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BINOMIAL-POISSON ENTROPIC INEQUALITIES AND THE M/M/∞ QUEUE

Djalil Chafäı
1

Abstract. This article provides entropic inequalities for binomial-Poisson distributions, derived from
the two point space. They appear as local inequalities of the M/M/∞ queue. They describe in
particular the exponential dissipation of Φ-entropies along this process. This simple queueing process
appears as a model of “constant curvature”, and plays for the simple Poisson process the role played
by the Ornstein-Uhlenbeck process for Brownian Motion. Some of the inequalities are recovered by
semi-group interpolation. Additionally, we explore the behaviour of these entropic inequalities under
a particular scaling, which sees the Ornstein-Uhlenbeck process as a fluid limit of M/M/∞ queues.
Proofs are elementary and rely essentially on the development of a “Φ-calculus”.
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1. Introduction

We consider in this article the M/M/∞ queueing process. This elementary continuous time Markov process on
N plays for the simple Poisson process the role played by the Ornstein-Uhlenbeck process for Brownian motion.
In particular, its law at time t is explicitly given by a binomial-Poisson Mehler like formula, and the associated
semi-group commutes with the discrete gradient operator, up to a time decreasing exponential factor. We derive
general entropic inequalities for binomial-Poisson measures from the two points space, essentially by convexity.
They hold in particular for the law at fixed time of the process, as for Ornstein-Uhlenbeck. In particular, these
entropic inequalities contain as special cases Poincaré inequalities and various modified logarithmic Sobolev
inequalities, which appear for instance in [1, 5, 6, 16].

It is known that the lack of a chain rule and of a good notion of curvature in discrete space settings make
difficult the derivation of entropic inequalities for discrete space Markov processes. Poincaré inequalities are
exceptional, due to their Hilbertian nature. Their derivation does not need the diffusion property. Lévy processes
and Poisson space are also exceptional, since their i.i.d. underlying structure makes them “flat” in a way. This
nature is translated on the infinitesimal Markov generator as a commutation with translations. The M/M/∞
queue has non-homogeneous independent increments, and is thus beyond this framework. The reader may find
various entropic inequalities for finite space Markov processes in [2, 17, 33], and for infinite countable space
Markov processes in [1, 5, 11–16,21, 22, 29, 30, 35] for instance.
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Birth and death processes are the discrete space analogue of diffusion processes. However, they are not
diffusions, and specific diffusion tools like Bakry-Émery Γ2 calculus are of difficult usage for such processes.
It follows from our study that the M/M/∞ queueing process can serve as a model of “constant curvature”
on N. It is known that convexity may serve as an alternative to the diffusion property, as presented for instance
in [11, 35]. In this article, we circumvent the lack of chain rule by elementary convexity bounds for germs of
discrete Dirichlet forms. This work can be seen as a continuation of [11], and was initially motivated by the time
inhomogeneous M/M/∞ queue which appears in the biological problem studied in [10]. The notion of queueing
process is widely used in applied probability. The reader may find a modern introduction to queueing processes
in the book [31] by Robert, in connection with random networks, general Markov processes, martingales, and
point processes. This large family of Markov processes contains, as particular cases, the simple Poisson process,
the continuous time simple random walk on N, and more generally all continuous time birth and death processes
on N.

The approach and results of this article may be extended by various ways. The first step is to consider
birth and death processes on N or Z, and then on N

d or Z
d with interactions. Some versions of such models

where already considered in the statistical mechanics literature, at least for Poincaré and modified logarithmic
Sobolev inequalities, see for instance [5, 13–16], and references therein. These extensions concern continuous
time processes on a discrete space E with generator of the form

L(f)(x) =
∫

E

(f(y) − f(x)) dγx(y),

where γx is the “jump measure” at point x, which is a finite Borel measure on E. Another possibility is to
consider Volterra processes driven by a simple Poisson process, possibly together with Clark-Ocone formulas
as in [2, 35] for instance. We hope that some of these extensions will make the matter of forthcoming articles.
We have in mind the construction of a functional bridge between discrete space Markov processes and “curved”
diffusion processes, which complements, by mean of quantitative functional inequalities, the approximation in
law. The recent articles [5, 8, 13–16,19–21] may help for such a program.

The entropic inequalities that we consider in this article can be called “Φ-Sobolev inequalities” since they in-
volve a Φ-entropy and a Φ-Dirichlet form. They contain in particular Poincaré inequalities and “L1”-logarithmic-
Sobolev inequalities. As presented in [11], they hold, under convexity assumptions on Φ, for log-concave mea-
sures on R

d, for diffusions on manifolds with positive bounded below curvature, for many Wiener measures, for
Poisson space, and for many Lévy processes. Their genericity on Φ is particularly interesting in discrete space
settings for which no chain rule is available. The aim of this article is to extend these entropic inequalities to
discrete space processes, beyond the i.i.d. increments case, in particular, beyond Lévy processes and Poisson
space.

This work goes beyond many results of [6], in terms of entropies, Dirichlet forms, and measures. We show
how the entropic inequalities are scaled when the discrete space curved process (M/M/∞) approximates a
curved diffusion process (Ornstein-Uhlenbeck). This work can thus be seen as a precise and instructive case
study. Many aspects are still valid for more general birth and death processes, and we believe that the entropic
inequalities that we consider here hold for interacting birth and death processes. However, a lot of work is
still needed to achieve this objective. In particular, and to our knowledge, a good notion of curvature is still
lacking for interacting birth and death processes. Viewed as a unidimensional (e.g. single site) particle system,
the M/M/∞ queue is not conservative. It can be viewed as a particular unidimensional case of the processes
considered in [13–16]

Outline of the rest of the article. In the introduction, the definition of the M/M/∞ queueing process
is followed by the presentation of links and analogies with the Ornstein-Uhlenbeck process, and then by the
introduction of the Φ-entropy together with the A − B − C transforms of Φ. Section two is a two point
space approach to binomial-Poisson entropic inequalities. In Section three, we address the exponential decay of
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Φ-entropy functionals along the M/M/∞ queue, we give various proofs of entropic inequalities by using semi-
group interpolations, and we use a scaling limit to recover Gaussian inequalities for the Ornstein-Uhlenbeck
process. The fourth and last section is devoted to key convexity properties related to the A−B−C transforms.

1.1. The M/M/∞ queueing process

The M/M/∞ queue with input rate λ � 0 and service rate µ � 0 is a particular space-inhomogeneous and
time-homogeneous birth and death process on N. Let Xt be the number of customers in the queue – i.e. the
length of the queue – at time t. The name “M/M/∞” comes from Kendall’s classification of simple queueing
processes. It corresponds to an infinite number of servers with random memoryless inter-arrivals (first M) and
service times (second M), see for instance [31], p. xiii. Since the number of servers is infinite, each client gets
immediately his own dedicated server, and the length of the queue is exactly the number of busy servers. The
infinitesimal Markov generator L of the M/M/∞ queue (Xt)t�0 is given for any f : N → R and any n ∈ N by

L(f)(n) = nµD∗(f)(n) + λD(f)(n), (1)

where the discrete gradients D and D∗ are defined respectively for any f : Z → R and any n ∈ N by

D(f)(n) := f(n + 1) − f(n) and D∗(f)(n) := f(n − 1) − f(n). (2)

The operators D and D∗ commute with translations, but L does not. Notice that f(−1) does not need to be
defined in (1) since it is multiplied by 0. The stared notation for D∗ comes from the fact that D∗ is the adjoint
of D with respect to the counting measure on Z. The identity DD∗ = D∗D = −(D + D∗) leads to a polarised
version of the infinitesimal generator (1),

L(f)(n) = −λ(DD∗)(f)(n) + (nµ − λ)D∗(f)(n),

for any n ∈ N and f : N → R. The finite difference operator DD∗ is the discrete Laplacian, given by
(DD∗)(f)(n) = 2f(n) − f(n − 1) − f(n + 1) for any f : Z → R and any n ∈ Z. Consider the process
conditional to the event {Xs = n}. Let T := min{t > s : Xt �= Xs} − s be the waiting time before next jump.
Then T follows an exponential law E(λ + nµ) of mean 1/(λ + nµ). The transition matrix J of the embedded
discrete time jump Markov chain is given for any m, n ∈ N by

J(n, m) :=
1

λ + nµ

⎧⎪⎨
⎪⎩

nµ if m = n − 1
λ if m = n + 1
0 otherwise

,

where we assumed for simplicity that λ + µ > 0. The embedded chain is recurrent irreducible as soon as λ > 0
and µ > 0. The jump intensity function n �→ λ + nµ is not bounded when µ > 0, however, the process is not
explosive by virtue of Reuter criterion for irreducible birth and death processes, cf. [9], Theorem 4.5.

Defining a stochastic process corresponds to specify a law on paths space. Following [31], Chapter 6, the
stochastic process (Xt)t�0 with X0 = n can be constructed as follows:

Xt = n + Nλ(]0, t]) −
∞∑

i=1

∫
]0,t]

1{Xs−�i} N i
µ(ds),

where Nλ is a Poisson random measure on R+ of intensity λ and where (N i
µ)i∈N is an i.i.d. collection of Poisson

random measures on R+ of intensity µ, independent of Nλ. In other words, the process (Xt)t�0 solves the
Stochastic Differential Equation

dXt = Nλ(dt) −
Xt−∑
i=1

N i
µ(dt).
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Let us consider the filtration (Ft)t�0 defined for any t ∈ R+ by

Ft := σ{Nλ(]0, s]); s ∈ [0, t]} ∨ σ
{
N i

µ(]0, s]); (s, i) ∈ [0, t] × N
}
.

