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ENTROPIC CONDITIONS AND HEDGING

Samuel Njoh1

Abstract. In many markets, especially in energy markets, electricity markets for instance, the deten-
tion of the physical asset is quite difficult. This is also the case for crude oil as treated by Davis (2000).
So one can identify a good proxy which is an asset (financial or physical) (one)whose the spot price is
significantly correlated with the spot price of the underlying (e.g. electicity or crude oil). Generally,
the market could become incomplete. We explicit exact hedging strategies for exponential utilities
when the risk premium is bounded. Our result is based upon backward stochastic differential equation
(BSDE) and a good choice of admissible strategies which allows us to solve our hedging problem.
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Introduction

The issue of the hedge of an European option admits in the situation of incomplete markets many answers
by optimization’s programs. We aim to study this question and exhibit optimal strategies for exponential
utilities. On the subject, the research for the elaboration of an exact solution is still open. We intend to solve
the problem when the risk premium is bounded. From an economical view, we consider an agent who sells
an option quantified by an FT -measurable contingent claim almost surely finite H ; with FT the information
available up to the date T , T being the maturity of the option. The agent constitutes a portfolio with an initial
wealth and invests in the asset of correlated spot price and in a numéraire. The agent can also decide not to
sell. It seems natural to introduce an utility function Uγ which quantifies the preferences of the investor. Here,

Uγ(x) = − exp(−γx)

with γ a strictly positive constant. Consequently our agent maximizes its terminal net wealth by the bias of Uγ .
Our presentation of hedging by exponential utility is based upon [4]. We use duality methods and elaborate a

good setting for the solving of our optimization problem. First the originality of our work is to introduce several
sets of probability and admissible strategies that resume the difficulties and are useful to better overcome them.
Hence, we succeed to well define and characterize the optimal hedging strategy. We have tried here to give a
complete setting when the risk premium is bounded. To characterize the optimal solution, we use backward
stochastic differential equations.
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By taking the definition of admissible strategies in [4] rather than the one in [8], we give complete proofs of
results of [8]. The document is organized as follows. First, the Section 1 will recall some general results about
the risk neutral pricing in a general financial model; also we will establish a martingale representation theorem
when one changes the probability measure. We also focus on admissible strategies’s space and no arbitrage
opportunities. Our setting deals with cross hedging, see also [4]. But the cross hedging problem can be viewed
as a constraint on hedging portfolio and henceforth enter in the framework regarded in [8]. Our Section 2 is
devoted to the characterization of dual problem. We point out the set of martingale measures which allows us to
elaborate the dual problem. The Section 3 is concerned by the resolution of the dual problem using backward
stochastic differential equations. Indeed, we do verify that the optimal solution is in the set of measure we
have previously defined. The Section 4 solves thoroughly the problem of optimal hedging. We look also at the
indifference price when the correlation is perfect. In Section 5 we conclude.

1. Preliminaries

We consider a financial market with two risky assets and a riskless asset, namely a bond. We make the
assumption that one of the risky asset cannot be detained in a financial portfolio. Let Se and Sg be the spot
prices processes of the risky assets and let S0 ≡ 1 be the one of the asset without risk. We consider that the
physical stock of price Se cannot be exchanged in the market, though it is taken as the underlying of contingent
claims.

We recall the definition of a martingale measure:

Definition 1.1. A probability measure Q is a martingale measure if Q is equivalent to P on FT and the process
Sg is a local martingale under Q. Let Me be the set of martingale measures.

1.1. Duality concept

Let V x,θ
T be the terminal value of a trading self-financing portfolio process of values V x,θ, with x being the

initial wealth of the investor. One of our goal on this work is to prove a duality result on the form

sup
θ ∈A(x)

E

[
− exp

(
−γ
(
V x,θ

T − H
))]

= − exp
(

γ sup
Q∈ Me

(
EQ (H) − x − 1

γ
h(Q|P)

))

with h(Q|P) denoting the relative entropy of Q with respect to P we will precise in the following section. Then
the resulting strategy will be optimal for an exponential utility criterion. We notice that the case H ≡ 0 recovers
a pure investment problem. Beyond the dual problem, we see that one has to minimize the relative entropy
minus a penalizing term depending on H . The greatest task perhaps will then be to construct the martingale
measure Q̂ which allows to get out the optimal trading strategy. Indeed it is necessary to prove that Q̂ is in a
subset of Me. We will also give in the Section 2 some conditions on H for the solving of the dual problem in
our approach. First of all we recall results obtained.

