
dxk − θ

(j)
k (x1, . . . , xj−1; t)

)
. (3.27)

Finally, multiplying (3.27) by F
T

(j)
0

(t− s) and next integrating with respect to time s on (0, t), we easily derive

expression (3.28) for p0j(dx; t) in Theorem 3.5 below. Equality (3.20) entails that if τ (j)
k (x1, . . . , xj−1; t) ≥ 0 for

1 ≤ k ≤ j, then we have τ (j)
j (x1, . . . , xj−1; t) ∈ [0, t]. This remark justifies the fact that the integration of (3.27)

with respect to s on [0, t] provides the term F
T

(j)
0

(τ (j)
j (x1, . . . , xj−1; t)) in (3.28).

On the other hand, some constraints on the variables x1, . . . , xj−1 must be added in the measure p0j(dx; t).
They stipulate that the arguments lying in the functions f

T
(1)
0
, . . . , f

T
(j−1)
0

must be positive and that the argu-

ment lying in F
T

(j)
0

must be in [0, t]. We specify this point after the statement of the theorem.

Theorem 3.5. The singular component of the distribution of X(t) is given by the family of measures
(p0j(dx; t))1≤j≤d defined by p01(dx; t) = F

T
(1)
0

(t) δ(dx − tv1) and for 2 ≤ j ≤ d:

p0j(dx; t) =
1

(j − 1)!Vj−1
1lDj(t)(x1, . . . , xj−1)FT (j)

0

(
τ

(j)
j (x1, . . . , xj−1; t)

)

×
j−1∏
k=1

f
T

(k)
0

(
τ

(j)
k (x1, . . . , xj−1; t)

)
dxk ×

d∏
k=j

δ
(
dxk − θ

(j)
k (x1, . . . , xj−1; t)

)
(3.28)

where the τ (j)
k (x1, . . . , xj−1; t)’s and the θ(j)k (x1, . . . , xj−1; t)’s are respectively defined by the matricial relations

⎛
⎜⎜⎝
τ

(j)
1 (x1, . . . , xj−1; t)

...
τ

(j)
j (x1, . . . , xj−1; t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

v11 . . . v1j
...

...
vj−1 1 . . . vj−1 j

1 . . . 1

⎞
⎟⎟⎟⎠
−1 ⎛

⎜⎜⎜⎝
x1

...
xj−1

t

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎝
θ
(j)
j (x1, . . . , xj−1; t)

...
θ
(j)
d (x1, . . . , xj−1; t)

⎞
⎟⎟⎠ =

⎛
⎜⎝
vj1 . . . vjj
...

...
vd1 . . . vdj

⎞
⎟⎠

⎛
⎜⎜⎝
τ

(j)
1 (x1, . . . , xj−1; t)

...
τ

(j)
j (x1, . . . , xj−1; t)

⎞
⎟⎟⎠
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and

Vj−1 =
1

(j − 1)!

∣∣∣∣∣∣∣∣∣

v11 . . . v1j
...

...
vj−1 1 . . . vj−1 j

1 . . . 1

∣∣∣∣∣∣∣∣∣
,

Dj(t) = {(x1, . . . , xj−1) ∈ R
j−1 : τ (j)

k (x1, . . . , xj−1; t) ≥ 0 for 1 ≤ k ≤ j}.
Remark 3.6. Expression (3.28) is made up of two terms: the factor

1
(j − 1)!Vj−1

F
T

(j)
0

(
τ

(j)
j (x1, . . . , xj−1; t)

)
×
j−1∏
k=1

f
T

(k)
0

(
τ

(j)
k (x1, . . . , xj−1; t)

)
dxk

is related to the location of the particle at time t while the factor

1lDj(t)(x1, . . . , xj−1) ×
d∏
k=j

δ
(
dxk − θ

(j)
k (x1, . . . , xj−1; t)

)

refers to the support of the measure p0j(dx; t) as it will be seen in the next subsubsection.

3.2.3. The support of p0j(dx; t)

In view of (3.28), it emerges that the support of the measure p0j(dx; t) is the intersection of the set of
constraints Dj(t) and the affine subvariety Hj of dimension (j − 1) defined by the equations

xk = θ
(j)
k (x1, . . . , xj−1; t), j ≤ k ≤ d. (3.29)

Our aim now is to describe this support in a simpler manner. See also Lemma A.3.
Introducing some parameters s1, . . . , sj defined by (s1, . . . , sj) = φ−1

1 (x1, . . . , xj−1, t), the implicit represen-
tation (3.29) of Hj can be rewritten, by (3.26), as

(xj , . . . , xd) =
(
φ

2
◦ φ−1

1

)
(x1, . . . , xj−1, t) = φ

2
(s1, . . . , sj)

=

(
j∑
l=1

vjlsl, . . . ,

j∑
l=1

vdlsl

)
. (3.30)

Concerning the variables x1, . . . , xj−1, we reciprocally have (x1, . . . , xj−1, t) = φ1(s1, . . . , sj), which implies

(x1, . . . , xj−1) =

(
j∑
l=1

v1lsl, . . . ,

j∑
l=1

vj−1 lsl

)
. (3.31)

Putting (3.30) and (3.31) together gives

(x1, . . . , xd) =

(
j∑
l=1

v1lsl, . . . ,

j∑
l=1

vdlsl

)
.

We therefore obtain the concise parametric representation for Hj

xk =
j∑
l=1

vklsl for 1 ≤ k ≤ d with
j∑
l=1

sl = t.
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In this form, we recognize for Hj the set of barycentric combinations
∑j

l=1 slAl with real coefficients s1, . . . , sj
satisfying

∑j
l=1 sl = t, so Hj is the affine subvariety containing the points (tA1), . . . , (tAj).

On the other hand, the constraints τ (j)
k (x1, . . . , xj−1; t) ≥ 0 for 1 ≤ k ≤ j are equivalent, because of (3.20),

to the constraints for the sk’s: sk ≥ 0 for 1 ≤ k ≤ j and
∑j

k=1 sk = t. Consequently, the support of the measure
p0j(dx; t), which is D̃j(t) ∩Hj where

D̃j(t) = {x ∈ R
d : (x1, . . . , xj−1) ∈ Dj(t)},

is also the set of points
∑j
k=1 skAk with positive coefficients s1, . . . , sj satisfying the condition

∑j
k=1 sk = t. It

is nothing but the convex hull P
j
(t) of the set {tA1, . . . , tAj}.

Theorem 3.7. The support of the measure p0j(dx; t) is the solid (j − 1)-dimensional polyhedron P
j
(t).

Example 3.8. For instance, for j = 2, the matrices of φ
1
, φ

2
and φ

2
◦ φ−1

1 are respectively

(
v11 v12
1 1

)
,

⎛
⎜⎝
v21 v22
...

...
vd1 vd2

⎞
⎟⎠ and

1
v11 − v21

⎛
⎜⎝
v21 − v22 v11v22 − v21v12

...
...

vd1 − vd2 v11vd2 − vd1v12

⎞
⎟⎠.

So, the settings read

V1 = v11 − v12, τ
(2)
1 (x1; t) =

x1 − v12t

v11 − v12
, τ

(2)
2 (x1; t) =

v11t− x1

v11 − v12
,

θ
(2)
k (x1; t) =

(vk1 − vk2)x1 + (v11vk2 − v12vk1)t
v11 − v12

for 2 ≤ k ≤ d,

D2(t) =
{
x1 ∈ R :

v11t− x1

v11 − v12
≥ 0,

x1 − v12t

v11 − v12
≥ 0

}
.

Formula (3.28) writes

p02(dx; t) =
1

v11 − v12
1lD2(t)(x1) fT (1)

0

(
x1 − v12t

v11 − v12

)
F
T

(2)
0

(
v11t− x1

v11 − v12

)

× dx1

d∏
k=2

δ

(
dxk − (vk1 − vk2)x1 + (v11vk2 − v12vk1)t

v11 − v12

)
·

The measure p02(dx; t) is carried by the segment (tA1)(tA2).

Remark 3.9. When times T (k)
0 are exponentially distributed with parameter λ, formula (3.28) can be simplified

into

p0j(dx; t) =
λj−1

(j − 1)!Vj−1
1lDj(t)(x1, . . . , xj−1) exp

[
−λ

(
j∑

k=1

τ
(j)
k (x1, . . . , xj−1; t)

)]

×
j−1∏
k=1

dxk
d∏
k=j

δ
(
dxk − θ

(j)
k (x1, . . . , xj−1; t)

)
.

The sum lying within the above exponential equals t, see (3.20). Hence,

p0j(dx; t) =
λj−1 e−λt

(j − 1)!Vj−1
1lDj(t)(x1, . . . , xj−1)

j−1∏
k=1

dxk
d∏
k=j

δ
(
dxk − θ

(j)
k (x1, . . . , xj−1; t)

)
. (3.32)
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The total mass of this measure is

∫
P
j
(t)

p0j(dx; t) =
λj−1 e−λt

(j − 1)!Vj−1

∫
Dj(t)

dx1 · · · dxj−1.

Because of the relation P
j
(t) = D̃j(t) ∩ Hj , we see that the integral

∫
Dj(t)

dx1 · · · dxj−1 is nothing but the
(j − 1)-volume of the projection on R

j−1 of the face (tA1) · · · (tAj):
∫
Dj(t)

dx1 · · · dxj−1 = Vj−1 t
j−1.

Therefore, ∫
P
j
(t)

p0j(dx; t) =
(λt)j−1

(j − 1)!
e−λt = P{Tj−1 ≤ t < Tj}, (3.33)

the last above equality coming from the fact that the exponential times are related to Poissonian occurrences.
This relation is in good agreement with the definition of the density p0j(x; t). Thus, dividing (3.32) by (3.33)
provides

P{X(t) ∈ dx |Tj−1 ≤ t ≤ Tj} =
1

Vj−1 tj−1
1lDj(t)(x1, . . . , xj−1)

j−1∏
k=1

dxk
d∏
k=j

δ
(
dxk − θ

(j)
k (x1, . . . , xj−1; t)

)
.

In words, the location X(t) of the particle conditioned on moving with the speed-vector
−→
Vj for the first time

(i = 0) is uniformly distributed on the (j − 1)-dimensional polyhedron P
j
(t).

3.3. Absolutely continuous component: the case i ≥ 1, n ≥ d+ 2

In this subsection, we assume that i ≥ 1. We put, for having homogeneous settings, vd+1 1 = · · · = vd+1n = 1.