The process (Xt − X0 − λt + µ
∫ t

0Xs ds)t�0 is a square integrable martingale with increasing process given by
λt + µ

∫ t

0 Xs ds. More generally, the process (Xt)t�0 is a solution of the martingale problem associated to the
Markov generator L defined by (1). Namely, for any f : N → R, the process

(
f(Xt) − f(X0) −

∫ t

0

L(f)(Xs) ds

)
t�0

is a local martingale. When f(n) = n for any n ∈ N, we get L(f)(n) = λ−µn. The Markov semi-group (Pt)t�0

of (Xt)t�0 is defined for any bounded f : N → R by

Pt(f) (n) := E(f(Xt) |X0 = n) ,

in such a way that Pt(IA) (n) = P(Xt ∈ A |X0 = n) for any A ⊂ N. We have Pt(·) (n) = L(Xt |X0 = n) for
any n ∈ N. In particular, Pt ◦ Ps = Pt+s, and P0 = Id, and Lf := ∂t=0Pt(f). The coefficient ρ of the M/M/∞
queue is defined by

ρ :=
λ

µ
·

In the sequel, we denote by EQ(f) or by EQf the mean of function f with respect to the probability measure Q,
and by Lp(Q) the Lebesgue space of measurable real valued functions f such that |f |p is Q-integrable. For a
Borel measure on N, we also denote Q(n) := Q({n}) for any n ∈ N.

1.2. The Ornstein-Uhlenbeck process as a fluid limit of M/M/∞ queues

The Ornstein-Uhlenbeck process can be recovered from the M/M/∞ queue as a fluid limit, by using a Kelly
scaling. See for instance [24,25] and the books [18,26,31]. Namely, for any N ∈ N, let (XN

t )t�0 be the M/M/∞
queue with input rate Nλ and service rate µ > 0. Define the process (Y N

t )t�0 by

Y N
t :=

1
N

XN
t .

For any x ∈ R+, let m : R+ → R be defined by m(t) := ρ + (x − ρ)p(t) for any t ∈ R+, where p(t) := e−µt.
Consider a sequence of initial states (XN

0 )N∈N such that

lim
N→∞

Y N
0 = lim

N→∞

1
N

XN
0 = x.

Then, for any t ∈ R+, the sequence of random variables
(
sup0�s�t

∣∣Y N
s − m(s)

∣∣)
N∈N

converges in L1 towards 0
when N → ∞, see for instance [31], Section 6.5. In particular, for any ε > 0,

lim
N→∞

P

(
sup

0�s�t

∣∣Y N
t − m(s)

∣∣ > ε

)
= 0.

Moreover, this Law of Large Numbers is complemented by a Central Limit Theorem, see for instance [7] and
[31]. Namely, define the process (ZN

t )t�0 by

ZN
t :=

√
N
(
Y N

t − m(t)
)

=
XN

t − Nm(t)√
N

·
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Notice that m(0) = x. Let y ∈ R and assume that the initial states (XN
0 )N∈N satisfy additionally that

lim
N→∞

ZN
0 = lim

N→∞

√
N
(
Y N

0 − x
)

= y.

A basic example is given by XN
0 = 
Nx +

√
Ny� where 
·� denotes the integer part. Then, the sequence of

processes (ZN
t )t�0 converges in distribution, when N → ∞, towards a process denoted (Z∞

t )t�0, with non-
homogeneous independent increments, given by

Z∞
t := yp(t) +

∫ t

0

p(t − s)
√

λ + xµ dBs,

where (Bs)s�0 is a standard Brownian Motion on the real line. In particular, when x = ρ, then m(s) = ρ for
any s ∈ R+, and (Z∞

t )t�0 is in that case an Ornstein-Uhlenbeck process, solution of the Stochastic Differential
Equation Z∞

0 = y and dZ∞
t =

√
2λdBt − µZ∞

t dt, where (Bt)t�0 is a standard Brownian motion on the real
line. Additionally, for any t ∈ R+,

L(Z∞
t |Z∞

0 = y) = δyp(t) ∗ N
(
0,
(
1 − p(t)2

)
ρ
)
,

where N (a, b) denotes the standard Gaussian law on R of mean a and variance b. This Mehler formula is
the continuous space analogue of (3). The Markov infinitesimal generator of (Z∞

t )t�0 is the linear differential
operator which maps function y �→ f(y) to function

y �→ λf ′′(y) − µyf ′(y).

The symmetric invariant measure of (Z∞
t )t�0 is the Gaussian law N (0, ρ). The µ parameter appears clearly

here as a curvature, whereas the λ parameter appears as a diffusive coefficient.

1.3. The M/M/∞ queue as a discrete Ornstein-Uhlenbeck process

Let (Xt)t�0 be an M/M/∞ with rates λ and µ. When µ vanishes, (Xt)t�0 reduces to a simple Poisson
process of intensity λ, and admits the counting measure on N as a symmetric measure. A contrario, when λ
vanishes, (Xt)t�0 is a pure death process, and admits δ0 as an invariant probability measure.

The M/M/∞ queue plays for the simple Poisson process the role played by the Ornstein-Uhlenbeck process
for standard Brownian Motion. The law of the M/M/∞ queue (Xt)t�0 is explicitly given for any n ∈ N by the
following Mehler like formula

L(Xt|X0 = n) = B(n, p(t)) ∗ P(ρq(t)), (3)
where

p(t) := e−µt and q(t) := 1 − p(t).
When µ = 0, we set ρq(t) = λ, since λ = limµ→0+ ρq(t). Here and in the sequel, B(n, p) stands for the binomial
distribution B(n, p) := (pδ1 + qδ0)∗n of size n ∈ N and parameter p ∈ [0, 1], with the convention B(n, 0) := δ0

and B(n, 1) := δn. The notation P(σ) stands for the Poisson measure on N of intensity σ > 0, defined by
P(σ) := e−σ

∑∞
k=0

1
k!σ

kδk. When µ > 0, the process (Xt)t�0 is ergodic and admits P(ρ) as a reversible
invariant measure. In other words, for any n ∈ N and s ∈ R+,

lim
n→∞

L(Xt|Xs = n) = P(ρ).

Moreover, EP(ρ)(Ptf) = EP(ρ)(f) for any f ∈ L1(P(ρ)) and any t ∈ R+, or equivalently EP(ρ)(Lf) = 0 for any
f ∈ L1(P(ρ)). As for the Ornstein-Uhlenbeck process, this convergence is not uniform in n since for any α > 0,

lim
n→∞

L(Xµ−1 log(n/α) |Xs = n) = P(α + ρ).
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The mean and variance of L(Xt|Xs = n) with t � s � 0 are given respectively by

np(t − s) + ρq(t − s) and (np(t − s) + ρ)q(t − s).

The semi-group (Pt)t�0 of the M/M/∞ queue shares the nice “constant curvature” property with the Ornstein-
Uhlenbeck semi-group. Namely, for any t ∈ R+, any n ∈ N, and any bounded f : N → R,

DPtf = e−µtPtDf. (4)

The infinitesimal version writes [L, D] := LD−DL = µD. The commutation (4) can be deduced simply from (3).
Namely, if X1, . . . , Xn+1, Y are independent random variables with Xi ∼ B(1, p(t)) and Y ∼ P(ρq(t)),

Pt(f) (n + 1) = E(f(X1 + · · · + Xn+1 + Y ))

= E(E(f(X1 + · · · + Xn+1 + Y )|Xn+1))

= p(t)Pt(f(1 + ·)) (n) + q(t)Pt(f) (n)

= p(t)Pt(Df) (n) + Pt(f) (n).

This fact and the properties of the A− B −C transforms introduced in the sequel give rise to various entropic
inequalities, by using the semi-group (Pt)t�0 as an interpolation flow.

We give now various binomial-Poisson “integration by parts” formulas. Let Hn,p(m) :=
(

n
m

)
pmqn−m for any

p ∈ [0, 1] and any integers n and m with 0 � m � n. We have then mHn,p(m) = npHn−1,p(m − 1) as soon as
0 < m � n. As a consequence, for any function f : N → R , any n ∈ N

∗ and any p ∈ [0, 1]

EB(n,p)(hf) = npEB(n−1,p)(f(1 + ·)) , (5)

where h : N → R is defined by h(k) = k for any k ∈ N. Similarly, (n − m)Hn,p(m) = nqHn−1,p(m) as soon as
0 � m < n, which gives for any function f : N → R , any n ∈ N

∗ and any p ∈ [0, 1]

EB(n,p)((n − h)f) = nqEB(n−1,p)(f) . (6)

For ρ > 0, the binomial approximation of Poisson measure which lets np tend to ρ when n → ∞ gives from (5)

EP(ρ)(hf) = ρEP(ρ)(f(1 + ·)) . (7)

Some algebra provides, by conditioning, a mixed binomial-Poisson version

EB(n,p)∗P(ρ)(hf) = npEB(n−1,p)∗P(ρ)(f(1 + ·)) + ρEB(n,p)∗P(ρ)(f(1 + ·)) . (8)

In particular, the Mehler like formula (3) gives for any n ∈ N
∗ and t ∈ R+,

µPt(hf) (n) = µnp(t)Pt(f(1 + ·)) (n − 1) + λq(t)Pt(f(1 + ·)) (n), (9)

where h : N → N is defined by h(n) := n for any n ∈ N. The binomial-Poisson nature of the M/M/∞ queue
is related to the fact that the coefficients of its infinitesimal generator (1) are affine functions of n. The reader
may find an analysis of linear growth birth and death processes in [23] and [34] and references therein.

1.4. Convex functionals

For any convex domain D of R
n, let us denote by CD the convex set of smooth convex functions from D to R.