1.2. Our results

Let B be a random variable almost surely finite. Let Ab(x) and A(x) be two spaces of admissible strategies
we define latter in the section. We set

v(x, B) := sup
θ ∈ A(x)

E

[
−e−γ(V x,θ

T −B)
]

V (x, B) =
1
γ

ln [−v(x, B)]

M′
θ :=

{
Q � P | V x,θ Q-integrable and h(Q|P) < +∞} .

Then we establish that:
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• If E
(
BeB

)
< ∞ and if θ ∈ Ab(x), then

1
γ

ln E

[
exp

(
−γ
(
V x,θ

T − B
))]

= sup
Q∈M′

θ

{
EQ
[
−V x,θ

T + B
]
− 1

γ
h(Q|P)

}

• and if there are θ̂ ∈ A(x) and Q̂ ∈ Me
′ defined in the following section such that

1
γ

ln E

[
exp

(
−γ
(
V x,θ̂

T − B
))]

= −x + EQ̂ (B) − 1
γ

h(Q̂|P)

then

dQ̂

dP
=

exp
(
−γ
(
V x,θ̂

T − B
))

E exp
(
−γ
(
V x,θ̂

T − B
)) ;

V (x, B) = −x + sup
Q ∈ M′

e

{
EQ (B) − 1

γ
h(Q|P)

}

=
1
γ

ln E

[
exp

(
−γ
(
V x,θ̂

T − B
))]

.

The optimal strategy is

θ̂t = − mt

γσg
t Sg

t

+
z
(1)
t

σg
t Sg

t

with the assumption that the risk premium process mt is bounded, (XB, z) being the solution of a
quadratic BSDE we elaborate in Section 3; the process σg

t is defined in Section 1.4.

1.3. Some reminders about BSDEs

We recall some facts about backward stochastic differential equations and optimization problems. Let Hp,d
T

be the space of Rd-valued progressively measurable processes ζ such that:

E

[∫ T

0

‖ζt‖p dt

]
< ∞,

and H∞
T (R2) be the space of progressively measurable R2-valued processes ζ such that:

ess sup
Ω×[0,T ]

‖ζt‖ < ∞.

1. We assume that the mapping f (also called further a generator) from Ω× [0, T ]×R×R2 into R is such
that f(ω, t, 0, 0) belongs to H2,1

T . Moreover, we set the condition: f is uniformly Lipschitz in (y, z), that
is there is a constant λ > 0 such that

|f(t, y(1), z(1)) − f(t, y(2), z(2))| ≤ λ
(
|y(1) − y(2)| + |z(1) − z(2)|

)

for all (y(i), z(i)) ∈ R × Rd, i = 1, 2. Also we impose to f to verify f(t, 0, 0) ∈ H2,1
T .

2. Then, by a well known result the BSDE

(∗) − dyt = f(t, yt, zt)dt − z′tdWt, yT = φ
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with φ ∈ L2(Ω,F , P) admits a unique solution (y, z) in H∞,1
T ×H2,2

T .
We recall also the so-called comparison theorem:

3. Suppose that the pair (f (i), φ(i)), i = 1, 2 satisfies the condition in 1.. We assume also that

f (1)(t, y, z) ≥ f (2)(t, y, z), ∀(y, z) ∈ R × R2,

φ(1) ≥ φ(2).

Let (y(i), z(i)), i = 1, 2 denote the solutions of the BSDE (∗) with the parameters (f, φ) to be replaced
by the pair (f (i), φ(i)), i = 1, 2 respectively. Then we get

∀t, y
(1)
t ≥ y

(2)
t P − a.s. and

φ(1) ≥ φ(2), φ(i) ∈ L2(P), i = 1, 2.

4. We enounce some results of [14] about quadratic generators and BSDE. That is f to satisfy

∀ (t, y, z) ∈ [0, T ]× R × R2 |f(t, y, z)| ≤ λ1 + λ2|y| + λ3(|y|)‖z‖2

with λ1, λ2 constants and λ3 to be a continuous increasing nonnegative function. Let φ in L∞(P). Then
(∗) has a unique solution (y, z) in H∞,1

T ×H2,2
T with y continuous mapping. In this case, the comparison

principle gives
∀ t ∈ [0, T ] y

(1)
t ≥ y

(2)
t P − a.s.,

the assumptions on (f (i), φ(i)), i = 1, 2 being the same as previously, with the supplementary condition:
φ(i) ∈ L∞(P), i = 1, 2.