3.3.1. Deriving the pdf

With the linear map ψ : R
n −→ R

d+1 defined by (3.9), we associate the maps ψ
1

: R
d+1 −→ R

d+1 and
ψ

2
: R

n−d−1 −→ R
d+1 defined by, as described in Appendix A.2 (this case is related to the dimensions p = n

and q = d+ 1),

ψ
1
(t1, . . . , td+1) =

(
d+1∑
k=1

v1ktk, . . . ,

d+1∑
k=1

vd+1 ktk

)
,

ψ2(td+2, . . . , tn) =

(
n∑

k=d+2

v1ktk, . . . ,

n∑
k=d+2

vd+1 ktk

)
.

In this part, it is convenient to work with matrices. Let B1 and B2 be the matrices of ψ
1

and ψ
2
:

B1 =

⎛
⎜⎝

v11 . . . v1 d+1

...
...

vd+11 . . . vd+1 d+1

⎞
⎟⎠, B2 =

⎛
⎜⎝

v1 d+2 . . . v1n
...

...
vd+1 d+2 . . . vd+1n

⎞
⎟⎠.
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Put ∆d = detB1. The determinant ∆d does not vanish (see Remark 3.10 below), thus ψ
1

is bijective and ψ is
surjective. Therefore, the conditions for applying Lemma A.4 are fulfilled. Set also

wpq =
(−1)p+q

∆d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v11 . . . v1 p−1 v1 p+1 . . . v1 d+1

...
...

...
...

vq−1 1 . . . vq−1 p−1 vq−1 p+1 . . . vq−1 d+1

vq+1 1 . . . vq+1 p−1 vq+1 p+1 . . . vq+1 d+1

...
...

...
...

vd+11 . . . vd+1 p−1 vd+1 p+1 . . . vd+1 d+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and

∆pq = ∆d

d+1∑
k=1

wpkvkq for 1 ≤ p ≤ d+ 1, d+ 2 ≤ q ≤ n.

The matrices of ψ−1
1 and ψ−1

1 ◦ ψ
2

are given by

B−1
1 =

⎛
⎜⎝

w11 . . . w1 d+1

...
...

wd+1 1 . . . wd+1 d+1

⎞
⎟⎠, B−1

1 B2 =
1

∆d

⎛
⎜⎝

∆1 d+2 . . . ∆1n

...
...

∆d+1 d+2 . . . ∆d+1n

⎞
⎟⎠.

Remark 3.10. Actually, the ∆pq’s are defined also for 1 ≤ q ≤ d+1: in this case, we have ∆pq/∆d = δpq since
the matrix of the (∆pj/∆d)’s, 1 ≤ p, q ≤ d+ 1, is nothing but the matrix B−1

1 B1 = I. The quantities ∆d and
∆pq’s can be interpreted by means of volumes. Indeed, as already mentioned in Section 3.2.1, it is well-known
that, if Vd = Vol(A1 · · ·Ad+1) denotes the oriented volume of the polyhedron A1 · · ·Ad+1, then

∣∣∣∣∣∣∣∣∣

v11 . . . v1 d+1

...
...

vd1 . . . vd d+1

1 . . . 1

∣∣∣∣∣∣∣∣∣
= d!Vd.

Therefore ∆d = d!Vd. On the other hand, by hypothesis, the polyhedron A1 · · ·Ad+1 is not contained in any
hyperplane. So, its volume does not vanish. We assume for simplicity that Vd > 0. Similarly, if Vpqd =
Vol(A1 · · ·Ap−1AqAp+1 · · ·Ad+1) denotes the oriented (positive or negative) volume of the polyhedron deduced
from A1 · · ·Ad+1 by replacing the point Ap by Aq, we have, by (A.1),

∆pq =

∣∣∣∣∣∣∣∣∣

v11 . . . v1 p−1 v1q v1 p+1 . . . v1 d+1

...
...

...
...

...
vd1 . . . vd p−1 vdq vd p+1 . . . vd d+1

1 . . . 1 1 1 . . . 1

∣∣∣∣∣∣∣∣∣
= d!Vpqd.

Remark 3.11. We can note that the sum
∑d+1
p=1 wpk vanishes if k ≤ d and equals 1 if k = d + 1. Indeed, if

A = (aij)1≤i,j≤m is any matrix, AT = (aji)1≤i,j≤m is its transposed matrix and A′ = (Aij)1≤i,j≤m is the com-
plementary matrix of A, i.e. the matrix of the co-factors of A, one has the well-known relation AA′ T = (detA)I
which writes

∑m
k=1 aikAjk = (detA)δij . If the last row of A is made up of 1, that is ∀k ∈ {1, . . . ,m}, amk = 1,

then
∑m

k=1 Ajk = (detA)δmj =
{

0 if j ≤ m− 1
detA if j = m

. In our study, (wij)1≤i,j≤d+1 is the inverse matrix of B1

which coincides with ∆−1
d B′T

1 , the last row of B1 being made up of 1. Hence
∑d+1

p=1 wpk = δd+1 j . We then
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deduce that
d+1∑
p=1

Vpkd
Vd

=
d+1∑
p=1

(
d+1∑
q=1

wpqvqk

)
=

d+1∑
q=1

(
d+1∑
p=1

wpq

)
vqk = vd+1 k = 1,

or, equivalently,
d+1∑
p=1

Vpkd = Vd for 1 ≤ k ≤ d+ 1. (3.34)

We now introduce the coordinates τk(x; t), 1 ≤ k ≤ d+ 1, of the (d+ 1)-uple ψ−1
1 (x, t):

ψ−1
1 (x1, . . . , xd, t) = ψ−1

1 (x; t) = (τ1(x; t), . . . , τd+1(x; t))

with, referring to the form of B−1
1 ,

τp(x; t) =
d∑
k=1

wpkxk + wp d+1t for 1 ≤ p ≤ d+ 1.

For evaluating (3.10), we use Lemma A.4. For this, we need to specify the coordinates of the point ψ−1
1 (x −

svj ; t− s). Observing that

τp(vj ; 1) =
d+1∑
k=1

wpkvkj =
∆pj

∆d
=

Vpjd
Vd

, (3.35)

the coordinates τp(x − svj ; t− s) are given by

τp(x − svj ; t− s) = τp(x; t) − s τp(vj ; 1) = τp(x; t) − Vpjd
Vd

s.

We also need to specify ψ−1
1 ◦ ψ

2
: thanks to the form of B−1

1 B2,

(
ψ−1

1 ◦ ψ
2

)
(sd+2, . . . , sn) =

(
n∑

k=d+2

V1kd

Vd
sk, . . . ,

n∑
k=d+2

Vd+1 kd

Vd
sk

)
.

Applying Lemma A.4 to (3.10), we derive for the density pij(x; t) = pij(dx; t)/dx the integral representation
displayed in Theorem 3.12 below. Referring to Appendix A.2.3, we see that some constraints must be appended
to this representation. For taking into account these constraints, we introduce the set

Dj(x; s, t) =

{
(sd+2, . . . , sn) ∈ (0,+∞)n−d−1 :

n∑
k=d+2

Vpkd
Vd

sk ≤ τp(x; t) − Vpjd
Vd

s for 1 ≤ p ≤ d+ 1

}

together with the set {s ∈ [0, t] : Dj(x; s, t) 
= ∅} which will be proven later to be an interval [ςj(x; t), σj(x; t)].

Theorem 3.12. If i ≥ 1 and 1 ≤ j ≤ n, the density pij(x; t) is given, for x ∈ Pn(t), by

pij(x; t) =
1

d!Vd

∫ σj(x;t)

ςj(x;t)

F
T

(j)
0

(s) ds
∫
Dj(x;s,t)

d+1∏
k=1

f
S

(k)
ij

(
τk(x; t) − Vkjd

Vd
s−

n∑
l=d+2

Vkld
Vd

sl

)

×
n∏

k=d+2

(
f
S

(k)
ij

(sk) dsk
)

(3.36)
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where Vd = Vol(A1 · · ·Ad+1), Vkld = Vol(A1 · · ·Ak−1AlAk+1 · · ·Ad+1) and the τk(x; t)’s are given by the ma-
tricial relation ⎛

⎜⎝
τ1(x; t)

...
τd+1(x; t)

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝
v11 . . . v1 d+1

...
...

vd1 . . . vd d+1

1 . . . 1

⎞
⎟⎟⎟⎠
−1 ⎛

⎜⎜⎜⎝
x1

...
xd
t

⎞
⎟⎟⎟⎠ .

Remark 3.13. By definition, the τp(x; t)’s can be viewed as the expansion of a determinant:

τp(x; t) =
1

∆d

∣∣∣∣∣∣∣∣∣

v11 . . . v1 p−1 x1 v1 p+1 . . . v1 d+1

...
...

...
...

...
vd1 . . . vd p−1 xd vd p+1 . . . vd d+1

1 . . . 1 t 1 . . . 1

∣∣∣∣∣∣∣∣∣

=
1

∆d

∣∣∣∣∣∣∣∣∣

v11 − v1 d+1 . . . v1 p−1 − v1 d+1 x1 − tv1 d+1

...
...

...
vd1 − vd d+1 . . . vd p−1 − vd d+1 xd − tvd d+1

0 . . . 0 0

v1 p+1 − v1 d+1 . . . v1d − v1 d+1 v1 d+1

...
...

...
vd p+1 − vd d+1 . . . v1d − vd d+1 vd d+1

0 . . . 0 1

∣∣∣∣∣∣∣∣∣
=

1
∆d

det
(−−−−−→
Ad+1A1, . . . ,

−−−−−−−→
Ad+1Ap−1,x − tAd+1,

−−−−−−−→
Ad+1Ap+1, . . . ,

−−−−−→
Ad+1Ad

)
.

The determinant lying in the last displayed equation is d! times the volume Vpd(x; t) of the polyhedron
A1 · · ·Ap−1(t−1M)Ap+1 · · ·Ad+1 where M is the point with coordinates x. Then τp(x; t) = Vpd(x; t)/Vd. On
the other hand, the relation τp(x; t) = 0 is nothing but the equation of the affine hyperplane containing the
points (tA1), . . . , (tAp−1), (tAp+1), . . . , (tAd+1).

Remark 3.14. Let us compute the sum of the τp(x; t)’s:

d+1∑
p=1

τp(x; t) =
d+1∑
p=1

(
d∑
k=1

wpkxk + wp d+1t

)
=

d∑
k=1

(
d+1∑
p=1

wpk

)
xk +

(
d+1∑
p=1

wp d+1

)
t.