Let I ⊂ R be an open interval of R and Φ ∈ CI . We denote by L1,Φ(Q) the convex subset of functions f ∈ L1(Q)
taking their values in I and such that Φ(f) ∈ L1(Q). We define the Φ-entropy EntΦ

Q(f) of f ∈ L1,Φ(Q) by

EntΦ
Q(f) := EQ(Φ(f)) − Φ(EQf).
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Is is also known as “Jensen divergence” since Jensen inequality gives EntΦ
Q(f) � 0. Moreover, when Φ is strictly

convex, EntΦ
Q(f) = 0 if and only if Φ(f) is Q-a.s. constant. One can distinguish for function Φ the following

three usual special cases.
(P1) Φ(u) = u log(u) on I = R

∗
+, and EntΦ

Q(f) = EntQ(f) := EQ(f log(f/EQf));
(P2) Φ(u) = u2 on I = R, and EntΦ

Q(f) = VarQ(f) := EQ

(
(f − EQf)2

)
;

(P3) Φ(u) = uα on I = R
∗
+ with α ∈ (1, 2).

The EntΦ
Q functional is linear in Φ and vanishes when Φ is affine. Let us define from the interval I ⊂ R the

convex subsets TI ⊂ T ′
I ⊂ R

2 by

TI :=
{

(u, v) ∈ R
2; (u, u + v) ∈ I × I

}
and T ′

I :=
{

(u, v) ∈ R
2; u ∈ I, (v + I) ∩ I �= ∅

}
.

The A − B − C transforms of Φ are the functions AΦ, BΦ : TI → R and CΦ : T ′
I → R defined by

AΦ(u, v) := Φ(u + v) − Φ(u) − Φ′(u)v;

BΦ(u, v) := (Φ′(u + v) − Φ′(u))v;

CΦ(u, v) := Φ′′(u)v2.

These three transforms are linear in Φ, and their kernel contains any affine function. Various additional prop-
erties of these three transforms are collected in Section 4. In particular, the convexity of Φ on I is equivalent
to the non negativity of its A − B − C transforms on TI . In particular, the following statements hold.

• AΦ, BΦ, CΦ, EntΦ
Q are non negative and convex for (P1-P2-P3);

• 2AΦ = BΦ = CΦ for (P2), AΦ � CΦ for (P1), and AΦ � BΦ for (P1-P2-P3).
On the two point space {0, 1}, the Φ-entropy gives rise naturally to the A-transform of Φ. Namely, for any
f : {0, 1} → I with (a, b) := (f(0), f(1)) and (u, v) := (a, b − a),

EntΦ
B(1,p)(f) = qΦ(a) + pΦ(b) − Φ(qa + pb) = pAΦ(u, v) − AΦ(u, pv). (10)

The A − B − C transforms are the germs of discrete Dirichlet forms via the identities

AΦ(f, Df) = DΦ(f) − Φ′(f)Df ;

BΦ(f, Df) = D(Φ′(f))Df ;

CΦ(f, Df) = Φ′′(f)|Df |2.

The reader may find explicit examples in table 1. We used above the following identity, valid for any functions
ϕ : R → R and f : Z → R,

D(ϕ(f)) = ϕ(f(1 + ·)) − ϕ(f) = ϕ(f + Df) − ϕ(f),

where f(1 + ·) stands for Z � n �→ f(1 + n). In particular, f(1 + ·) = f + Df . The usage of the A − B − C
transforms allows, as presented in the sequel, to derive several entropic inequalities in the same time, including
Poincaré inequalities and various modified logarithmic Sobolev inequalities. They reduce most of the proofs to
convexity, and they provide various comparisons for discrete Dirichlet forms.

For any open interval I ⊂ R and any probability space (E, E , Q), we denote in the sequel by K(E, I) the
convex set of measurable functions E → I with a relatively compact image in I. These functions are bounded.
Notice that K(E, I) is a convex subset of L1,Φ(Q). The introduction of K(E, I) permits to avoid integrability
obstructions at the boundary of I when dealing with the derivatives of Φ. Any element of L1,Φ(Q) is a pointwise
limit of elements of K(E, I).
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Table 1. Examples of A − B − C transforms. For (P3), α ∈ (1, 2).

Function Φ I AΦ AΦ(f, Df)

(P1) u log(u) R
∗
+ (u + v)(log(u + v) − log(u)) − v (f + Df)D(log f) − Df

(P2) u2
R v2 |Df |2

(P3) uα
R

∗
+ (u + v)α − uα − αuα−1v D(fα) − αfα−1Df

BΦ BΦ(f, Df)

(P1) u log(u) R
∗
+ v(log(u + v) − log(u)) D(f)D(log f)

(P2) u2
R 2v2 2|Df |2

(P3) uα
R

∗
+ αv((u + v)α−1 − uα−1) αD(f)D(fα−1)

CΦ CΦ(f, Df)

(P1) u log(u) R
∗
+ v2u−1 |Df |2f−1

(P2) u2
R 2v2 2|Df |2

(P3) uα
R

∗
+ α(α − 1)v2uα−2 α(α − 1)|Df |2fα−2

2. From two point space to binomial-Poisson inequalities

Let p ∈ [0, 1] and let B(1, p) be the Bernoulli measure qδ0 + pδ1 on {0, 1}, where q := 1 − p. We identify
the two point space {0, 1} with the “circle” Z/2Z, for which 1 + 1 = 0. In particular, the the “+” sign in the
definition (2) of D is taken modulo 2. Then, for any f : {0, 1} → I, the following identity holds.

pqEB(1,p)

(
BΦ(f, Df)

)
− EntΦ

B(1,p)(f) = AΦ(σp(a, b − a)) + AΦ(σq(b, a − b)),

where (a, b) := (f(0), f(1)) and where σp is as in (38). Now, Lemma 4.1 gives that AΦ is non-negative as soon
as Φ is convex. Consequently, when Φ is convex, we obtain the following entropic inequality for B(1, p).

EntΦ
B(1,p)(f) � pqEB(1,p)

(
BΦ(f, Df)

)
. (11)

Unfortunately, the inequality (11) is not optimal for (P2) since in that case,

EntΦ
B(1,p)(f) = VarB(1,p)(f) = pq(f(1) − f(0))2 whereas EB(1,p)

(
BΦ(f, Df)

)
= 2(f(1) − f(0))2.

This is due to the fact that BΦ(f, Df) = 2|Df |2 for (P2). We derive in the sequel the A transform version,
which is stronger and optimal for (P2) since AΦ(f, Df) = |Df |2 in that case. All the inequalities obtained in
this section involve the A transform in their right hand side. They hold for example in the cases (P1), (P2),
(P3). The A transform can be bounded by the B or the C transforms, by using the elementary bounds given
by Lemma 4.2. We start with an entropic inequality for the Bernoulli law B(1, p). By convolution, we derive
from this two point space inequality a new entropic inequality for the binomial law B(n, p) = B(1, p)∗n. An
inequality for the Poisson law P(ρ) is then obtained by binomial approximation. The binomial-Poisson case is
derived by tensorisation. The following calculus lemma is a Φ version of [6], Lemma 2, by Bobkov and Ledoux.

Lemma 2.1 (two point lemma). Let Φ ∈ CI such that Φ′′ ∈ CI . Let U : [0, 1] → R be defined by

U(p) := EntΦ
B(1,p)(f) − pqEB(1,p)(g) ,

where f, g : {0, 1} → I. Then, U � 0 on [0, 1] if and only if

U ′(0) � 0 � U ′(1). (12)
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Proof. We denote (a, b) := (f(0), f(1)) and (α, β) := (g(0), g(1)). We get then

U(p) = qΦ(a) + pΦ(b) − Φ(qa + pb) − pq(qα + pβ). (13)

The last term is a polynomial in p of degree three. Taking the fourth derivative in p gives

U ′′′′(p) = −(b − a)4Φ′′′′(qa + pb).

Since Φ′′ is convex, we have U ′′′′ � 0 on (0, 1) and thus U ′′ is concave. Consequently, there exists 0 � p0 � p1 � 1
such that U ′′ � 0 on [0, p0] ∪ [p1, 1] and U ′′ � 0 on [p0, p1]. We have that U is concave on [0, p0]. But U(0) = 0
and by assumption U ′(0) � 0, thus U � 0 on [0, p0] by concavity. A consequence is that U(p0) � 0. Similarly
by symmetry we have that U � 0 on [p1, 1] and U(p1) � 0. Now since U is convex on [p0, p1] and non-positive
on the boundaries, it is non-positive on the whole interval [p0, p1]. Therefore (12) implies U � 0 on [0, 1]. �

One can show by similar arguments that if additionally f(0) � f(1) and g(0) � g(1) (respectively f(0) � f(1)
and g(0) � g(1)), then the condition (12) may be weakened into U ′(0) � 0 (respectively U ′(1) � 0). Notice
that in terms of A transform,

U ′(0) = AΦ(a, b − a) − α and U ′(1) = −AΦ(b, a − b) + β. (14)

The following lemma provides the A transform version of (11).

Lemma 2.2 (two point entropic inequalities). Let Φ ∈ CI such that Φ′′ ∈ CI. Then, for any f : {0, 1} → I,

EntΦ
B(1,p)(f) � pq EB(1,p)

(
AΦ(f, Df)

)
, (15)

where the “+” in (2) of D is taken modulo 2. Moreover, the inequality becomes an equality for (P2).

Proof. Let U be as in (13) with g = AΦ(f, Df). From (14) we get

U ′(0) = AΦ(a, b − a) − AΦ(a, b − a) = 0 and U ′(1) = −AΦ(b, a − b) + AΦ(b, a − b) = 0,

where (a, b) := (f(0), f(1)). Therefore (15) follows by virtue of Lemma 2.1. Notice that since +1 = −1
in Z/2Z, we have D = D∗. In particular, for any f : {0, 1} → I, the function BΦ(f, Df) is constant, and
AΦ(f, Df) = AΦ(f, D∗f). �

Notice that (15) can be rewritten as (40). Entropic inequalities like (15) belong to the so called family of
Φ-Sobolev inequalities, which are known to be stable by convolution, cf. [11], Corollary 3.1, page 342. This
observation leads to Theorem 2.3 below, by using the tensorisation property (34) of Theorem 4.4.