1.4. The market model

Let (Ω,F , F, P) be a filtered probability space, equipped with F = (Ft)0≤t≤T the associated filtration we will
precise. Define FW

t = σ(W (1)
s , W

(2)
s ; 0 ≤ s ≤ t) to be a family of sub-σ-algebras fields such that FW

s ⊆ FW
t ,

s ≤ t. Let N denote the P-null subsets of FW
T . Then Ft = σ

(FW
t ∪N ) is the augmented filtration of the

filtration genrated by the processes W (1) and W (2). The filtration F is said to satisfy usual conditions. We
notice that F = FT . The processes W (1) and W (2) are two F-adapted independent standard Brownian motions
under the probability measure P. Ft represents the information available at time t; P is the physical probability
under which are modeled Se and Sg. We assume that the processes Se and Sg do satisfy in the time interval
[0, T ], the stochastic differential equations:

⎧⎪⎨
⎪⎩

dSe
t = Se

t

(
µe

tdt + σe
t

(
ρtdW

(1)
t +

√
1 − ρ2

t dW
(2)
t

))
dSg

t = Sg
t

(
µg

t dt + σg
t dW

(1)
t

)
.

The model’s coefficients µe, µg, σe, σg, and ρ are F-adapted and continuous. We add the following assumption
on σg:∀ t ∈ [0, T ] σg

t �= 0 dt-a.s..To ensure the conditions of integrability, we have:

∫ T

0

|µi
tS

i
t| dt +

∫ T

0

|σi
tS

i
t|2 dt < +∞, for i = e, g.

As the cross variation of the two processes is d〈Se, Sg〉t = ρtσ
e
t σ

g
t Se

t Sg
t dt, ρt indicates the level of the correlation

between the prices Se and Sg during the interval [t, t + dt]. We take the level of correlation to be strictly less
than one (|ρt| < 1, 0 ≤ t ≤ T ).
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1.5. Martingale probabilities

Let Q be a probability measure equivalent to P on FT . It is well known that there exists two F-adapted
processes m and ν such that: ∫ T

0

(
m2

t + ν2
t

)
dt < +∞ P-a.s. and

dQ

dP
= exp

(∫ T

0

mt dW
(1)
t − 1

2

∫ T

0

m2
t dt +

∫ T

0

νt dW
(2)
t − 1

2

∫ T

0

ν2
t dt

)
. (1.1)

By Girsanov theorem, the processes W̃ (1) and W̃ (2) are defined as follows:

dW̃
(1)
t = dW

(1)
t − mtdt and dW̃

(2)
t = dW

(2)
t − νtdt (1.2)

are two independent standard Brownian motions under the probability Q.
As we have in our general model a Brownian filtration, we will use in the sequel only a previsible representation

property for a Q-local martingale adapted to the filtration (Ft), where Q is a probability equivalent to P. The
change of Brownian motion induced by the change of probability doesn’t allow the use of the representation
property for martingales adapted to the filtration (Ft). Nevertheless, we state the following decomposition
theorem of such local martingales:

Theorem 1.1. Let Q̄ be a probability equivalent to P. Let W̄ = (W̄ (1), W̄ (2)) be a Q̄-standard brownian motion
issued from W = (W (1), W (2)) by Girsanov theorem. Let N be a Q̄-local martingale process. Then N admits
a version such that there exists a R2-valued process h = (h̃(1), h̃(2)) F-adapted,

∫ T

0

(
(h̃(1)

t )2 + (h̃(2)
t )2

)
dt < +∞

P-a.s.:

Nt = N0 +
∫ t

0

h̃(1)
s dW̄ (1)

s +
∫ t

0

h̃(2)
s dW̄ (2)

s , 0 ≤ t ≤ T.

Moreover, if N is a square integrable Q̄-matingale, then

EQ̄〈N, N〉T < +∞.

The proof is in appendix.