By Remark 3.11, the sum
∑d+1

p=1 wpk vanishes if k ≤ d and equals 1 if k = d + 1. Consequently, the following
relation which is the analogous of (3.20) holds:

d+1∑
p=1

τp(x; t) = t. (3.37)

Remark 3.15. For the similar probabilities related to a particle subject to taking the rth direction at time 0,

p
(r)
ij (x; t) = P{X(t) ∈ dx, i complete cycles and j directions | −→V (0) =

−→
Vr}/dx,

the quantities τp(x; t)’s should be replaced by

τ (r)
p (x; t) =

d∑
k=1

w
(r)
pk xk + w

(r)
p d+1t for r ≤ p ≤ r + d,
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where (w(r)
ij )1≤i,j≤d+1 is the inverse of the matrix of the (d + 1)-dimensional vectors

((−→
Vr
1

)
,

(−→
Vr+1

1

)
, . . . ,(−→

Vr+d
1

))
. The relations τ (r)

p (x; t) = 0, r ≤ p ≤ r + d, are the equations of the affine hyperplanes containing

the points Ar, Ar+1, . . . , Ap−1, Ap+1, . . . , Ar+d. Similarly, Vd and the Vpqd’s should be replaced by the volumes
V(r)
d = Vol(Ar · · ·Ar+d) and V(r)

pqd = Vol(Ar · · ·Ap−1AqAp+1 · · ·Ar+d).
3.3.2. Two families of formulas for the pdf

Relation (3.36) recovers two families of formulas.
• Case 1 ≤ j ≤ d+ 1:

Referring to (3.7) and observing that Vkjd = 0 if k 
= j (for 1 ≤ j, k ≤ d + 1) and Vjjd = Vd,
formula (3.36) takes the form

pij(x; t) =
1

d!Vd

∫ σj(x;t)

ςj(x;t)

F
T

(j)
0

(s) ds
∫
Dj(x;s,t)

j−1∏
k=1

f
S

(k)
i

(
τk(x; t) −

n∑
l=d+2

Vkld
Vd

sl

)

×
d+1∏
k=j+1

f
S

(k)
i−1

(
τk(x; t) −

n∑
l=d+2

Vkld
Vd

sl

)

×f
S

(j)
i−1

(
τj(x; t) − s−

n∑
l=d+2

Vkld
Vd

sl

)
n∏

k=d+2

(
f
S

(k)
i−1

(sk) dsk
)
.

In the above formula (and also below), we adopt the convention
∏β
k=α = 1 if α > β. For instance,∏j−1

k=1 = 1 when j = 1 and
∏d+1
k=j+1 = 1 when j = d+ 1.

• Case d+ 2 ≤ j ≤ n:
Formula (3.36) reads in this case

pij(x; t) =
1

d!Vd

∫ σj(x;t)

ςj(x;t)

F
T

(j)
0

(s) ds
∫
Dj(x;s,t)

d+1∏
k=1

f
S

(k)
i

(
τk(x; t) − Vkjd

Vd
s−

n∑
l=d+2

Vkld
Vd

sl

)

×
(

j−1∏
k=d+2

f
S

(k)
i

(sk)
n∏
k=j

f
S

(k)
i−1

(sk)

)
dsd+2 · · · dsn.

3.3.3. The set of integration and the support of the density in (3.36)

Thanks to (3.34) and (3.37), summing the inequalities
∑n
k=d+2

Vpkd

Vd
sk ≤ τp(x; t) − Vpjd

Vd
s with respect to

the index p yields the inequality
∑n

k=d+2 sk ≤ t − s. Therefore, the set Dj(x; s, t) is convex, compact and is
included in the simplex {

(sd+2, . . . , sn) ∈ (0,+∞)n−d−1 :
n∑

k=d+2

sk ≤ t− s

}
.

Moreover, the set {s ∈ [0, t] : Dj(x; s, t) 
= ∅} is a convex, compact subset of [0, t], so it is an interval:
[ςj(x; t), σj(x; t)].

If j ≤ d + 1, since Vpjd = 0 for 1 ≤ p ≤ d + 1 and p 
= j, and Vjjd = Vd, the conditions lying in the set
Dj(x; s, t) write

n∑
k=d+2

Vpkd
Vd

sk ≤ τp(x; t) for 1 ≤ p ≤ d+ 1, p 
= j,

n∑
k=d+2

Vjkd
Vd

sk ≤ τj(x; t) − s.
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We then have

Dj(x; 0, t) =
{
(sd+2, . . . , sn) ∈ (0,+∞)n−d−1 :

n∑
k=d+2

Vpkd
Vd

sk ≤ τp(x; t) for 1 ≤ p ≤ d+ 1

}

and

Dj(x; τj(x; t), t) =

{
(sd+2, . . . , sn) ∈ (0,+∞)n−d−1 :

n∑
k=d+2

Vpkd
Vd

sk ≤ τp(x; t) for 1 ≤ p ≤ d+ 1 and p 
= j,

n∑
k=d+2

Vjkd
Vd

sk ≤ 0

}
.

For x ∈ P
d+1

(t), we have τp(x; t) ≥ 0 when 1 ≤ p ≤ d+ 1. So, the sets Dj(x; 0, t) and Dj(x; τj(x; t), t) contain
the (n−d−1)-uple (0, . . . , 0), they are non-empty. This entails the inclusion [0, τj(x; t)] ⊂ [ςj(x; t), σj(x; t)], or,
equivalently, ςj(x; t) = 0 and τj(x; t) ≤ σj(x; t) ≤ t. If, in addition, we make the assumption that the polyhedron
A1 · · ·An is convex (and then coincides with Pn(t)), all the volumes Vjkd, 1 ≤ j ≤ d + 1, d + 1 ≤ k ≤ n, are
positive (with the reference Vd > 0). In this case, if s > τj(x; t), the condition

∑n
k=d+2

Vjkd

Vd
sk ≤ τj(x; t) − s is

not fulfilled (for sd+1, . . . , sn > 0), then Dj(x; s, t) = ∅. As a result, σj(x; t) = τj(x; t).
We now consider the problem of the support of the density (3.36). Fix η > 0 and M =

∑n
k=1 skAk, with

s1, . . . , sn ≥ 0 and
∑n

k=1 sk = t, a point in the interior of Pn(t). Let us introduce the set V (M,η) of the points
P ∈ Pn(t) for which there exists positive coefficients (not necessarily unique) t1, . . . , tn summing to t such that
P =

∑n
k=1 tkAk and |tk − sk| ≤ η for all k 
= j. For any P ∈ V (M,η), since

∑n
k=1(tk − sk) = 0, we have that

−−→
MP =

n∑
k=1

(tk − sk)Ak =
∑

1≤k≤n
k �=j

(tk − sk)
−−−→
AjAk

and then

‖−−→MP‖ ≤
∑

1≤k≤n
k �=j

|tk − sk| × ‖−−−→AjAk‖ ≤ (n− 1)η diam(Pn(t)) (3.38)

where diam(Pn(t)) stands for the diameter of Pn(t). Indeed, for all indices k, l: ‖−−−→AkAl‖ ≤ diam(Pn(t)).
Fix now ε > 0 and choose η = ε

(n−1) diam(Pn (t)) . Inequality (3.38) simply reads ‖−−→MP‖ ≤ ε for any P ∈
V (M,η), hence proving the inclusion V (M,η) ⊂ B(M, ε) where B(M, ε) is the ball with center M and radius ε.
So, we firstly get

P{X(t) ∈ V (M,η), Tin+j−1 ≤ t ≤ Tin+j} ≤P{X(t) ∈ B(M, ε), Tin+j−1 ≤ t ≤ Tin+j}. (3.39)

Secondly, we have by the definition of V (M,η) and (1.5)

P{X(t) ∈ V (M,η), Tin+j−1 ≤ t ≤ Tin+j} ≥ P

{
S

(1)

ij ∈ [s1 − η, s1 + η], . . . , S
(j−1)

ij ∈ [si−1 − η, si−1 + η],

S
(j+1)

ij ∈ [si+1 − η, si+1 + η], . . . , S
(n)

ij ∈ [sn − η, sn + η],

Tin+j−1 ≤ t ≤ Tin+j

}
. (3.40)
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It can be easily checked that the distribution of the vector
(
S

(1)

ij , . . . , S
(j−1)

ij , S
(j+1)

ij , . . . , S
(n)

ij

)
admits for pdf

P

{(
S

(1)

ij , . . . , S
(j−1)

ij , S
(j+1)

ij , . . . , S
(n)

ij

)
∈ dt1 · · · dtj−1dtj+1 · · ·dtn,

Tin+j−1 ≤ t ≤ Tin+j}/ dt1 · · · dtj−1dtj+1 · · ·dtn

=
∫ t−∑

1≤k≤n
k �=j

tk

tj=0

F
T

(n)
0

(
t−

n∑
k=1

tk

)(
n∏
k=1

f
S

(k)
ij

(tk)

)
dtj > 0.

As a result, we deduce by (3.39) and (3.40) that

P{X(t) ∈ B(M, ε), Tin+j−1 ≤ t ≤ Tin+j} > 0.

In words, the probability of lying in a neighborhood of M for X(t) does not vanish. Therefore each point
M ∈ Pn(t) is in the support of the distribution of X(t) subject to Tin+j−1 ≤ t ≤ Tin+j , and then the support
of the measure pij(dx; t) is the whole polyhedron Pn(t).

3.4. Absolutely continuous component: the case i = 0, d+ 1 ≤ j ≤ n

We now pay attention to the case i = 0, d+1 ≤ j ≤ n. Recall that the underlying linear maps ϕ, φ : R
j−1 −→

R
d+1 are defined by (3.3) and (3.4):

ϕ(t1, . . . , tj−1) =

(
j−1∑
k=1

(v1k − v1j)tk, . . . ,
j−1∑
k=1

(vdk − vdj)tk,
j−1∑
k=1

tk

)
,

φ(t1, . . . , tj−1) =

(
j−1∑
k=1

v1ktk, . . . ,

j−1∑
k=1

vdktk,

j−1∑
k=1

tk

)
.

We split this study into three parts: the case d + 3 ≤ j ≤ n for which φ is surjective, the case j = d + 2 for
which φ is bijective and the case j = d+ 1 for which ϕ is injective.