Theorem 2.3 (Bernoulli entropic inequalities). Let M := B(1, p1)∗· · ·∗B(1, pn) and CM := max{p1q1, . . . , pnqn}
where p1, . . . , pn ∈ [0, 1]. Let Φ ∈ CI such that AΦ ∈ CTI . Then, for any f : N → I,

EntΦ
M (f) � CMEM

(
(n − h)AΦ(f, Df) + hAΦ(f, D∗f)

)
, (16)

where h : N → R is defined by h(k) = k for any k ∈ N. In particular,

EntΦ
B(n,p)(f) � pqEB(n,p)

(
(n − h)AΦ(f, Df) + hAΦ(f, D∗f)

)
, (17)

for any n ∈ N
∗, any p ∈ [0, 1], and any f : N → I. Moreover, if τ is as in (32),

EntΦ
B(n,p)(f) � npqEB(n−1,p)

(
qAΦ(f, Df) + pAΦ(τ(f, Df))

)
. (18)

The optimality of these inequalities in the case (P2) can be checked for a linear function f .
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Proof. First of all, by virtue of Theorem 4.4, the convexity of AΦ on TI implies the convexity of Φ′′ on I.
Let (Ei, Qi) = ({0, 1},B(1, pi)) for any i ∈ {1, . . . , n}. Let f : N → I and consider the symmetric function
g : E1 × · · · × En → I defined by g(x1, . . . , xn) := f(x1 + · · · + xn). The tensorisation formula (34) together
with the two point entropic inequality (15) of Lemma 2.2 gives

EntΦ
Q1⊗···⊗Qn

(g) � CQEQ1⊗···⊗Qn

(
n∑

i=1

AΦ(g, D(i)g)

)
,

where D(i) denotes the operator D acting on the ith coordinate with modulo 2 as in Lemma 2.2. At this step,
we notice by denoting sn := x1 + · · · + xn that for any x ∈ {0, 1}n,

n∑
i=1

AΦ(g, D(i)g)(x) = (n − sn)AΦ(f, Df)(sn) + snAΦ(f, D∗f)(sn).

Outside {0, . . . , n}, the function f takes values which come with a null coefficient in the right hand side. The
desired result follows since M is the law of sn under Q1 ⊗ · · · ⊗ Qn. Inequality (16) reduces to (17) when
p1 = · · · = pn = p. It remains to establish (18). By virtue of (5) and (6), the right hand side of (17) is equal to

npqEB(n−1,p)

(
qAΦ(f, Df) + pAΦ(f, D∗f)(1 + ·)

)
.

Inequality (18) follows then from the simple identity

(f, D∗f)(1 + ·) = τ(f, Df). (19)

When n = 1, then M = B(1, p), and (16) reduces to (15). Beware that D in (15) is taken modulo 2. �

Corollary 2.4 (Poisson entropic inequality). Let Φ ∈ CI be such that AΦ ∈ CTI . Let ρ > 0 and P(ρ) be the
Poisson measure of mean ρ. Then, for any ρ ∈ R+ and any f ∈ L1,Φ(P(ρ)),

EntΦ
P(ρ)(f) � ρEP(ρ)

(
AΦ(f, Df)

)
. (20)

Proof. Notice that the right hand side of (20) takes its values in [0, +∞]. By approximation, we can assume that
f ∈ K(N, I). Consider now (18). Let p depend on n is such a way that limn→∞ npn = ρ. Since limn→∞ pn = 0,
we have qn → 1. Moreover, B(n, pn) → P(ρ) and B(n − 1, pn) → P(ρ). �

To the author’s knowledge, inequality (20) appeared for the first time in [35] for (P1), in [6], p. 357,
for (P2), and in [11] for the general case. See also [5]. The B and C transforms versions of (20), which are
weaker, appeared in particular in [1, 6].

Corollary 2.5 (Binomial-Poisson entropic inequality). Let Φ ∈ CI be such that AΦ ∈ CTI . Let Mn be the
probability measure Mn = B(n, p) ∗ P(ρ) where p ∈ [0, 1], ρ ∈ R+, and n ∈ N. Then, for any f ∈ L1,Φ(P(ρ)),

EntΦ
Mn

(f) � ρEMn

(
AΦ(f, Df)

)
+ npqEMn−1

(
qAΦ(f, Df) + pAΦ(τ(f, Df))

)
. (21)

Proof. By approximation, we can assume that f ∈ K(N, I). If n = 0, then (21) reduces to (20). Let us assume
now that n > 0. Let (E1, Q1) = (N,B(n, p)) and (E2, Q2) = (N,P(ρ)). Let g : E1 × E2 → I be defined by
g(x1, x2) = f(x1 + x2). Let us denote by D(1) and D(2) the D operator which acts on x1 and x2 respectively.
The inequalities (34), (18), (20) yield that EntΦ

Q1⊗Q2
(g) is bounded above by

npqEQ2

(
EQ0

(
qAΦ(g, D(1)g) + pAΦ(τ(g, D(1)g)

)
)
)

+ ρEQ1

(
EQ2

(
AΦ(g, D(2)g)

))
,
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where Q0 := B(n− 1, p). Since D commutes with translations, we get for i = 1, 2,

(g, D(i)g)(x1, x2) = (f, Df)(x1 + x2).

Inequality (21) follows since Mn, respectively Mn−1, is the law of x1+x2 under Q1⊗Q2, respectively Q0⊗Q2. �

The expectation with respect to Mn−1 in the right hand side of (21) may be rewritten as an expectation
with respect to Mn by using (8).

3. Entropies along the M/M/∞ queue

We start with the decay of the Φ-entropy functional along the queue.

Theorem 3.1 (Φ-entropies dissipation). Let Φ ∈ CI . Let (Pt)t�0 be the M/M/∞ semi-group with input rate
λ > 0 and service rate µ > 0. Then for any f ∈ K(N, I), the real function t ∈ R+ �→ EntΦ

P(ρ)(Ptf) is
non-increasing. Moreover, when AΦ ∈ CTI ,

EntΦ
P(ρ)(Ptf) � e−cµtEntΦ

P(ρ)(f) , (22)

where c is the best (i.e. biggest) constant in the inequality

∀f ∈ L1,Φ(P(ρ)), cµEntΦ
P(ρ)(f) � λEP(ρ)

(
BΦ(f, Df)

)
.

It holds with c = 1 in general, and with c = 2 for (P2).

Proof. Let us denote Q = P(ρ). Since EntΦ
Q(Ptf) = EQ(PtΦ(f)) − Φ(EQ(f)), the invariance of Q gives,

∂tEntΦ
Q(Ptf) = EQ(Φ′(Ptf)LPtf) .

Jensen inequality yields Pt(Φ(f)) � Φ(Pt(f)) as soon as Φ is convex. In particular LΦ(f) � Φ′(f)Lf , which
gives EQ(Φ′(f)Lf) � 0 as soon as Φ(f) is Q-integrable. Hence, t �→ EntΦ

Q(Ptf) is non-increasing, and we used
only the convexity of Φ, the Markovian nature of (Pt)t�0, and the invariance of Q. The Poisson integration by
parts (7) – which is this time specific to our settings – yields for any g

EQ(Φ′(g)Lg) = −λEQ(D(g)D(Φ′(g))) = −λEQ

(
BΦ(g, Dg)

)
. (23)

In particular, for g = Pt(f), we get,

∂tEntΦ
Q(Ptf) = −λEQ

(
BΦ(Ptf, DPtf)

)
.

Notice that since Φ is convex, we have BΦ � 0 by virtue of Lemma 4.1. In the other hand, when AΦ is convex,
the Poisson entropic inequality (20) together with the bound AΦ � BΦ of Lemma 4.2 gives

−λEQ

(
BΦ(Ptf, DPtf)

)
� −µEntΦ

Q(Ptf) .

Putting all together yields ∂tEntΦ
Q(Ptf) � −µEntΦ

Q(Ptf), which gives (22). Finally, the correct constant
for (P2) comes from the fact that 2AΦ = BΦ in that case. �

For any probability measure γ on N, and any t ∈ R+, we denote by γPt the probability measure on N defined
for any bounded function g : N → R by EγPt(g) := Eγ(Pt(g)). In particular, when γ = δn for some fixed n ∈ N,
we get δnPt = Pt(·) (n). We have γ � P(ρ) for any probability measure γ on N, as soon as ρ > 0. Let us
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define fγ := dγ/dP(ρ). Since P(ρ) is symmetric for L, we have that L and Pt(·) are self-adjoint in L2(P(ρ)).
Therefore, one can write for any g ∈ L2(P(ρ))

∫
N

Pt(fγ) g dP(ρ) =
∫

N

Pt(g) fγ dP(ρ) =
∫

N

Pt(g) dγ =
∫

N

g d(γPt).

Recall that the total variation norm ‖α‖TV of a Borel measure α on an at most countable set S is defined by
‖α‖TV = 1

2‖α‖1 = 1
2

∑
x∈S |α(x)|. If α and β are two probability measures on S, the distance ‖α − β‖TV is

‖α − β‖TV = sup
A⊂S

|α(A) − β(B)| =
1
2

sup
‖f‖∞�1

∣∣∣∣
∫

f dα −
∫

f dβ

∣∣∣∣.
Recall the well known bound for any a, b ∈ R+, ‖P(a) − P(b)‖TV � 1−e−(b−a), cf. [31], Proposition 6.1, p. 143,
which gives from (3) for any t ∈ R+

‖Pt(·) (0) − P(ρ)‖TV � 1 − e−ρe−µt

.

Theorem 3.1 for (P1) produces in particular a bound for ‖Pt(·) (n) − P(ρ)‖TV, as stated in Corollary 3.2.

Corollary 3.2. Let (Pt)t�0 be the semi-group of the M/M/∞ queue with input rate λ > 0 and service rate
µ > 0. For any n ∈ N and any t ∈ R+,

2‖Pt(·) (n) − P(ρ)‖2
TV � e−µt log(eρρ−nn!).