A necesary and sufficient condition for the process Sg to be a local martingale under Q is:

µg
t + σg

t mt = 0 (1.3)

and we get
dSg

t

Sg
t

= σg
t dW̃

(1)
t . (1.4)

From now we suppose the equality (1.3) to be satisfied, i.e. mt := −µg
t

σg
t

, 0 ≤ t ≤ T .

The condition Sg local martingale under Q fixes the value of m in (1.1). Consequently, the martingale
measures on FT are parametrized by a process ν. More precisely:

Let (ξν
t )0≤t≤T be the real process defined by the stochastic differential equation: dξν

t = ξν
t mt dW

(1)
t +

νt dW
(2)
t ), ξν

0 = 1. We have P-a.s.

ξν
t = exp

(∫ t

0

ms dW (1)
s − 1

2

∫ t

0

m2
s ds +

∫ t

0

νs dW (2)
s − 1

2

∫ t

0

ν2
s ds

)
, 0 ≤ t ≤ T.
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Define then the set K of F-adapted and real processes ν such that
∫ T

0

ν2
t dt < +∞ P-a.s. and (ξν

t )0≤t≤T is

a P-martingale. Therefore, given any ν ∈ K, we can define a probability measure Pν equivalent to P by
dPν = ξν

T dP. We have the following characterization of the set Me:

Me = {Pν | ν ∈ K} . (1.5)

The new probability measure

Pν (A) =
∫

A

ξν
T dP, A belongs to FT ,

is such that Pν is absolutely continuous on FT with respect to P (Pν � P). Moreover, since ξν
T > 0 P-a.s., then

the two measures are equivalent (Pν ∼ P).
Now we construct our financial portfolio. We have an investor who starts with some initial endowment x

and invests it in the bond and in the proxy asset. Let (Vt)0≤t≤T be the investor’s wealth process. It will be the
hedging portfolio when the investor holds an option. Then, in our model the portfolio is constructed upon the
assets of prices Sg and S0 ≡ 1. Thus, its value at time t is

Vt = ηtS
0
t + θtS

g
t = ηt + θtS

g
t ;

ηt and θt being respectively the quantities of assets of prices S0 and Sg detained at time t by the investor in
the portfolio. We make the assumption that the portfolio is self-financing; that is

Vt = V x,θ
t = x +

∫ t

0

θs dSg
s

with θ an element of

L(Sg) =

{
θ F-adapted |

∫ T

0

θ2
t d〈Sg, Sg〉t < +∞ P − a.s.

}
.

We will precise latter the space of admissible strategies. Define a contingent claim to be an FT -measurable
random variable.

To evaluate and hedge the contingent claim H by an exponential utility function, it is necessary to compute
the quantities

v(x + p, H) = sup
θ

E

[
−e−γ(V x+p,θ

T −H)
]

and v(x, 0) = sup
θ

E

[
−e−γV x,θ

T

]
,

where p is the option’s price as x is the initial endowment when the investors plans not to sell the option.
Hence we must choose at the beginning the space of admissible strategies Θ(x) = A(x), upon which a

supremum is attained.

1.6. The set of admissible strategies

The set of admissible strategies must allow:
• to avoid arbitrage opportunities on the financial market {S0, Sg};
• to ensure the existence of Ee−γV x,θ

T and E

[
e−γ(V x,θ

T −H)
]
;

• to guarantee the existence of admissible optimal solutions to the problems

(PH) sup
θ

E

[
−e−γ(V x,θ

T −H)
]

and (P0) sup
θ

E

[
−e−γV x,θ

T

]
.
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The concept of hedging strategies is introduced in order to allow the solution of the contingent claim valuation
problem. Letting

Ab(x) :=
{

θ ∈ L(Sg) : ∃ aθ,x ∈ R, V x,θ
t ≥ aθ,x P-a.s. ∀ t, 0 ≤ t ≤ T

}
,

we assume that
Me �= ∅.

Henceforth, for θ ∈ Ab(x), V x,θ is lower bounded. Moreover V x,θ is a Q-local martingale for all Q element of
Me. Finally V x,θ is a Q-supermartingale according to Fatou’s lemma.

Proposition 1.1. There are no arbitrage opportunities on the financial market {S0, Sg} when the strategies
are in Ab(x).

Proof. Indeed, assume that there are arbitrage opportunities for a hedging strategy θ ∈ Ab(x): that is there
exist x ∈ R and θ ∈ Ab(x):

x ≤ 0 and V x,θ
T ≥ 0 P-a.s., P(V x,θ

T > 0) > 0.