3.4.1. The case d+ 3 ≤ j ≤ n

The map φ1 associated with φ, defined by

φ
1
(t1, . . . , td+1) =

(
d+1∑
k=1

v1ktk, . . . ,
d+1∑
k=1

vdktk,
d+1∑
k=1

tk

)
,

is bijective. Introduce the coordinates τk(x; t), 1 ≤ k ≤ d + 1, of φ−1
1 (x; t), that is: φ−1

1 (x; t) = (τ1(x; t),
. . . , τd+1(x; t)). Applying (3.6) and Lemma A.4 yields the expression of the density p0j(x; t) below.

Theorem 3.16. If d+ 3 ≤ j ≤ n, we have, for x ∈ P
j
(t),

p0j(x; t) =
1

d!Vd

∫ σ(j)(x;t)

ς(j)(x;t)

F
T

(j)
0

(s) ds
∫
D(j)(x;s,t)

d+1∏
k=1

f
T

(k)
0

(
τk(x; t) − Vkjd

Vd
s−

j−1∑
l=d+2

Vkld
Vd

sl

)

×
(

j−1∏
k=d+2

f
T

(k)
0

(sk)

)
dsd+2 · · · dsj−1 (3.41)
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where

D(j)(x; s, t) =
{
(sd+2, . . . , sj−1) ∈ (0,+∞)j−d−2 :

j−1∑
l=d+2

Vkld
Vd

sl ≤ τk(x; t) − Vkjd
Vd

s for 1 ≤ k ≤ d+ 1

}

and {
s ∈ [0, t] : D(j)(x; s, t) 
= ∅

}
=

[
ς(j)(x; t), σ(j)(x; t)

]
.

Note that the difference between expressions (3.41) and (3.36) lies in the number of variables sk’s and in the
last product which ends up at index n when i ≥ 1 and at index j − 1 when i = 0.

3.4.2. The case j = d+ 2

For j = d+ 2, the linear map φ : R
d+1 −→ R

d+1, defined by

φ(t1, . . . , td+1) =

(
d+1∑
k=1

v1ktk, . . . ,

d+1∑
k=1

vdktk,

d+1∑
k=1

tk

)
,

is bijective. Put φ−1(x; t) = (τ1(x; t), . . . , τd+1(x; t)). In these settings, we have

φ−1(x − svd+2; t− s) = φ−1(x; t) − sφ−1(vd+2; 1)
= (τ1(x; t) − s τ1(vd+2; 1), . . . , τd+1(x; t) − s τd+1(vd+2; 1)).

By (3.35), we have

τk(vd+2; 1) =
Vk d+2 d

Vd
·

The following expression for p0 d+2(x; t) emerges from this together with a straightforward change of variables
in (3.6).

Theorem 3.17. If j = d+ 2, we have, for x ∈ P
d+2

(t),

p0 d+2(x; t) =
1

d!Vd

∫ σ(d+2)(x;t)

ς(d+2)(x;t)

F
T

(d+2)
0

(s) ds
d+1∏
k=1

f
T

(k)
0

(
τk(x; t) − Vk d+2 d

Vd
s

)
. (3.42)

In (3.42), the integration must be carried out on the s’s for which one has τk(x; t)−Vk d+2 d

Vd
s ≥ 0 for 1 ≤ k ≤ d+1.

Introducing the subsets I+ and I−, say, of indices k for which respectively Vk d+2 d > 0 and Vk d+2 d < 0 and
using the notations of Remark 3.13, we see that

ς(d+2)(x; t) = max
(

max
k∈I−

Vkd(x; t)
Vk d+2 d

, 0
)

and σ(d+2)(x; t) = min
k∈I+

Vkd(x; t)
Vk d+2 d

·

3.4.3. The case j = d+ 1

For j = d+ 1, the computations are quite similar to those of Section 3.2.2. Theorem 3.5 may apply in this
case with very slight modifications: the sole difference is that the measure p0 d+1(dx; t) is absolutely continuous.
Set ⎛

⎜⎜⎝
τ

(d+1)
1 (x; t)

...
τ

(d+1)
d+1 (x; t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝
v11 . . . v1 d+1

...
...

vd1 . . . vd d+1

1 . . . 1

⎞
⎟⎟⎟⎠
−1 ⎛

⎜⎜⎜⎝
x1

...
xd
t

⎞
⎟⎟⎟⎠.
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The set of constraints Dd+1(t) = {x ∈ R
d : τ (d+1)

k (x; t) ≥ 0 for 1 ≤ k ≤ d} is nothing but the hyper-hedron
(tA1) · · · (tAd+1): Dd+1(t) = P

d+1
(t).

Theorem 3.18. If j = d+ 1, the density p0 d+1(x; t) writes, for x ∈ P
d+1

(t),

p0 d+1(x; t) =
1

d!Vd
F
T

(d+1)
0

(
τ

(d+1)
d+1 (x; t)

) d∏
k=1

f
T

(k)
0

(
τ

(d+1)
k (x; t)

)
. (3.43)

3.4.4. Exponential switching times with equal parameters

We assume here that i = 0, d+1 ≤ j ≤ n and that times T (k)
0 are exponentially distributed with parameter λ.

We have

F
T

(k)
0

(t) = e−λt, f
T

(k)
0

(t) = λ e−λt.

In this case, expression (3.43) simplifies into a remarkable formula.
• If j = d+ 1, we have for (3.43)

p0 d+1(x; t) =
λd

d!Vd
exp

[
−λ

(
d+1∑
k=1

τk(x; t)

)]
.

By (3.37), the sum lying within the above exponential equals t. As a result,

p0 d+1(x; t) =
λd

d!Vd
e−λt for x ∈ P

d+1
(t).

Let us compute the total mass of this density:

∫
P
d+1

(t)

p0 d+1(x; t) dx =
λd

d!Vd
e−λt Vol(P

d+1
(t)) =

(λt)d

d!
e−λt = P{Td ≤ t < Td+1}.

We deduce that

P{X(t) ∈ dx |Td ≤ t < Td+1} =
1

Vd td
1lP
d+1

(t)(x) dx

which means that the position X(t) of the particle conditioned on having
−→
Vd as speed-vector for the first time

(i = 0) is uniformly distributed over the polyhedron P
d+1

(t).
• If j = d+ 2, we have for (3.42)

p0 d+2(x; t) =
λd+1

d!Vd

∫ σ(d+2)(x;t)

ς(d+2)(x;t)

exp

[
−λ

(
s+

d+1∑
k=1

(τk(x; t) − s τk(vd+2; 1))

)]
ds.

By (3.37), the sum lying within the above exponential simply equals t− s and then, for x ∈ P
d+2

(t),

p0 d+2(x; t) =
λd+1

d!Vd
e−λt

[
σ(d+2)(x; t) − ς(d+2)(x; t)

]
.
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• If d+ 3 ≤ j ≤ n, formula (3.41) becomes

p0j(x; t) =
λn

d!Vd

∫ σ(j)(x;t)

ς(j)(x;t)

ds
∫
D(j)(x;s,t)

exp

[
−λ

(
s+

d+1∑
k=1

(
τk(x; t) − Vkjd

Vd
s

−
j−1∑
l=d+2

Vkld
Vd

sl

)
+

j−1∑
l=d+2

sl

)]
dsd+2 · · ·dsj−1. (3.44)

With the aid of (3.34) and (3.37), we see that the sums lying in (3.44) simplify into

s+
d+1∑
k=1

(
τk(x; t) − Vkjd

Vd
s−

j−1∑
l=d+2

Vkld
Vd

sl

)
+

j−1∑
l=d+2

sl

=

(
1 −

d+1∑
k=1

Vkjd
Vd

)
s+

d+1∑
k=1

τk(x; t) −
j−1∑
l=d+2

(
1 −

d+1∑
k=1

Vkld
Vd

)
sl = t.

Hence, (3.44) writes

p0j(x; t) =
λj−1

d!Vd

∫ σ(j)(x;t)

ς(j)(x;t)

ds
∫
D(j)(x;s,t)

dsd+2 · · · dsj−1.

The integration seems to be difficult to carry out because of the complexity of the domain D(j)(x; s, t) and of
the bounds ς(j)(x; t) and σ(j)(x; t).

4. Particular case: the minimal cyclic motion (n = d + 1)

The minimal cyclic motion corresponds to the case where n = d + 1. The variables sd+2, . . . , sn in (3.36)
disappear; in fact the function ψ defined by

ψ(t1, . . . , td+1) =

(
d+1∑
k=1

v1ktk, . . . ,
d+1∑
k=1

vdktk,
d+1∑
k=1

tk

)
,

is bijective and the change of variable is quite easy to perform in this case. Let τk(x; t), 1 ≤ k ≤ d+ 1, be the
coordinates of ψ−1(x; t): ψ−1(x; t) = (τ1(x; t), . . . , τd+1(x; t)). Observing that

ψ(0, . . . , 0, 1, 0, . . . , 0) = (v1j , . . . , vdj , 1) = (vj ; 1),

we get
ψ−1(x − svj ; t− s) = ψ−1(x; t) − sψ−1(vj ; 1) = ψ−1(x; t) − (0, . . . , 0, s, 0, . . . , 0).

The term s in the above (d+ 1)-uple lies at the jth position.
On the other hand, the set D(t) = {x ∈ R

d : τk(x; t) ≥ 0 for 1 ≤ k ≤ d+ 1} coincides with P
d+1

(t). Indeed,
since the map ψ is bijective, for any point x ∈ R

d, there exists a unique (d + 1)-uple (t1, . . . , td+1) such that
(x; t) = ψ(t1, . . . , td+1): the tk’s are given by tk = τk(x; t). So, we have xk =

∑d+1
l=1 vkltl for 1 ≤ k ≤ d and

t =
∑d+1
l=1 tl, or, equivalently, x =

∑d+1
l=1 tlvl and

∑d+1
l=1 tl = t. These considerations show that D(t) is the

set of points x ∈ R
d of the form

∑d+1
l=1 tlvl with positive parameters t1, . . . , td+1 such that

∑d+1
l=1 tl = t. Then

D(t) = P
d+1

(t). Therefore, the main result states as follows.
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Theorem 4.1. For i ≥ 1 and 1 ≤ j ≤ d+ 1, then density pij(x; t) is given, for x ∈ P
d+1

(t), by

pij(x; t) =
1

d!Vd

j−1∏
k=1

f
S

(k)
i

(τk(x; t))
d+1∏
k=j+1

f
S

(k)
i−1

(τk(x; t))
∫ τj(x;t)

0

F
T

(j)
0

(s) f
S

(j)
i−1

(τj(x; t) − s) ds. (4.1)

Let us now turn our attention to some examples.