The proof follows the lines of a method due to Diaconis and Saloff-Coste, cf. for example [17, 33].

Proof of Corollary 3.2. Since Q := P(ρ) is symmetric for L,

d(γPt)
dQ

= Pt(fγ) , (24)

where fγ := dγ/dQ. The Pinsker-Csiszár-Kullback inequality states that for any couple (α, β) of probability
measures on the same measured space 2‖α − β‖2

TV � Ent(α |β) = Entβ(dα/dβ), where Entβ is the Φ-entropy
in the case (P1). Let t ∈ R+ and n ∈ N. For (α, β) = (Pt(·) (n), Q), we can write by (24) and (22)

2‖γPt − Q‖2
TV � EntQ(Pt(fγ)) � e−µtEntQ(fγ) .

For γ = δn for some fixed n ∈ N, we get γPt = Pt(·) (n) and fδn = I{n}/Q(n). As a consequence, we obtain as
expected EntQ(fδn) = − log Q(n) = log(eρρ−nn!). �

3.1. Local inequalities and semi-group interpolation

Standard Brownian motion on R starting from x interpolates on the time interval [0, t] between the Dirac
measure δx and the Gaussian measure N (x, t). It is known that this interpolation provides the optimal Gaussian
logarithmic Sobolev inequality. Similarly, the simple Poisson process of intensity λ starting from n interpolates
on the time interval [0, t] between the Dirac measure δn and the translated Poisson measure δn ∗ P(λt). By
analogy, let us give a proof of the Poisson entropic inequality (20) by using the simple Poisson process, which
corresponds to an M/M/∞ queue with µ = 0. In that case, L = λD and Pt(·) (0) = P(λt). Let Φ ∈ CI such
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that AΦ ∈ CTI , cf. Theorem 4.4. One can write by abridging Pt(·) (0) in Pt(·) and denoting F = Pt−s(f),

EntΦ
P(λ)(f) = P1(Φ(f)) − Φ(P1(f))

=
∫ t

0

∂sPs(Φ(Pt−sf)) ds

=
∫ t

0

Ps(LΦ(F ) − Φ′(F )LF ) ds.

Now, LΦ(F ) − Φ′(F )LF = AΦ(F, DF ), and (4) with µ = 0 gives DF = DPt−s(f) = Pt−s(Df). Thus, we get,

EntΦ
P(λ)(f) = λ

∫ t

0

Ps

(
AΦ(F, DF )

)
ds

= λ

∫ t

0

Ps

(
AΦ(Pt−sf,Pt−sDf)

)
ds.

Finally, Jensen inequality for convex function AΦ gives then the desired result,

EntΦ
P(λ)(f) � λ

∫ t

0

Ps

(
Pt−s

(
AΦ(f, Df)

))
ds = λtPt

(
AΦ(f, Df)

)
.

M/M/∞ semi-group interpolation on the time interval [0, +∞]

The standard Ornstein-Uhlenbeck process on R starting from x interpolates on the time interval [0, +∞]
between the Dirac measure δx and the standard Gaussian measure N (0, 1). It is known that this interpolation
provides the optimal Gaussian logarithmic Sobolev inequality. Similarly, the M/M/∞ queue with intensities
(λ, µ) starting from n interpolates on the time interval [0, +∞] between the Dirac measure δn and the Poisson
measure P(ρ) where ρ = λ/µ. Notice that when λ = 0, this interpolation holds between δn and δ0 (pure death
process). By analogy, let us give a proof of the Poisson entropic inequality (20) by using the M/M/∞ queue.
Let (Pt)t�0 be the M/M/∞ queue semi-group with input rate λ and service rate µ. Let Φ ∈ CI such that
BΦ ∈ CTI , cf. Theorem 4.4. We denote by Q the Poisson measure P(ρ). For any f ∈ K(N, I), we write

EntΦ
Q(f) = +

∫
N

(Φ(P0f) − Φ(P∞f)) dQ

= −
∫

N

∫ ∞

0

∂tΦ(Ptf) dt dQ

= −
∫ ∞

0

∫
N

Φ′(Ptf)LPtf dQ dt

= λ

∫ ∞

0

∫
N

BΦ(Ptf, DPtf) dQ dt,

where we used (23) for the last equality. Now, the commutation (4) yields

EntΦ
Q(f) = λ

∫ ∞

0

∫
N

BΦ(Ptf, e−µtPtDf) dQ dt.

Jensen inequality for BΦ and Pt(·) followed by the invariance of Q give

EntΦ
Q(f) � λ

∫ ∞

0

∫
N

BΦ(f, e−µtDf) dQ dt.
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But by Lemma 4.10, BΦ(u, e−µtv) � e−µtBΦ(u, v) for any (u, v) ∈ TI , and thus

EntΦ
Q(f) � λ

∫ ∞

0

e−µt dt

∫
N

BΦ(f, Df) dQ = ρEQ

(
BΦ(f, Df)

)
,

which is exactly the B transform version of the Poisson entropic inequality (20).

Remark 3.3 (A − B − C transforms and discrete space). The interpolation on [0, t] gives rise to the AΦ

transform whereas the interpolation on [0, +∞] leads to the BΦ transform. In continuous space settings, the
diffusion property permits to write LΦ(F ) − Φ′(F )LF = Φ′′(F )Γ(F, F ) which is close to CΦ and not to AΦ in
that case.

Local inequality and semi-group interpolation on the time interval [0, t]

Consider the semi-group (Pt)t�0 of the M/M/∞ queue with input rate λ and service rate µ. The family
(Ps(·)(n))0�s�t interpolates between δn and B(n, e−µt) ∗ P(ρ(1 − e−µt)). Let Φ ∈ CI such that AΦ ∈ CTI , cf.
Theorem 4.4. The inequalities (21) and (3) give for any n ∈ N, any t ∈ R+, and any f ∈ K(N, I),

EntΦ
Pt(·)(n)(f) � ρq(t)Pt

(
AΦ(f, Df)

)
(n) + np(t)q(t)Pt

(
q(t)AΦ(f, Df) + p(t)AΦ(τ(f, Df))

)
(n − 1). (25)

Let us try to recover (25) by semi-group interpolation. We write as for the pure Poisson process case,

EntΦ
Pt(·)(n)(f) = Pt(Φ(f)) (n) − Φ(Pt(f) (n))

=
∫ t

0

∂sPs(Φ(Pt−sf)) (n) ds

=
∫ t

0

Ps(LΦ(F ) − Φ′(F )LF ) (n) ds

where F := Pt−s(f). At this step, we notice that

LΦ(F ) − Φ′(F )LF = λAΦ(F, DF ) + µhAΦ(F, D∗F ),

where h : N → N is defined by h(k) = k for any k ∈ N. Thus, we get

EntΦ
Pt(·)(n)(f) = λ

∫ t

0

Ps

(
AΦ(F, DF )

)
(n) ds + µ

∫ t

0

Ps

(
hAΦ(F, D∗F )

)
(n) ds. (26)

By virtue of (4), (41), Jensen inequality for the convex functions AΦ and CΦ, and the semi-group property, the
first term of the right hand side of (26) is bounded above by

(
1
2
λ

∫ t

0

p(t − s)2q(t − s) ds

)
Pt

(
CΦ(f, Df)

)
(n) +

(
λ

∫ t

0

p(t − s)3 ds

)
Pt

(
AΦ(f, Df)

)
(n).

For the second term of the right hand side of (26), we first write by virtue of (9) and (19),

µPs

(
hAΦ(F, D∗F )

)
(n) = µnp(s)Ps

(
AΦ(τ(F, DF ))

)
(n − 1) + λq(s)Ps

(
AΦ(τ(F, DF ))

)
(n).

Now, by (4), (42), Jensen inequality for the convex functions AΦ(τ) and CΦ, and the semi-group property,

Ps

(
AΦ(τ(F, DF ))

)
(k) � 1

2
p(t − s)2q(t − s)Pt

(
CΦ(f, Df)

)
(k) + p(t − s)3Pt

(
AΦ(τ(f, Df))

)
(k)
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for any k ∈ {n − 1, n}. Thus, the second term of the right hand side of (26) is bounded above by

(
µn

∫ t

0

p(s)p(t − s)3 ds

)
Pt

(
AΦ(τ(f, Df))

)
(n − 1) +

(
1
2
µn

∫ t

0

p(s)p(t − s)2q(t − s) ds

)
Pt

(
CΦ(f, Df)

)
(n − 1)

+
(

λ

∫ t

0

q(s)p(t − s)3 ds

)
Pt

(
AΦ(τ(f, Df))

)
(n) +

(
1
2
λ

∫ t

0

q(s)p(t − s)2q(t − s) ds

)
Pt

(
CΦ(f, Df)

)
(n).

Putting all together, we obtain finally the following local inequality.

EntΦ
Pt(·)(n)(f) � ρPt

(
1
3

(1 − p(t)3)AΦ(f, Df) +
1
6
q(t)2(2 + p(t))

[
AΦ(τ(f, Df)) +

1
2
CΦ(f, Df)

])
(n)

+
1
2
np(t)Pt

(
(1 − p(t)2)AΦ(τ(f, Df)) +

1
2
q(t)2CΦ(f, Df)

)
(n − 1), (27)

which is not (25). Actually, (27) is in a way stronger than (25) for small t, as we will see in the sequel with the
fluid limit approximation of the Ornstein-Uhlenbeck process. When t → ∞, we have p(t) → 0, q(t) → 1, and
AΦ + AΦ(τ) = BΦ, and in that case, (27) provides the following Poissonian inequality.