θ ∈ Ab(x) implies V x,θ Q-supermartingale; EQ
[
V x,θ

T

]
≤ x ≤ 0;

dQ
dP

V x,θ
T ≥ 0 P-a.s. implies EQ

[
V x,θ

T

]
≥ 0. Hence EQ

[
V x,θ

T

]
= 0;

V x,θ
T ≥ 0 P-a.s., P(V x,θ

T > 0) > 0 implies EQ
[
V x,θ

T

]
= EQ

[
V x,θ

T 1{V x,θ
T >0}

]
> 0.

This is impossible. Hence there are no arbitrage opportunities on the market {S0, Sg} for θ ∈ Ab(x). �

We choose a space of admissible strategies which contains the strategies θ such that the wealth process V x,θ

is not necessarily lower bounded and which could guarantee the existence of an optimal solution in that space.
We then define the set:

A(x) :=
{

θ ∈ L(Sg) | ∃ (θn)n ∈ Ab(x) such that e−γ(V x,θn
T −H) L1(P)→ e−γ(V x,θ

T −H)
}

.

We get in particular ∀θ ∈ A(x), exp−γ
(
V x,θ

T − H
)

∈ L1(P). We need eγH ∈ L1(P); this hypothesis holds
for instance when H is a bounded random variable.

The set of admissible strategies for a given initial wealth x is A(x). It contains Ab(x) as well as some
strategies θ such that V x,θ is non necessarily lower bounded.

2. Formulation of the dual problem

Let h(Q|P) be the relative entropy of a probability measure Q with respect to P;

h(Q|P) =

⎧⎨
⎩ E

[
dQ

dP
ln
(

dQ

dP

)]
if Q � P

+∞ otherwise.

Let B be a random variable.
We denote by EQ (·) the expectation operator with respect to the probability measure Q.
Let us define

MB :=
{
Q � P | h(Q|P) < +∞ and EQ (B) < +∞} .
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We will show the following lemma which will be useful to formulate the dual problem of supθ E

[
−e−γ(V x,θ

T −H)
]
:

Lemma 2.1. For B random variable almost surely finite,

ln(EeB) = sup
Q ∈ MB

{
EQ (B) − h(Q|P)

}
. (2.1)

Moreover if Q ∈ MB, we get ln(EeB) = EQ (B) − h(Q|P) if and only if

E
(
BeB

)
< ∞and

dQ

dP
=

eB

EeB
·

Proof. If we take Q ∈ MB, then EQ (B) − h(Q|P) = EQ
[
ln
(

eB

dQ/dP

)]
. Hence, by Jensen’s inequality, we have,

for Q ∈ MB,

EQ (B) − h(Q|P) = EQ

[
ln
(

eB

dQ/dP

)]
= ln E

(
eBI{ dQ

dP
>0}
)
≤ ln(EeB),

where IA(ω) is the characteristic function of the set A; that is IA(ω) = 1 if ω belongs to A, or 0 otherwise.
But, since x �−→ ln x is stictly concave, there is equality only if eB

dQ/dP
= constant Q-a.s.

Hence dQ
dP

= eB

EeB a.s., and there is uniqueness if the supremum is attained. It is the case if B is almost surely
finite.

To show the equality: ln(EeB) = sup
Q ∈MB

{
EQ (B) − h(Q|P)

}
, let us introduce the sequence of probability

measures Qn defined by
dQn

dP
=

eBI{|B|≤n}
E
(
eBI{|B|≤n}

) ·
Since |B| < ∞ a.s., Qn is well defined for a sufficiently large n and Qn ∈ MB.

We obtain EQn (B) − h(Qn|P) = ln E
(
eBI{|B|≤n}

)
.

By monotone convergence theorem, we have the equality; whence the desired result. �

We recall that 0 ≤ t ≤ T ,

ξν
t = exp

(∫ t

0

ms dW (1)
s − 1

2

∫ t

0

m2
s ds +

∫ t

0

νs dW (2)
s − 1

2

∫ t

0

ν2
s ds

)
.

We recall also the characterization of the set of equivalent martingale measures Me. Indeed, we have in view
to formulate the dual problem whose the optimal solution is in a subset of Me under certain conditions we will
precise in the sequel. Then

Me =
{

Pν | dPν

dP
= ξν

T , ν F − adapted such that

∫ T

0

(
m2

t + ν2
t

)
dt + ∞ a.s. and ξν P − martingale

}
.