4.1. The telegraph process (d = 1, n = 2)

This situation corresponds to the case where
−→
V1 and

−→
V2 have opposite directions and V1 = c, V2 = v. The

matrices of ψ and ψ−1 read here

B =
(
c −v
1 1

)
, B−1 =

1
v + c

(
c −v
1 1

)
.

So,

τ1(x; t) =
vt+ x

v + c
, τ2(x; t) =

ct− x

v + c
, V1 = v + c.

We retrieve the results of Di Crescenzo [2]. The notations of [2] are the following: D1 = U is the upward
direction, D2 = D is the downward direction and the related densities are f

S
(1)
i

= f
(i+1)
U , f

S
(2)
i

= f
(i+1)
D .

Moreover τ1(x; t) = τ∗ and τ2(x; t) = t− τ∗. For i ≥ 1,

pi1(x; t) =
1

v + c
f
S

(2)
i−1

(τ2(x; t))
∫ τ1(x;t)

0

F
T

(1)
0

(s) f
S

(1)
i−1

(τ1(x; t) − s) ds

=
1

v + c
f

(i)
D (t− τ∗)

∫ τ∗

0

F
U

(s) f (i)
U (τ∗ − s) ds (4.2)

and

pi2(x; t) =
1

v + c
f
S

(1)
i

(τ1(x; t))
∫ τ2(x;t)

0

F
T

(2)
0

(s) f
S

(2)
i−1

(τ2(x; t) − s) ds

=
1

v + c
f

(i+1)
U (τ∗)

∫ t

τ∗
F
D

(t− s) f (i)
D (s− τ∗) ds. (4.3)

Our result related to the second case slightly differs from that of [2] because the particle starts downwards
instead of upwards.

Let us focus on the particular case of the historical Goldstein-Kac telegraph process which corresponds to
the situation where v = c and the switching times T (j)

i are exponentially distributed with parameter λ. This
process is classically represented by

X(t) = V (0)
∫ t

0

(−1)N(s) ds

where V (0) is a Bernoulli random variable taking the two values c and −c with probability 1/2 and (N(t))t≥0

is a Poisson process of parameter λ independent of V (0). The quantity V (0) is the initial velocity and N(t)
describes the number of changes of directions within the laps of time [0, t]. The underlying velocity process is
simply V (t) = V (0)(−1)N(t). Our aim is to retrieve the well-known distribution of X(t) by using the results of
this part.
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First, notice that if N(t) = 0 (this event occurs with probability e−λt), we then haveX(t) = V (0)t ∈ {−ct, ct}
and this case is related to the singular part of the distribution of X(t):

P{X(t) = ct} = P{X(t) = −ct} =
1
2

e−λt

that is, for x ∈ {−ct, ct},
P{X(t) ∈ dx} =

1
2

e−λt [δ(dx+ ct) + δ(dx− ct)].

Second, let us turn our attention to the absolutely continuous part. For this, we introduce the following
conditional probabilities. For x ∈ (−ct, ct) (in this case, N(t) ≥ 1),

p+
1 (x; t) = P{X(t) ∈ dx, V (t) = c |V (0) = c}/dx

= P{X(t) ∈ dx,N(t) is even ≥ 2 |V (0) = c}/dx,
p+
2 (x; t) = P{X(t) ∈ dx, V (t) = −c |V (0) = c}/dx

= P{X(t) ∈ dx,N(t) is odd |V (0) = c}/dx,
p−1 (x; t) = P{X(t) ∈ dx, V (t) = −c |V (0) = −c}/dx

= P{X(t) ∈ dx,N(t) is even ≥ 2 |V (0) = −c}/dx,
p−2 (x; t) = P{X(t) ∈ dx, V (t) = c |V (0) = −c}/dx

= P{X(t) ∈ dx,N(t) is odd |V (0) = −c}/dx.

It is easily seen that p−j (x; t) = p+
j (−x; t) for j = 1, 2. Next, we derive the density of X(t), for x ∈ (−ct, ct),

according as

P{X(t) ∈ dx}/dx = P{X(t) ∈ dx, V (t) = c}/dx+ P{X(t) ∈ dx, V (t) = −c}/dx
= P{V (0) = c}(p+

1 (x; t) + p+
2 (x; t)

)
+ P{V (0) = −c}(p−1 (x; t) + p−2 (x; t)

)
=

1
2
(
p+
1 (x; t) + p−1 (x; t) + p+

2 (x; t) + p−2 (x; t)
)

(4.4)

=
1
2
(
p+
1 (x; t) + p+

1 (−x; t) + p+
2 (x; t) + p+

2 (−x; t)). (4.5)

To make the connection with our work, we observe that the densities p+
1 and p+

2 are nothing but pi1 and pi2
respectively given by (4.2) and (4.3). Indeed, on the event {N(t) is even ≥ 2} the particle performs a certain
number of cycles plus one direction while on the event {N(t) is odd} the particle performs a certain number
of cycles (possibly zero) plus two directions, that is it performs a certain number – at least one – of complete
cycles.

Now, we evaluate the densities p+
1 and p+

2 . In the settings of the beginning of this part, we have F
U

(t) =

F
D

(t) = e−λt and the random variable S(j)
i =

∑i
k=0 T

(j)
k is distributed according to the Erlang law E(i+ 1, λ):

f
(i)
U (t) = f

(i)
D (t) = e−λt

λiti−1

(i− 1)!
·

The expression (4.2) of pi1 becomes, for i ≥ 1,

pi1(x; t) =
λ2iτ2(x; t)i−1

2c (i− 1)!
e−λ(τ1(x;t)+τ2(x;t))

∫ τ1(x;t)

0

(τ1(x; t) − s)i−1

(i− 1)!
ds

= e−λt
λ2iτ1(x; t)iτ2(x; t)i−1

2c i!(i− 1)!
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that is, explicitly,

pi1(x; t) = e−λt
(
λ

2c

)2i (ct+ x)i(ct− x)i−1

i!(i− 1)!

and similarly, for i ≥ 0,

pi2(x; t) = e−λt
(
λ

2c

)2i+1 (c2t2 − x2)i

i!2
·

Reminding that

pi1(x; t) = P{X(t) ∈ dx, i complete cycles and 1 direction}/dx,
(with the assumption that the first direction is

−→
V1, that is here V (0) = c) the density p+

1 (x; t) we are looking
for is obtained by adding the pi1(x; t) with respect to i ≥ 1:

p+
1 (x; t) = P{X(t) ∈ dx, V (t) = c |V (0) = c}/dx =

∞∑
i=1

pi1(x; t)

= e−λt
∞∑
i=1

(
λ

2c

)2i (ct+ x)i(ct− x)i−1

i!(i− 1)!

=
λ e−λt

2c

√
ct+ x

ct− x

∞∑
i=0

1
i!(i+ 1)!

(
λ

2c

√
c2t2 − x2

)2i+1

=
λ e−λt

2c

√
ct+ x

ct− x
I1

(
λ

c

√
c2t2 − x2

)
=

(ct+ x)e−λt

2c2t
∂

∂t
I0

(
λ

c

√
c2t2 − x2

)
.

In the last equality, the functions I0 and I1 are the usual modified Bessel functions and we have used the relation
I ′0 = I1. Similarly, the density p+

2 (x; t) is given by

p+
2 (x; t) = P{X(t) ∈ dx, V (t) = −c |V (0) = c}/dx =

∞∑
i=0

pi2(x; t)

=
λ e−λt

2c

∞∑
i=0

1
i!2

(
λ

2c

√
c2t2 − x2

)2i

=
λ e−λt

2c
I0

(
λ

c

√
c2t2 − x2

)
.

Therefore, we have

p+
1 (x; t) + p+

1 (−x; t) =
e−λt

c

∂

∂t
I0

(
λ

c

√
c2t2 − x2

)

and

p+
2 (x; t) + p+

2 (−x; t) =
λ e−λt

c
I0

(
λ

c

√
c2t2 − x2

)
.

Finally, putting these two equalities into (4.5), the density of the Goldstein-Kac process emerges:

P{X(t) ∈ dx}/dx =
e−λt

2c

[
λ I0

(
λ

c

√
c2t2 − x2

)
+
∂

∂t
I0

(
λ

c

√
c2t2 − x2

)]
.

Hence, we retrieve formula (13) displayed in Orsingher [12] (see also Pinsky [20], p. 9).
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4.2. The case d = 2, n = 3

Di Crescenzo [3] considered a uniform cyclic motion on the plane with three directions forming an equilateral
triangle with vertices A1 = c(

√
3

2 ,
1
2 ), A2 = c(−

√
3

2 ,
1
2 ), A3 = c(0,−1). (Actually, the coordinates of A1 and

A2 in [3] have been incidentally inverted, this provided non correct equations for the edges of the triangle
A1A2A3; the correct equations are written down below). The velocity of the motion is constant all the time:
V1 = V2 = V3 = c.

• Suppose first that i ≥ 1. The matrices of ψ and ψ−1 read here

B =

⎛
⎝ c

√
3

2 − c
√

3
2 0

c
2

c
2 −c

1 1 1

⎞
⎠, B−1 =

1
3c

⎛
⎝

√
3 1 c

−√
3 1 c

0 −2 c

⎞
⎠.

So, V2 = 3c2
√

3
4 and

τ1(x, y; t) =
1
3c

(
√

3x+ y + ct), τ2(x, y; t) =
1
3c

(−
√

3x+ y + ct), τ3(x, y; t) =
1
3c

(−2y + ct).