EntΦ
P(ρ)(f) � 1

2
ρEP(ρ)

(
2
3
BΦ(f, Df) +

1
3
CΦ(f, Df)

)
(n),

which is not (20). The proof of (27) given above suggests to use (30) instead of its consequences (41) and (42)
for the derivation of local inequalities via semi-group interpolation. The investigation of this approach is left to
the reader. Notice that (40) is not strong enough. Let us focus on the (P2) case, for which we have the simple
identity 2AΦ(f, Df) = 2AΦ(τ(f, Df)) = BΦ(f, Df) = CΦ(f, Df) = 2|Df |2. In that case, (27) is the optimal
local Poincaré inequality, e.g.

VarPt(·)(n)(f) � ρq(t)Pt

(
|Df |2

)
(n) + np(t)q(t)Pt

(
|Df |2

)
(n − 1).

3.2. Scaling limit of the entropic inequalities

Let us consider the Poisson distribution P(ρ) with parameter ρ > 0. For any N ∈ N
∗, let κN : N → R be

the function defined by κN (n) := N−1/2(n − ρN) for any n ∈ N. By virtue of the Central Limit Theorem,
the image measure of P(Nρ) = P(ρ)∗N by κN converges weakly towards the Gaussian measure N (0, ρ) when
N → ∞. Let g ∈ K(R, I) be smooth with bounded derivatives, and set fN := g ◦ κN . In one hand, we have

lim
N→∞

EntΦ
P(Nρ)(fN) = EntΦ

N (0,ρ)(g) .

In the other hand, by a Taylor formula, D(fN ) = D(g ◦κN ) = N−1/2(g′ ◦κN) + O(N), and by a Taylor formula
for Φ this time, AΦ(fN , DfN ) = (2N)−1(g′ ◦ κN )2Φ′′(fN) + o(N). This yields that

lim
N→∞

ρNEP(ρ)

(
AΦ(fN , DfN )

)
=

1
2
ρEN (0,ρ)

(
CΦ(g, g′)

)
.

Now, the A-transform based Poisson entropic inequality (20) for P(Nρ) and fN gives finally that

EntΦ
N (0,ρ)(g) � 1

2
ρEN (0,1)

(
CΦ(g, g′)

)
. (28)

Recall that the Poincaré inequality corresponds to (P2). In that case,

EntΦ
N (0,ρ)(g) = VarN (0,ρ)(g) and CΦ(g, g′) = 2|g′|2.
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The logarithmic Sobolev inequality corresponds to (P1). In that case,

EntΦ
N (0,ρ)(g) = EntN (0,ρ)(g) and CΦ(g, g′) =

|g′|2

g
·

The constant ρ in (28) is known to be optimal. It gives in particular the optimal Poincaré inequality for the
Gaussian measure in the case (P2), and the optimal logarithmic Sobolev inequality for the Gaussian measure
in the case (P1). The method was used in the case (P1) in [35], Remark 1.6. In some sense, the A transform
is the right Dirichlet form to consider since it allows the derivation of optimal Gaussian entropic inequalities
from their A-transform based Poisson versions. In contrast, it is shown in [6], pages 356–357, that the optimal
B transform version for the Poisson measure does not lead to the optimal constant in the logarithmic Sobolev
inequality for the Gaussian measure (lack of a multiplicative factor 2). The deep reason for this difference
between A and B transforms consequences is the fact that the comparison AΦ � BΦ improves by a factor 2
when v goes to 0, as stated in Remark 4.3. This phenomenon does not hold for the Poincaré inequality, since
2AΦ = BΦ for (P2).

As presented in Section 1.2, the M/M/∞ queueing process gives rise to an Ornstein-Uhlenbeck process via a
fluid limit procedure. It is quite natural to ask about the behaviour of the binomial-Poisson entropic inequalities
under this scaling limit.

Let (XN
t )t�0 be an M/M/∞ queueing process with input rate Nλ > 0 and service rate µ > 0, where

N ∈ N
∗. Let (Ut)t�0 be an Ornstein-Uhlenbeck process, solution of the Stochastic Differential Equation

dUt = λdBt − µUt dt. Let g ∈ K(R, I) be smooth with bounded derivatives. For any y ∈ R, we define
zN := 
Nρ + N1/2y� where 
·� denotes the integer part. According to Section 1.2, the image measure of
L(XN

t |X0 = zN ) by function κN converges weakly towards L(Ut |U0 = y) when N goes to ∞. Notice that

L(XN
t |X0 = zN) = B(zN , p(t)) ∗ P(Nρq(t))

and that L(Ut |U0 = y) = N (yp(t), ρ(1 − p(t)2)). In particular, if fN := g ◦ κN , then

lim
N→∞

EntΦ
L(XN

t |XN
0 =zN )(fN) = EntΦ

L(Ut |U0=y)(g) .

In the other hand, as for the pure Poisson measure case, we have

lim
N→∞

NEL(XN
t |XN

0 =zN )

(
AΦ(fN , DfN )

)
=

1
2
EL(Ut |U0=y)

(
CΦ(g, g′)

)
.

A similarly identity holds for AΦ(τ(fN , DfN )). Putting all together, we deduce from (25) that

EntΦ
L(Ut |U0=y)(g) � K(t)EL(Ut |U0=y)

(
CΦ(g, g′)

)
, (29)

where K(t) := 1
2ρq(t)(1 + 2p(t)). It is known that the best constant in (29) is K∗(t) := 1

2ρq(t)(1 + p(t)). Let us
consider now the function θ : R+ → R+ defined for any t ∈ (0,∞) by

θ(t) :=
K(t)
K∗(t)

= 1 +
1

1 + 1
p(t)

·

This function is non-increasing, with θ(0) = 3
2 and limt→+∞ θ(t) = 1. Consequently, the constant K(t) in the

inequality (29) improves when t increases. It is asymptotically optimal, when t goes to +∞. Surprisingly, it
turns out that the usage of (27) instead of (25) provides (29) with constant K∗(t) instead of constant K(t). As
a consequence, (27) is in a way stronger than (25), at least in terms of their fluid limit.
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Remark 3.4 (the M/M/1 case). The M/M/1 queue with input rate λ and service rate µ is the birth and death
process on N with generator L = µD∗ + λD. We have [L, D] = 0 and the “curvature” is identically zero. When
λ > 0 and µ > 0, the symmetric invariant measure Q is given by Q(n) = ρn for any n ∈ N, with ρ := λ/µ. The
associated Markov semi-group (Pt)t�0 satisfies to the exact commutation formula DPt = Pt(D). Measure Q is
finite if and only if ρ � 1, and Q is in that case the geometric measure G(1 − ρ) of mean λ/(µ − λ). This leads
to Poisson like entropic inequalities for Pt(·). The M/M/1 is a discrete space analog of the continuous process
(Et)t�0 solution of the Stochastic Differential Equation dEt = dBt − sign(Et)dt.

Remark 3.5 (spectrum). A function f : N → R is an eigenvector associated to the eigenvalue α ∈ R for the
M/M/∞ infinitesimal generator L defined by (1) if and only if λf(n + 1) = (λ + α + nµ)f(n) − nµf(n − 1)
for any n ∈ N. Obviously, for any α ∈ R and any starting value f(0) �= 0, the equation above has a unique
non null solution. As a consequence, the spectrum of L is R. We will denote by fα the unique solution such
that fα(0) = 1. By the equation Lfα = αf and the invariance of Q := P(ρ) we get that EQ(fα) = 0 as soon
as fα ∈ L1(Q). Suppose that fα ∈ L2(Q), then 0 � EQ(Γ(f, f)) = −EQ(fLf) = −αEQ

(
f2
)

and thus α � 0.
Moreover, Theorem 3.1 for (P2) gives inf

{
−α ∈ R, fα ∈ L2(Q)

}
= µ−1, cf. [3], Proposition 2.3.

Remark 3.6 (Bakry Γ2 calculus). Let us define the Markovian functional quadratic forms Γ and Γ2 by
2Γ(f, f) := L(f2) − 2fLf and 2Γ2(f, f) := LΓ(f, f) − 2Γ(f,Lf). After some algebra based on (1), we get

2Γ(f, f)(n) = nµ|D∗f |2(n) + λ|Df |2(n)

for any f : N → R and any n ∈ N, and

2Γ2(f, f)(n) =
3
2
λµ|Df |2(n) +

n

2
µ2|D∗f |2(n) + R(f, f)(n),

where 2R(f, f)(n) := n(n − 1)µ2|D∗D∗f |2 + 2nλµ|DD∗f |2 + λ2|DDf |2. Notice that for the linear function
f(n) = n, we get

2Γ(f, f)(n) = λ + nµ and 4Γ2(f, f)(n) = 3λµ + nµ2.

Since R(f, f) � 0 for any f , we obtain immediately the bound Γ2 � µ 1
2Γ, which is the infinitesimal version of

the commutation ΓPt � exp(−tµ
2 )PtΓ. Moreover, an integration by parts similar to (7) gives the integrated

bound EQ(Γ2f) � µEQ(Γf), where Q := P(ρ). Such a bound gives, via integration by parts, the Poincaré
inequality VarQ(f) � ρEQ(|Df |2), which is exactly (20) for (P2). However, the Γ2 bound above suggests that
Γ2 is not the right tool in order to derive Φ-entropic inequalities beyond the (P2) case. Bakry-Émery type
approaches are designed for diffusion. In discrete space settings, the lack of chain rule reduces their strength
for the derivation of entropic inequalities beyond the (P2) case.

4. Convexity and Φ-calculus on A − B − C transforms

We give in the sequel various convexity properties, which extend in particular many aspects of [11]. Let
Φ : I → R be a smooth function defined on an open interval I ⊂ R. The usage of suitable Taylor formulas
provide for any (u, v) ∈ TI ,

AΦ(u, v) =
∫ 1

0

(1 − p)CΦ(u + pv, v) dp and BΦ(u, v) =
∫ 1

0

CΦ(u + pv, v) dp, (30)

and for any (u, v) ∈ T ′
I and small enough ε,

AΦ(u, εv) =
1
2
CΦ(u, v)ε2 + o(ε2) and BΦ(u, εv) = CΦ(u, v)ε2 + o(ε2). (31)
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We denote by τ : TI → TI the bijective linear map defined for any (u, v) ∈ TI by

τ(u, v) := (u + v,−v). (32)

Notice that τ is well defined since (u, v) ∈ TI implies that (u + v, u + v − v) ∈ I × I and thus (u + v,−v) ∈ TI .
Writing (a, b) := (u, u + v) shows that the map τ transposes a and b, and τ2 is the identity map. Moreover,

AΦ(u, v) = Φ(b) − Φ(a) − Φ′(a)(b − a),

BΦ(u, v) = (b − a)(Φ′(b) − Φ′(a)),

CΦ(u, v) = Φ′′(a)(b − a)2.

Lemma 4.1. Let Φ : I → R be smooth on an open interval I ⊂ R. Then the following statements hold.
(1) AΦ + AΦ(τ) = BΦ and BΦ(τ) = BΦ;
(2) Each of AΦ, BΦ, CΦ is non-negative if and only if Φ ∈ CI.

Proof. The first statement of the Lemma is immediate. For the second statement, we observe first that CΦ is
non-negative if and only if Φ′′ is non-negative, e.g. if and only if Φ ∈ CI . The same holds then for AΦ and BΦ

by using (31) and (30). �
Lemma 4.1 tells that the A−B−C transforms map the set of convex functions on I into the set of non-negative

functions on TI . Moreover, their null space contains any real valued affine functions on I.

Lemma 4.2. Let Φ : I → R be smooth on an open interval I ⊂ R. The following statements hold.
(1) for (P1-P2-P3), we have Φ′′ > 0 on I and Φ, −Φ′, Φ′′, −1/Φ′′ belong to CI;
(2) 2AΦ = BΦ = CΦ for (P2) and AΦ � CΦ for (P1);
(3) if Φ ∈ CI then AΦ � BΦ;
(4) if Φ′′ ∈ CI then CΦ(u + v/3, v) � 2AΦ(u, v) and CΦ(u + v/2, v) � BΦ(u, v) for any (u, v) ∈ TI .

Proof. Statement 1 and the first part of statement 2 are immediate. Notice that 1/Φ′′ is affine for (P1)
and (P2). The second part of statement 2 follows from the first part of (30). For statement 3, we notice
that by Lemma 4.1, BΦ = AΦ + AΦ(τ), where AΦ(τ) � 0 when Φ ∈ CI . Statement 4 follows by using (30),
the definition of CΦ, and Jensen inequality with respect to the integral over [0, 1] for the convex function
p ∈ [0, 1] �→ Φ′′(u + pv). �
Remark 4.3 (optimality of A-B-C comparisons). The bound AΦ � BΦ is optimal in the sense that for (P1),
we have BΦ(u, v) ∼ AΦ(u, v) at v = +∞ for any u ∈ I. However, BΦ = 2AΦ = CΦ for (P2); and in general

lim
v→0

v−22AΦ(u, v) = lim
v→0

v−2BΦ(u, v) = v−2CΦ(u, v) = Φ′′(u).

Theorem 4.4 below states that the convexity of the A−B−C transforms of Φ are deeply related to the convexity
of the Φ-entropy functional. It provides in particular a synthesis of some results by Lata�la and Oleszkiewicz in
[27], by the author in [11], and by Massart in his Saint-Flour course [28] (see also the article [4]). We say that a
collection P of probability spaces is a covering collection if {Q(T ); T ∈ E , (E, E , Q) ∈ P} = [0, 1]. An example
is given for instance by the family of Bernoulli probability measures on the two point space {0, 1}, or by any
collection containing a probability measure on R with a continuous cumulative distribution function.

Theorem 4.4. For any smooth Φ : I → R on an open interval I ⊂ R, the following statements are equivalent.
(1) AΦ ∈ CTI ;
(2) BΦ ∈ CTI ;
(3) CΦ ∈ CT ′

I ;
(4) either Φ is affine on I, or Φ′′ > 0 on I with −1/Φ′′ ∈ CI;
(5) (a, b) ∈ I × I �→ tΦ(a) + (1 − t)Φ(b) − Φ(ta + (1 − t)b) belongs to CI×I, for any t ∈ [0, 1];
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(6) for any probability space (E, E , Q), EntΦ
Q ∈ CK(E,I);

(7) there exists a covering collection P such that EntΦ
Q ∈ CK(E,I) for any (E, E , Q) in P;

(8) for any probability space (E, E , Q) and any f ∈ K(E, I),

EntΦ
Q(f) = sup

g∈K(E,I)

{EQ((Φ′(g) − Φ′(EQg))(f − g)) + EntΦ
Q(g)}; (33)

(9) there exists a covering collection P such that (33) holds for any (E, E , Q) ∈ P and any f ∈ K(E, I);
(10) for any product probability space (E, E , Q) := (E1 × · · · ×En, E1 ⊗ · · · ⊗ En, Q1 ⊗ · · · ⊗Qn), and for any

f ∈ K(E, I),

EntΦ
Q(f) � EQ

(
EntΦ

Q1
(f)
)

+ · · · + EQ

(
EntΦ

Qn
(f)
)

, (34)

where the expectation with respect to Qi in EntΦ
Qi

(f) concerns only the ith coordinate;
(11) there exists a covering collection P such that (34) holds for n = 2, any Q1 ∈ {B(1, p); p ∈ [0, 1]}, any

Q2 ∈ P, and any f ∈ K(E1 × E2, I).

Moreover, if these statements hold, then Φ and Φ′′ belong to CI.

Remark 4.5 (functional spaces). By approximation, the convex set K(E, I) can be replaced by the convex
set L1,Φ(Q) in statements 6, 7, 8, 9, 10, 11 of Theorem 4.4. More precisely, statement 4 implies the convex-
ity of Φ, which implies in turn that Φ′(g)(f − g) + Φ(g) � Φ(f) for any f, g ∈ L1,Φ(Q). This yields that
EQ((Φ′(g) − EQg)(f − g)) is well defined in [−∞, +∞), as noticed in the proof of [28], Lemma 2.26.

Remark 4.6 (meaning of the variational formula). Despite its functional expression, the variational formula
(33) is actually a unidimensional statement, taken in all directions. Namely, for any probability space (E, E , Q)
and any f, g ∈ L1,Φ(Q), let us denote by αf,g : [0, 1] → R the function defined for any λ ∈ [0, 1] by

αf,g(λ) := EntΦ
Q(λf + (1 − λ)g) . (35)

Notice that αf,g(0) = EntΦ
Q(g) and αf,g(1) = EntΦ

Q(f). The consideration of convex combinations reveals that
the convexity of the Φ-entropy functional on L1,Φ(Q) is equivalent to the convexity of αf,g on [0, 1] for any f
and g. Assume now that αf,g is convex on [0, 1] for any f and g in L1,Φ(Q). Assume for the moment that
f, g ∈ K(E, I). In that case, there are no boundary effects, and αf,g is smooth. Recall that a real convex
function is the envelope of its tangents, cf. [32]. In particular, αf,g(1) � αf,g(0) + α′

f,g(0). Moreover, equality
is achieved for f = g. As a consequence, we get

EntΦ
Q(f) = sup

g∈K(E,I)

{
α′

f,g(0) + αf,g(0)
}
. (36)

It turns out that α′
f,g(0) = EQ((Φ′(g) − Φ′(EQg))(f − g)). We thus recover exactly (33). By virtue of Re-

mark 4.5, the formula above for α′
f,g(0) still makes sense in [−∞,∞) when f, g are in L1,Φ(Q), and consequently,

the variational formula (36) remains true when f, g ∈ L1,Φ(Q). Notice that αf,g(λ) = EntΦ
Q(g + λ(f − g)), and

hence α′
f,g(0) is the directional derivative of the Φ-entropy functional at point g in the direction f − g.

Proof of Theorem 4.4. 1⇒2. Follows from the identity BΦ = AΦ+AΦ(τ) where τ is linear, given by Lemma 4.1.
3⇒1 and 3⇒2. Follow from (30) used on a convex combination.
1⇒3 and 3⇒2. Follow from (31) used on a convex combination.
1⇒4. The Hessian matrix of AΦ writes for any (u, v) ∈ TI ,

∇2AΦ(u, v) =
(

AΦ′′
(u, v) Φ′′(u + v) − Φ′′(u)

Φ′′(u + v) − Φ′′(u) Φ′′(u + v)

)
.
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Since AΦ is convex, the diagonal elements of ∇2AΦ are non-negative, and thus Φ′′ � 0 on I. Moreover, the
convexity of AΦ yields that det(∇2AΦ) is non-negative. Suppose now that (u, v) ∈ TI is such that Φ′′(u+v) = 0.
Then det(∇2AΦ(u, v)) = −Φ′′(u)2, and thus Φ′′(u) = 0. Consequently, the set {w ∈ I; Φ′′(w) = 0} is either
empty of equal to I, as required. When Φ′′ > 0 on I, we get det(∇2AΦ(u, v)) = Φ′′(u + v)Φ′′2(u)A−1/Φ′′

(u, v),
which is non-negative since AΦ ∈ CTI . But Φ′′ > 0, and thus A−1/Φ′′ � 0. Lemma 4.1 gives then −1/Φ′′ ∈ CI .

4⇒1. If Φ is affine on I, then AΦ is identically zero, and thus belongs to CTI . Let us consider the second
case. Assume that Φ′′ > 0 on I with −1/Φ′′ ∈ CI . It turns out that (−1/Φ′′)′′ = (Φ′′′′Φ′′ − 2Φ′′′2)/Φ′′3.
Hence, Φ′′′′Φ′′ � 2Φ′′′2 on I, and thus Φ′′′′ � 0 on I. In other words, Φ′′ ∈ CI . By Lemma 4.1, it follows
that AΦ′′

is non-negative. Therefore, the diagonal elements of ∇2AΦ are non-negative on CI . In the other
hand, for any (u, v) ∈ TI , det(∇2AΦ(u, v)) = Φ′′(u + v)Φ′′2(u)A−1/Φ′′

(u, v), which is non-negative again by
virtue of Lemma 4.1. Putting all together, the two dimensional matrix ∇2AΦ(u, v) has a non-negative trace
and determinant for any (u, v) ∈ CI , as expected.