In [3], the directions are denoted by D1 = U , D2 = V , D3 = W and the related densities by f
S

(1)
i

= f
(i+1)
U ,

f
S

(2)
i

= f
(i+1)
V , f

S
(3)
i

= f
(i+1)
W . Furthermore, the survival functions are denoted by F

T
(1)
0

= F
U

, F
T

(2)
0

= F
V

,

F
T

(3)
0

= F
W

and also τ1(x, y; t) = τ∗1 , τ2(x, y; t) = τ∗2 , τ3(x, y; t) = τ∗3 = t− τ∗1 − τ∗2 .
We retrieve the results of Di Crescenzo [3]: for i ≥ 1,

pi1(x, y; t) =
1

2V2
f
S

(2)
i−1

(τ2(x, y; t)) fS(3)
i−1

(τ3(x, y; t))
∫ τ1(x,y;t)

0

F
T

(1)
0

(s) f
S

(1)
i−1

(τ1(x, y; t) − s) ds

=
1

2V2
f

(i)
V (τ∗2 ) f (i)

W (τ∗3 )
∫ τ∗

1

0

f
(i)
U (τ∗1 − s)F

U
(s) ds,

pi2(x, y; t) =
1

2V2
f
S

(1)
i

(τ1(x, y; t)) fS(3)
i−1

(τ3(x, y; t))
∫ τ2(x,y;t)

0

F
T

(2)
0

(s) f
S

(2)
i−1

(τ2(x, y; t) − s) ds

=
1

2V2
f

(i+1)
U (τ∗1 ) f (i)

W (τ∗3 )
∫ τ∗

2

0

f
(i)
V (τ∗2 − s)F

V
(s) ds,

pi3(x, y; t) =
1

2V2
f
S

(1)
i

(τ1(x, y; t)) fS(2)
i

(τ2(x, y; t))
∫ τ3(x,y;t)

0

F
T

(3)
0

(s) f
S

(3)
i−1

(τ3(x, y; t) − s) ds

=
1

2V2
f

(i+1)
U (τ∗1 ) f (i+1)

V (τ∗2 )
∫ τ∗

3

0

f
(i)
W (τ∗3 − s)F

W
(s) ds.

• Suppose now that i = 0. We describe the measures p0j(dxdy; t) for 1 ≤ j ≤ 3.
∗ For j = 1, we simply have

p01(dxdy; t) = F
T

(1)
0

(t) δ(dxdy − tv1) = F
T

(1)
0

(t) δ
(

dx−
√

3
2
ct

)
δ

(
dy − 1

2
ct

)
.

∗ For j = 2, referring to Example 3.8,

p02(dxdy; t) =
1
V1

1lD2(t)(x) fT (1)
0

(
τ

(2)
1 (x; t)

)
F
T

(2)
0

(
τ

(2)
2 (x; t)

)
dx δ

(
dy − θ

(2)
2 (x; t)

)
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with

V1 =
√

3 c, τ
(2)
1 (x; t) =

√
3 ct+ 2x
2
√

3 c
, τ

(2)
2 (x; t) =

√
3 ct− 2x
2
√

3 c
, θ

(2)
2 (x; t) =

ct

2
and

D2(t) =
{
x ∈ R :

√
3 ct− 2x ≥ 0,

√
3 ct+ 2x ≥ 0

}
=

[
−

√
3

2
ct,

√
3

2
ct

]
.

Hence,

p02(dxdy; t) =
1√
3 c

1l[−√
3

2 ct,
√

3
2 ct

](x) f
T

(1)
0

(√
3 ct+ 2x
2
√

3 c

)
F
T

(2)
0

(√
3 ct− 2x
2
√

3 c

)
dx δ

(
dy − ct

2

)
·

∗ For j = 3, by (3.43),

p03(x, y; t) =
1

2V2
1lP

3
(t)(x, y) fT (1)

0

(
τ

(3)
1 (x, y; t)

)
f
T

(2)
0

(
τ

(3)
2 (x, y; t)

)
F
T

(3)
0

(
τ

(3)
3 (x, y; t)

)
.

The settings are exactly identical to those of the case i ≥ 1: V2 = 3c2
√

3
4 and

τ
(3)
1 (x, y; t) =

1
3c

(
√

3x+ y + ct), τ
(3)
2 (x, y; t) =

1
3c

(−
√

3x+ y + ct), τ
(3)
3 (x, y; t) =

1
3c

(ct− 2y).

Consequently,

p03(x, y; t) =
2

3
√

3 c2
F
T

(3)
0

(
1
3c

(ct− 2y)
)
f
T

(1)
0

(
1
3c

(
√

3x+ y + ct)
)
f
T

(2)
0

(
1
3c

(−
√

3x+ y + ct)
)
.

Remark 4.2. Adding an extra point A4 = c(α, β) to the situation we are dealing with in this part (then d = 2
and n = 4) is of interest: for i = 0 and j = 4 = d+ 2, e.g., we have

p04(x, y; t) =
1

2V2

∫ σ(4)(x,y;t)

ς(4)(x,y;t)

F
T

(4)
0

(s) ds
3∏

k=1

f
T

(k)
0

(τk(x, y; t) − s τk(cα, cβ; 1))

with

τ1(x, y; t) − s τ1(cα, cβ; 1) =
1
3c

(
√

3x+ y + ct) − s

3
(
√

3α+ β + 1),

τ2(x, y; t) − s τ2(cα, cβ; 1) =
1
3c

(−
√

3 x+ y + ct) − s

3
(−

√
3α+ β + 1),

τ3(x, y; t) − s τ3(cα, cβ; 1) =
1
3c

(−2y + ct) − s

3
(−2β + 1).

If, e.g., the solid quadrilateral A1A2A3A4 is convex, the reals numbers α, β verify the conditions

√
3α+ β + 1 ≥ 0, −√

3α+ β + 1 ≤ 0, −2β + 1 ≥ 0.

Then, the constraints for s, τk(x, y; t) − s τk(cα, cβ; 1) ≥ 0 for 1 ≤ k ≤ 3, read

1
c

max

(√
3x− y − ct√
3α− β − 1

, 0

)
≤ s ≤ 1

c
min

(√
3x+ y + ct√
3α+ β + 1

,
ct− 2y
1 − 2β

)
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which produce the following bounds for s:

ς(4)(x, y; t) =
1
c

max

(√
3x− y − ct√
3α− β − 1

, 0

)
, σ(4)(x, y; t) =

1
c

min

(√
3x+ y + ct√
3α+ β + 1

,
ct− 2y
1 − 2β

)
.

4.3. Erlangian switching times

4.3.1. Erlang distribution and Bessel functions with several variables

Consider the case where the switching times are distributed according to an Erlang law: we suppose that the
distributions of random times T (j)

i are Erlang law E(νj , λj), that is

F
T

(j)
0

(t) = P

(
T

(j)
i > t

)
= e−λjt

νj−1∑
l=0

(λjt)l

l!
·

Then, the random variable S(j)
i =

∑i
k=0 T

(j)
k is distributed according to the Erlang law E((i+ 1)νj, λj):

f
S

(j)
i

(t) = e−λjt
λ

(i+1)νj

j t(i+1)νj−1

((i+ 1)νj − 1)!
·

In this case, formula (4.1) becomes

pij(x; t) =
1

d!Vd

j−1∏
k=1

(
e−λkτk(x;t) λ

(i+1)νk

k τk(x; t)(i+1)νk−1

((i+ 1)νk − 1)!

)
d+1∏
k=j+1

(
e−λkτk(x;t) λ

iνk

k τk(x; t)iνk−1

(iνk − 1)!

)

×
∫ τj(x;t)

0

e−λjs

νj−1∑
l=0

(λjs)l

l!
e−λj(τj(x;t)−s) λ

iνj

j (τj(x; t) − s)iνj−1

(iνj − 1)!
ds.

The above integral can be easily evaluated:

∫ τj(x;t)

0

e−λjs

νj−1∑
l=0

(λjs)l

l!
e−λj(τj(x;t)−s) λ

iνj

j (τj(x; t) − s)iνj−1

(iνj − 1)!
ds

= e−λjτj(x;t)

νj−1∑
l=0

λ
iνj+l
j

∫ τj(x;t)

0

sl

l!
(τj(x; t) − s)iνj−1

(iνj − 1)!
ds

= e−λjτj(x;t)

νj−1∑
l=0

(λjτj(x; t))iνj+l

(iνj + l)!
·

We then obtain

pij(x; t) =
1

d!Vd

( ∏
1≤k≤d+1

k �=j

λk

)
e−

∑d+1
k=1 λkτk(x;t)

j−1∏
k=1

(λkτk(x; t))(i+1)νk−1

((i+ 1)νk − 1)!

×
νj−1∑
l=0

(λjτj(x; t))iνj+l

(iνj + l)!

d+1∏
k=j+1

(λkτk(x; t))iνk−1

(iνk − 1)!
·
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When summing this expression over all indices i, we get the probability

pj(x; t) =
∞∑
i=1

pij(x; t) = P{X(t) ∈ dx, at least a cycle and j directions}/dx.

We explicitly have

pj(x; t) =
1

d!Vd

( ∏
1≤k≤d+1

k �=j

λk

)
e−

∑d+1
k=1 λkτk(x;t)

νj−1∑
l=0

∞∑
i=0

j−1∏
k=1

(λkτk(x; t))iνk+2νk−1

(iνk + 2νk − 1)!

× (λjτj(x; t))iνj+νj+l

(iνj + νj + l)!

d+1∏
k=j+1

(λkτk(x; t))iνk+νk−1

(iνk + νk − 1)!
·

This probability can be expressed in terms of generalized Bessel with several arguments. Set

Iβ1,...,βn
α1,...,αn

(x1, . . . , xn) =
∞∑
k=0

xα1+kβ1
1 · · ·xαn+kβn

n

(α1 + kβ1)! · · · (αn + kβn)!
·

Theorem 4.3. The density of X(t) subject to having performed at least one complete cycle and to following
the jth direction can be expressed as

pj(x; t) =
1

d!Vd

( ∏
1≤k≤d+1

k �=j

λl

)
e−

∑d+1
k=1 λkτk(x;t)

νj−1∑
l=0

Iν1,...,νd+1
µ1l,...,µd+1 l

(λ1τ1(x; t), . . . , λd+1τd+1(x; t))

where

µkl =

⎧⎨
⎩

2νk − 1 if 1 ≤ k ≤ j − 1,
νj + l if k = j,
νk − 1 if j + 1 ≤ k ≤ d+ 1.

Remark 4.4. The Bessel function can be related to hypergeometric function as follows: writing

(α+ kβ)! = α!
kβ∏
l=1

(α+ l) = α!
k−1∏
i=0

β∏
j=1

(α+ iβ + j)

= α!βkβ
k−1∏
i=0

β∏
j=1

(
α+ j

β
+ i

)
= α!βkβ

β∏
j=1

(
α+ j

β

)
k

with ak = a(a+ 1) · · · (a+ k − 1), we have

Iβ1,...,βn
α1,...,αn

(x1, . . . , xn) =
xα1

1 · · ·xαn
n

α1! · · ·αn!

∞∑
k=0

(
x1
β1

)kβ1 · · ·
(
xn

βn

)kβn

∏β1
i=1

(
α1+i
β1

)
k
· · ·∏βn

i=1

(
αn+i
βn

)
k

·

So, invoking the hypergeometric function

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!
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and putting γij = αi+j
βi

for 1 ≤ i ≤ n and 1 ≤ j ≤ βi, we extract the relationship

Iβ1,...,βn
α1,...,αn

(x1, . . . , xn) =
xα1

1 · · ·xαn
n

α1! · · ·αn! 1Fn

(
1; γ11, . . . , γnβn ;

(
x1

β1

)β1

· · ·
(
xn
βn

)βn
)
.

4.3.2. Erlang distribution with equal parameters λk
When moreover all parameters λk are identical to λ, we have

d+1∑
k=1

λkτk(x; t) = λ

d+1∑
k=1

τk(x; t) = λt

and then

pj(x; t) =
λd

d!Vd
e−λt

νj−1∑
l=0

Iν1,...,νd+1
µ1l,...,µd+1 l

(λτ1(x; t), . . . , λτd+1(x; t)).

4.4. Exponential switching times with equal parameters

If all parameters λk are identical to λ and all parameters νk are identical to 1 in the Erlang distribution
E(νk, λk), times T (j)

i are exponentially distributed with parameter λ and the Bessel function simplifies into (in
the lower indices below, there are j indices equal to 1 and n− j equal to 0)

I1,...,1
1,...,1,0,...,0(x1, . . . , xn) =

∞∑
k=0

xk+1
1 · · ·xk+1

j xkj+1 · · ·xkn
(k + 1)! · · · (k + 1)!k! · · ·k! = (x1 · · ·xj)

∞∑
k=0

(x1 · · ·xn)k

(k + 1)!jk!n−j

= (x1 · · ·xj)Ij,n(n n
√
x1 · · ·xn)

where

Ij,n(z) =
∞∑
k=0

(z/n)nk

k!n−j(k + 1)!j
·

In these settings, we obtain

pj(x; t) =
λd+j

d!Vd
e−λt

(
j∏

k=1

τk(x; t)

)
Ij,d+1

⎛
⎝λ(d + 1) d+1

√√√√d+1∏
k=1

τk(x; t)

⎞
⎠.

4.4.1. Motion with constant velocity

We suppose in addition that all the speeds Vk are identical to c. In that case, Vd = cd Ṽd, Ṽd being the
volume of the normalized (d+ 1)-hedron A′

1 · · ·A′
d+1 where A′

k = 1
c Ak. We have

τk(x; t) =
wk d+1

c
hk(x; t) with hk(x; t) = ct+

d∑
l=1

cwkl
wk d+1

xl

and, furthermore,
j∏

k=1

τk(x; t) =
1
cj

j∏
k=1

wk d+1

j∏
k=1

hk(x; t) =
αj

(d+ 1)jcj

j∏
k=1

hk(x; t)

with

αj =
j∏

k=1

[(d+ 1)wk d+1].
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As a result, we obtain:

pj(x; t) =
αj e−λt

(d+ 1)j d! Ṽd

(
λ

c

)d+j ( j∏
k=1

hk(x; t)

)
Ij,d+1

⎛
⎝λ

c
d+1

√√√√αd+1

d+1∏
k=1

hk(x; t)

⎞
⎠.

4.4.2. Motion with directions forming a regular (d+ 1)-hedron

If moreover the (d+1)-hedron of the directions is regular, the inner products of the speed-vectors are constant
and their values are given by (see [9])

−→
Vi.

−→
Vj =

{−c2/d if i 
= j,
c2 if i = j.

This yields
d

d+ 1

(
d∑
k=1

vki
c2

× vkj +
1
d

)
=

d

d+ 1

(
1
c2

−→
Vi.

−→
Vj +

1
d

)
= δij

and then, the matrix of ψ−1 writes

B−1 =

⎛
⎜⎝
w11 . . . w1 d+1

...
...

wd+1 1 . . . wd+1 d+1

⎞
⎟⎠ =

d

(d+ 1)c2

⎛
⎜⎝
v11 . . . vd1

c2

d
...

...
...

v1 d+1 . . . vd d+1
c2

d

⎞
⎟⎠.

So, wkl = dvlk

(d+1)c2 for l ≤ d, wk d+1 = 1
d+1 , αj = 1 and

hk(x; t) = ct+ d

d∑
l=1

vlk
c
xl.

In that case, we retrieve a formula by Lachal, Leorato and Orsingher [9]:

pj(x; t) =
e−λt

(d+ 1)j d! Ṽd

(
λ

c

)d+j ( j∏
k=1

hk(x; t)

)
Ij,d+1

⎛
⎝λ

c
d+1

√√√√d+1∏
k=1

hk(x; t)

⎞
⎠.

A. Appendix: the linear image of a random vector

Let X = (X1, . . . , Xp) be a random vector with pdf f
X

, Φ : R
p −→ R

q be a linear map, and Y = Φ(X) =
(Y1, . . . , Yq). In this section, we express the probability distribution of Y in terms of f

X
. We distinguish the

cases where Φ is injective with p < q (we shall call it ϕ), and Φ is surjective with p > q (we shall call it ψ).

A.1. Injective case

Suppose ϕ injective and p < q. Let us introduce the matrix of the linear map ϕ:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 . . . a1p

...
...

ap1 . . . app
ap+11 . . . ap+1 p

...
...

aq1 . . . aqp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Since ϕ is injective, the rank of the matrix A is p. So, we can extract from A an invertible matrix of type p×p.
Upon exchanging some rows of A, we can suppose that this extracted matrix is obtained by picking the p first
rows of A. This observation suggests us to split A into the two matrices A1 and A2 defined by

A1 =

⎛
⎜⎝
a11 . . . a1p

...
...

ap1 . . . app

⎞
⎟⎠ and A2 =

⎛
⎜⎝
ap+11 . . . ap+1 p

...
...

aq1 . . . aqp

⎞
⎟⎠

where A1 is the aforementioned invertible matrix. We finally introduce the linear maps ϕ
1

: R
p −→ R

p and
ϕ

2
: R

p −→ R
q−p whose matrices are respectively A1 and A2. In these settings, we clearly have

ϕ(x1, . . . , xp) = (ϕ
1
(x1, . . . , xp), ϕ2

(x1, . . . , xp)).

The above discussion entails that, in the foregoing decomposition, the map ϕ
1

is bijective.

A.1.1. The distribution of Y

Lemma A.1. The random vector Y admits for probability distribution the singular measure

f
Y

(dy1 · · · dyq) =
1

| detϕ1|
δ
(
(yp+1, . . . , yq) −

(
ϕ2 ◦ ϕ−1

1

)
(y1, . . . , yp)

) (
f
X
◦ ϕ−1

1

)
(y1, . . . , yp) dy1 · · ·dyq

=
1

| detϕ1|
(
f
X
◦ ϕ−1

1

)
(y1, . . . , yp) dy1 · · · dypδ(ϕ2◦ϕ−1

1 )(y1,...,yp) (dyp+1 · · · dyq).

The symbol ◦ in the foregoing relations denotes the usual composition of functions.

Remark A.2. We emphasize that f
Y

(dy1 · · · dyq) is not a density (we did not write it as f
Y

(y1, . . . , yq) dy1
· · · dyn) because of the presence of the generalized function or the Dirac measure δ. In the expression δ(y − a),
δ stands for the generalized function such that

∫
δ(y−a)ψ(y) dy = ψ(a) while in δa(dy), δa stands for the Dirac

measure with an atom lying at a: δa(A) =
∫
A δa(dy) = 1lA(a).

Proof. By applying the change of variables defined by the bijective map ϕ
1
, we plainly derive for any Borel sets

E of R
p and F of R

q−p:

P{Y ∈ E × F} = P
{
ϕ

1
(X) ∈ E,ϕ

2
(X) ∈ F

}
= P

{
X ∈ ϕ−1

1 (E) ∩ ϕ−1
2

(F )
}

=
∫
ϕ−1

1 (E)

1lϕ−1
2

(F )(x) f
X

(x) dx =
∫
ϕ−1

1 (E)

1lF (ϕ
2
(x)) f

X
(x) dx

=
1

| detϕ
1
|
∫
E

1lF
((
ϕ

2
◦ ϕ−1

1

)
(y1, . . . , yp)

) (
f
X
◦ ϕ−1

1

)
(y1, . . . , yp) dy1 . . .dyp.

Let us mention that in the second above equality, the notations ϕ−1
1 (E) and ϕ−1

2 (F ) (although ϕ2 is not
bijective) refer to the inverse images of the sets E and F by ϕ1 and ϕ2 respectively. We have

1lF
((
ϕ

2
◦ ϕ−1

1

)
(y1, . . . , yp)

)
= δ(ϕ2◦ϕ−1

1 )(y1,...,yp)(F ) =
∫
F

δ(ϕ2◦ϕ−1
1 )(y1,...,yp)(dyp+1 . . .dyq)

=
∫
F

δ
(
(yp+1, . . . , yq) −

(
ϕ

2
◦ ϕ−1

1

)
(y1, . . . , yp)

)
dyp+1 . . .dyq.
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Then, putting y = (y1, . . . , yp, yp+1, . . . , yq),

P{Y ∈ E × F} =
1

| detϕ
1
|
∫
E×F

δ
(
(yp+1, . . . , yq) −

(
ϕ

2
◦ ϕ−1

1

)
(y1, . . . , yp)

) (
f
X
◦ ϕ−1

1

)
(y1, . . . , yp) dy

which proves the result. �
Lemma A.3. The support of the measure f

Y
(dy1 · · ·dyq) is the range of ϕ.

Proof. The support of the measure f
Y

(dy1 · · · dyq) is the set characterized by the equations

(yp+1, . . . , yq) =
(
ϕ

2
◦ ϕ−1

1

)
(y1, . . . , yp).

Introducing the parameters u1, . . . , up defined by (u1, . . . , up) = ϕ−1
1 (y1, . . . , yp), we extract the relations

(y1, . . . , yp) = ϕ1(u1, . . . , up) and (yp+1, . . . , yq) = ϕ2(u1, . . . , up)

which write, in a more concise form,

(y1, . . . , yq) = ϕ(u1, . . . , up), u1, . . . , up ∈ R.

This is a parametrical representation of the range of ϕ which is also the vectorial space spanned by the vectors∑q
i=1 aij �ei, 1 ≤ j ≤ p, where {�e1, . . . , �eq} is the canonical basis of R

q. �

A.1.2. Computation of ϕ
2
◦ ϕ−1

1

We specify the explicit form of ϕ2 ◦ ϕ−1
1 . For this, we use the matrices A, A1, A2 of the linear maps ϕ, ϕ1,

ϕ
2
. Set ∆ = detA1 and introduce the co-factors Aij , 1 ≤ i, j ≤ q, of A1 defined by

Aij = (−1)i+j det(akl) 1≤k,l≤p
k �=i,l �=j

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1 j−1 a1 j+1 . . . a1p

...
...