4⇒5 and 5⇒6. Follow from the definitions. See for instance [27].
6⇒7 and 8⇒9 and 10⇒11 are immediate.
1⇒8. Let f and g be in K(E, I). Since AΦ ∈ CTI , the following sort of “AΦ-entropy”

J(f, g) := EQ

(
AΦ(g, f − g)

)
− AΦ(EQg,EQ(f − g)) (37)

is non negative by Jensen inequality. Moreover, it vanishes when f = g. The desired result follows from the
identity EntΦ

Q(f) = J(f, g) + EQ((Φ′(g) − Φ′(EQg))(f − g)) + EntΦ
Q(g).

9⇒1. For any (E, E , Q) ∈ P and f, g ∈ K(E, I), the identity (33) implies that the quantity J(f, g) defined
by (37) is non-negative. By approximation, J(f, g) is non-negative for any f, g ∈ L1,Φ(Q). Now, let (u, v) and
(u′, v′) be in TI , and let λ ∈ [0, 1]. Since P is a covering collection, there exists (E, E , Q) ∈ P and T ∈ E such
that Q(T ) = λ. Let g := uIT + u′IT c and f := g + vIT + v′IT c . The desired result follows from the identity
J(f, g) = λAΦ(u, v) + (1 − λ)AΦ(u′, v′) − AΦ(λ(u, v) + (1 − λ)(u′, v′)).

3⇒6 and 3⇒8. Let f, g ∈ K(E, I), and let αf,g be as in (35). It turns out that

α′′(t) = EQ

(
CΦ(ht, f − g)

)
− CΦ(EQht,EQ(f − g)).

Notice that (ht, f − g) takes its values in T ′
I . Since CΦ ∈ CT ′

I , we get α′′(t) � 0. In other words, α ∈ C[0,1]. In
particular α(λ) � λα(1) + (1−λ)α(0) for λ ∈ [0, 1] writes EntΦ

Q(λf + (1 − λ)g) � λEntΦ
Q(f) + (1−λ)EntΦ

Q(g),
which is nothing else but the expression of the convexity of EntΦ

Q. Additionally, since every convex function on
an interval is the envelope of its tangents, see [32], one gets EntΦ

Q(f) = α(1) = supt∈[0,1] {α(t) + α′(t)(1 − t)}.
In particular, EntΦ

Q(f) � α(0) +α′(0), with equality when f = g. Taking the supremum with respect to g leads
to (33).

7⇒9 and 6⇒8. Let f, g ∈ K(E, I), and let αf,g be as in (35). Then, for any s, t ∈ [0, 1] and any λ ∈
[0, 1], α(λs + (1 − λ)t) = EntΦ

Q(λ(tf + (1 − t)g) + (1 − λ)(sf + (1 − s)g)). Since EntΦ
Q ∈ CK(E,I), we get

α(λs + (1 − λ)t) � λα(s) + (1 − λ)α(t), and thus α ∈ C[0,1]. Since every convex function on an interval is the
envelope of its tangents, see [32], we obtain EntΦ

Q(f) = α(1) = supt∈[0,1] {α(t) + α′(t)(1 − t)}. In particular,
EntΦ

Q(f) � α(0) + α′(0), with equality when f = g. Taking the supremum with respect to g leads to (33).
9⇒7 and 8⇒6. Use λf1+(1−λ)f2−g = λ(f1−g)+(1−λ)(f2−g) and EntΦ

Q(g) = λEntΦ
Q(g)+(1−λ)EntΦ

Q(g)
in the expression inside the supremum in (33), then use the fact that the supremum of the sum is less than or
equal to the sum of the suprema.

11⇒7. The proof can be found in [28], introduction of section 2.5. Namely, let g1, g2 ∈ K(E2, I), and
consider f : {0, 1}×E2 → R defined by f(x, y) := g1(y) if x = 0 and f(x, y) := g2(y) if x = 1. The tensorisation
formula (34) expressed for f rewrites EntΦ

Q2
((1 − p)g1 + pg2) � (1 − p)EntΦ

Q2
(g1) + pEntΦ

Q2
(g2), as expected.

8⇒10. The proof can be found in the Saint-Flour course [28], Theorem 2.27. Roughly speaking, it consists
in the usage of the variational formula (33) on each entropy in the right hand side of (34), which gives rise, via
a telescopic sum, to the variational formula for the left hand side of (34).
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Finally, if the statements hold, then Φ ∈ CI by statement 4, and the proof of 4⇒1 given above provides in
particular that Φ′′ ∈ CI . �
Example 4.7. For (P1-P2-P3), both Φ, −Φ′, and Φ′′ are convex on I. Moreover, Φ′′ > 0 on I and −1/Φ′′

is convex on I. Actually, −1/Φ′′ is affine for (P1) and (P2). Consider the case where Φ(u) := −u log(−u)
on I = (−∞, 0). Then Φ′′ > 0 on I , and −1/Φ′′ > 0 on I. However, −Φ′ is concave and not convex on I.
Consider now the case where Φ(u) = − log(u) on I = (0, +∞). Then Φ, −Φ′, Φ′′ are convex on I, and Φ′′ > 0
on I. However, −1/Φ′′ is concave and not convex. These examples rely on the stability by symmetry of the
convexity of −1/Φ′′, and the absence of such a stability for −Φ′.

Example 4.8. Following [11], the convexities of the A-B-C transforms of Φ and of the Φ-entropy functional are
stable by any linear combination on Φ with non-negative coefficients. Theorem 4.4 shows in particular that this
stability still holds for the convexity of −1/Φ′′, for which it is less apparent. The consideration of continuous
linear combinations on Φ by mean of an integral with respect to a positive Borel measure provides several
interesting examples. For instance, Φ(u) :=

∫ 2

1 up dp = u(u − 1)/ log(u) on I = R
∗
+ is obtained from (P3), and

satisfies to the required convexities of Theorem 4.4.

Example 4.9. A curious example is given by Φ(u) = −I(u) on I = (0, 1), where I is the Gaussian isoperimetric
function defined by I := F ′ ◦ F−1 where F is the cumulative distribution function of N (0, 1). Function I is
positive and concave on I, and satisfies to the identity II′′ = −1. Consequently, Φ and −1/Φ′′ = Φ are convex.
In particular, Theorem 4.4 shows that the I-entropy is concave, and provides a reversed tensorisation formula.

For any p ∈ [0, 1], let σp : TI → TI be the linear map defined for any (u, v) ∈ TI by

σp(u, v) := (u, pv). (38)

The map σp is well defined since for any (u, v) ∈ TI and any p ∈ [0, 1], we have u + pv ∈ [u, u + v] ⊂ I by
convexity of I, and thus (u, u + pv) ∈ TI . Notice that CΦ(σp) = p2CΦ.

Lemma 4.10. Let Φ ∈ CI and p ∈ [0, 1]. Let σp be as in and (38). The following inequalities hold on TI,

AΦ(σp) � pAΦ and BΦ(σp) � pBΦ, (39)

where q := 1 − p. Moreover, AΦ(σp) = p2AΦ and BΦ(σp) = p2BΦ for (P2). Let τ be as in (32). Assume in
addition that Φ′′ ∈ CI, then the following inequalities hold on TI ,

pAΦ − AΦ(σp) � pq
(
pAΦ(τ) + qAΦ

)
; (40)

AΦ(σp) � 1
2
p2q CΦ + p3AΦ; (41)

AΦ(τ(σp))) � 1
2
p2q CΦ + p3AΦ(τ); (42)

BΦ(σp) � p2q CΦ + p3B. (43)

Proof. The AΦ part of (39) is a rewriting of (10). For the BΦ part of (39), we notice that Φ′ is non-decreasing
since Φ is convex, and thus pvΦ′(u+pv) � pvΦ′(u+v) regardless of the sign of v, which gives the desired result.
The inequality (40) is a rewriting of (15). Namely, pAΦ(u, v)−AΦ(σp(u, v)) = EntΦ

B(1,p)(f) for any (u, v) ∈ TI ,
where (f(0), f(1)) := (u, u + v), whereas EB(1,p)

(
AΦ(f, Df)

)
= pAΦ(τ(u, v)) + qAΦ(u, v). The inequalities (41),

(42), and (43) follow from (30) by using the definition of CΦ and a suitable Jensen inequality for Φ′′. �
Remark 4.11. The bounds (41) and (42) become equalities for (P2). However, (43) is not sharp for (P2).
The bound BΦ(σp) � pBΦ is optimal in the sense that for (P1), we have BΦ(u, pv) ∼ pBΦ(u, v) at v = +∞
for any (p, u) ∈ (0, 1) × I. However, BΦ(σp) = p2BΦ for (P2); and in general

lim
v→0

v−2BΦ(u, pv) = p2 lim
v→0

BΦ(u, v) = p2Φ′′(u).
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The same remark holds for AΦ (up to a factor 2 in the case (P2)).

Some of the results of this section correct mistakes discovered by the author in [11] after publication. In
contrary to what appears in [11], p. 330, H(2’) does not imply H(2). Actually, H(1) and H(2) are equivalent
and H(2’) should be removed from [11]. In particular, [11], Remarks 8 and 11, pages 354–356, should be
replaced by Lemma (4.1). These corrections are minor and simplifying and do not impact the results of [11] at
all.
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[11] D. Chafäı, Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities. J. Math. Kyoto Univ.
44 (2004) 325–363.
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