...
...

ai−1 1 . . . ai−1 j−1 ai−1 j+1 . . . ai−1 p

ai+11 . . . ai+1 j−1 ai+1 j+1 . . . ai+1 p

...
...

...
...

ap1 . . . ap j−1 ap j+1 . . . app

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The matrix of the map ϕ−1
1 is then given by

A−1
1 =

1
∆

⎛
⎜⎝
A11 . . . Ap1
...

...
A1p . . . App

⎞
⎟⎠.

Let us perform some intermediate computations:

p∑
k=1

Ajkxk =
p∑
k=1

(−1)j+kxk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1 k−1 a1 k+1 . . . a1p

...
...

...
...

aj−1 1 . . . aj−1 k−1 aj−1 k+1 . . . aj−1 p

aj+1 1 . . . aj+1 k−1 aj+1 k+1 . . . aj+1 p

...
...

...
...

ap1 . . . ap k−1 ap k+1 . . . app

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1p

...
...

aj−1 1 . . . aj−1 p

x1 . . . xp
aj+1 1 . . . aj+1 p

...
...

ap1 . . . app

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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In the case where xk = aik, p+ 1 ≤ i ≤ q, we get the matrix of the map ϕ
2
◦ ϕ−1

1 :

A2A−1
1 =

1
∆

⎛
⎜⎝

∆p+1 1 . . . ∆p+1 p

...
...

∆q1 . . . ∆qp

⎞
⎟⎠

where

∆ij =
p∑
k=1

aikAjk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1p

...
...

aj−1 1 . . . aj−1 p

ai1 . . . aip
aj+1 1 . . . aj+1 p

...
...

ap1 . . . app

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for p+ 1 ≤ i ≤ q, 1 ≤ j ≤ p.

A.1.3. Some constraints

In the case where all the random variablesX1, . . . , Xp are positive, the support of the measure f
Y

(dy1 · · · dyq)
may be a little more specified. The coordinates of ϕ−1

1 (y1, . . . , yp) must be positive. Assuming for instance
∆ > 0, this generates the constraints that

∑p
k=1 Ajkyk ≥ 0 for 1 ≤ j ≤ p. Hence the support is the intersection

of the range of ϕ and the subset D of R
q given by

D =

{
(y1, . . . , yq) ∈ R

q :
p∑

k=1

Ajkyk ≥ 0 for 1 ≤ j ≤ p

}
.

A.2. Surjective case

Suppose ψ surjective and p > q. Let us assume that the vectors X1 = (X1, . . . , Xq) and X2 = (Xq+1, . . . , Xp)
are independent. We introduce the matrix of the linear map ψ:

B =

⎛
⎜⎝
b11 . . . b1q b1 q+1 . . . b1p
...

...
...

...
bq1 . . . bqq bq q+1 . . . bqp

⎞
⎟⎠.

Since ψ is surjective, the rank of the matrix B is q. So, we can extract from B an invertible matrix of type
q × q. Upon exchanging some columns of B, we can suppose that this extracted matrix is obtained by picking
the q first columns of B. This observation suggests us to split B into the two following matrices B1 and B2:

B1 =

⎛
⎜⎝
b11 . . . b1q
...

...
bq1 . . . bqq

⎞
⎟⎠ and B2 =

⎛
⎜⎝
b1 q+1 . . . b1p

...
...

bq q+1 . . . bqp

⎞
⎟⎠

where B1 is the invertible aforementioned matrix. We also introduce the linear maps ψ
1

: R
q −→ R

q and
ψ

2
: R

p−q −→ R
q whose matrices are respectively B1 and B2. Actually, the maps ψ

1
and ψ

2
are nothing but

the partial maps of ψ defined by

ψ
1
(x1, . . . , xq) = ψ(x1, . . . , xq, 0, . . . , 0) and ψ

2
(xq+1, . . . , xp) = ψ(0, . . . , 0, xq+1, . . . , xp).

From the above discussion the map ψ
1

is evidently bijective.
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A.2.1. The distribution of Y

Lemma A.4. The random vector Y admits for pdf

f
Y

(y1, . . . , yq) =
1

| detψ1|
∫

Rp−q

f
X1

(
ψ−1

1 (y1, . . . , yq) − (ψ−1
1 ◦ ψ

2
)(xq+1, . . . , xp)

)
× f

X2
(xq+1, . . . , xp) dxq+1 . . . dxp.

Proof. First, observe that ψ(x1, . . . , xp) = ψ
1
(x1, . . . , xq) + ψ

2
(xq+1, . . . , xp). Now, applying the change of vari-

ables defined by the bijective map ψ
1
, we plainly derive

P{Y ∈ E} = P
{
X1 ∈ ψ−1

1 (E) − (ψ−1
1 ◦ ψ

2
)(X2)

}
=

∫
Rp−q

P
{
X1 ∈ ψ−1

1 (E) − (ψ−1
1 ◦ ψ

2
)(xq+1, . . . , xp)

}
f
X2

(xq+1, . . . , xp) dxq+1 . . . dxp

=
∫
ψ−1

1 (E)

dx1 . . .dxq
∫

Rp−q

f
X1

(
(x1, . . . , xq) − (ψ−1

1 ◦ ψ
2
)(xq+1, . . . , xp)

)
×f

X2
(xq+1, . . . , xp) dxq+1 . . . dxp

=
1

| detψ
1
|
∫
E

dy1 . . .dyq
∫

Rp−q

f
X1

(
ψ−1

1 (y1, . . . , yq) − (ψ−1
1 ◦ ψ

2
)(xq+1, . . . , xp)

)
×f

X2
(xq+1, . . . , xp) dxq+1 . . . dxp

which proves the result. �

A.2.2. Computation of ψ−1
1 ◦ ψ

2

We specify the explicit form of ψ−1
1 ◦ ψ

2
. For this, we use the matrices B, B1, B2 of the linear maps ψ, ψ

1
,

ψ
2
. Put ∆ = detB1 and introduce the co-factors Bij , 1 ≤ i, j ≤ q, of B1:

Bij = (−1)i+j det(bkl) 1≤k,l≤q
k �=i,l �=j

= (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b11 . . . b1 j−1 b1 j+1 . . . b1q
...

...
...

...
bi−1 1 . . . bi−1 j−1 bi−1 j+1 . . . bi−1 q

bi+1 1 . . . bi+1 j−1 bi+1 j+1 . . . bi+1 q

...
...

...
...

bq1 . . . bq j−1 bq j+1 . . . bqq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We then have

B−1
1 =

1
∆

⎛
⎜⎝
B11 . . . Bq1
...

...
B1q . . . Bqq

⎞
⎟⎠.
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Let us perform some intermediate computations:

q∑
k=1

Bkixk =
q∑

k=1

(−1)i+kxk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b11 . . . b1 i−1 b1 i+1 . . . b1q
...

...
...

...
bk−1 1 . . . bk−1 i−1 bk−1 i+1 . . . bk−1 q

sbk+11 . . . bk+1 i−1 bk+1 i+1 . . . bk+1 q

...
...

...
...

bq1 . . . bq i−1 bq i+1 . . . bqq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
b11 . . . b1 i−1 x1 b1 i+1 . . . b1q
...

...
...

...
...

bq1 . . . bq i−1 xq bq i+1 . . . bqq

∣∣∣∣∣∣∣ = det(�v1, . . . , �vi−1, �u,�vi+1, . . . , �vq)

where we set in the last displayed equality

�u =
q∑
j=1

xj�ej and �vk =
q∑
j=1

bjk�ej for 1 ≤ k ≤ q.

Observe that the relation
∑q
k=1 Bkixk = 0 is the equation of the vectorial space spanned by the vectors

�v1, . . . , �vi−1, �vi+1, . . . , �vq. In the case where xk = bjk, q + 1 ≤ j ≤ p, we get the matrix of the map ψ−1
1 ◦ ψ2:

B−1
1 B2 =

1
∆

⎛
⎜⎝

∆1 q+1 . . . ∆1p

...
...

∆q q+1 . . . ∆qp

⎞
⎟⎠.

where, for 1 ≤ i ≤ q, q + 1 ≤ j ≤ p,

∆ij =
q∑

k=1

Bkibkj =

∣∣∣∣∣∣∣
b11 . . . b1 i−1 b1j b1 i+1 . . . b1q
...

...
...

...
...

bq1 . . . bq i−1 bqj bq i+1 . . . bqq

∣∣∣∣∣∣∣
= det(�v1, . . . , �vi−1, �vj , �vi+1, . . . , �vq). (A.1)

We also have

∆ = det(�v1, . . . , �vq).

A.2.3. Some constraints

In the case where all the random variables X1, . . . , Xp are positive, we specify a little more the domain over
which the integration in Lemma A.4 should be carried. For this, we see that we must have (xq+1, . . . , xp) ∈
(0,+∞)p−q together with ψ−1

1 (y1, . . . , yq) −
(
ψ−1

1 ◦ ψ
2

)
(xq+1, . . . , xp) ∈ (0,+∞)q. Assume for instance ∆ > 0.

The domain of integration then writes

D =
{

(xq+1, . . . , xp) ∈ (0,+∞)p−q :
q∑

k=1

Bkiyk −
p∑

j=q+1

∆ijxj ≥ 0 for 1 ≤ i ≤ q

}
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and the variables y1, . . . , yq are subject to the condition that this set is non-empty. Notice that

p∑
j=q+1

∆ijxj =
p∑

j=q+1

(
q∑

k=1

Bkibkj

)
xj =

q∑
k=1

Bki

(
p∑

j=q+1

bkjxj

)
=

q∑
k=1

Bkix
′
k

where, in the last above equality, the x′k’s are the components with respect to the canonical basis of R
q of the

vector
q∑

k=1

x′k�ek =
q∑

k=1

(
p∑

j=q+1

bkjxj

)
�ek =

p∑
j=q+1

xj

(
q∑

k=1

bkj�ek

)
=

p∑
j=q+1

xj�vj .

Thus
q∑

k=1

Bkiyk −
p∑

j=q+1

∆ijxj = det

(
�v1, . . . , �vi−1,

q∑
k=1

yk�ek −
p∑

j=q+1

xj�vj , �vi+1, . . . , �vp

)
.
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