We get

ln
(

dPν

dP

)
=
∫ T

0

mt dW
(1)
t − 1

2

∫ T

0

m2
t dt +

∫ T

0

νt dW
(2)
t − 1

2

∫ T

0

ν2
t dt.
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Under the martingale measure Pν ,

ln
(

dPν

dP

)
=
∫ T

0

mt dW̃
(1)
t +

1
2

∫ T

0

m2
t dt +

∫ T

0

νt dW̃
(2)
t +

1
2

∫ T

0

ν2
t dt. (2.2)

We define the process Mt := ξν
t = E

(
dPν

dP
|Ft

)
which will be frequently used in the proofs throughout this

section and in the following.
We define now the set

Me
′ :=

{
Q = Pν | EPν

∫ T

0

(
m2

t + ν2
t

)
dt < +∞

}

and we assume that
Me

′ �= ∅.
The subset Me

′ of Me is the space upon which we want to find the solution of the dual problem that remains
to define. First we characterize Me

′ by showing notably that it is the set of probabilities with finite entropy.
We have the following theorem:

Theorem 2.1. A characterization of the set Me
′ is

Me
′ = {Q = Pν | h(Pν |P) < +∞} .

Moreover we have, for all Pν ∈ Me
′,

h(Pν |P) =
1
2

EPν

∫ T

0

(
m2

t + ν2
t

)
dt. (2.3)

Proof. If Pν ∈ Me
′, EPν

∫ T

0

(
m2

t + ν2
t

)
dt < +∞. Hence the processes

∫ .

0

ms dW̃ (1)
s and

∫ .

0

νs dW̃ (2)
s are mar-

tingales under the martingale measure Pν .

But, according to (2.2), we have

h(Pν |P) = EPν

ln
dPν

dP
= EPν

(∫ T

0

mt dW̃
(1)
t +

1
2

∫ T

0

m2
t dt +

∫ T

0

νt dW̃
(2)
t +

1
2

∫ T

0

ν2
t dt

)
.

Henceforth h(Pν |P) = 1
2EPν ∫ T

0

(
m2

t + ν2
t

)
dt < +∞.

Conversely, there is an equivalence between the assertions:
1. h(Pν |P) < +∞,
2. E (MT ln MT ) < +∞.

Indeed, the function ϕ : x �→ x ln x is convex on [0, +∞) and admits a unique minimum in x = 1
e : ∀x ≥

0, x ln x ≥ − 1
e .

We set τn = inf
{
t ∈ [0, T ] | ∫ t

0

(
m2

s + ν2
s

)
ds ≥ n

}
, n ≥ 1. (τn)n≥1 is a sequence of stopping times converg-

ing towards infinity. We adopt the convention inf ∅ = +∞.

We obtain

EMT ln MT∧τn = E (E (MT ln MT∧τn |FT∧τn))
= EMT∧τn ln MT∧τn .
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Hence

EMT∧τn ln MT∧τn = EMT∧τn

(∫ T∧τn

0

mt dW
(1)
t +

∫ T∧τn

0

νt dW
(2)
t − 1

2

∫ T∧τn

0

(
m2

t + ν2
t

)
dt

)

= EPν

(∫ T∧τn

0

mt dW̃
(1)
t +

∫ T∧τn

0

νt dW̃
(2)
t +

1
2

∫ T∧τn

0

(
m2

t + ν2
t

)
dt

)

=
1
2

EP
ν

∫ T∧τn

0

(
m2

t + ν2
t

)
dt.

The sequence τn being increasing, we get by monotone convergence theorem

lim
n−→∞ EMT∧τn ln MT∧τn = sup

n≥1
EMT∧τn ln MT∧τn

=
1
2

EP
ν

∫ T

0

(
m2

t + ν2
t

)
dt. (2.4)

But conditional Jensen’s inequality yields

MT∧τn ln MT∧τn ≤ E (MT ln MT |FT∧τn) .

By hypothesis, MT ln MT is integrable.
Hence the sequence (MT∧τn ln MT∧τn)n is uniformly integrable, and we get

lim
n→∞ EMT∧τn ln MT∧τn = E (MT ln MT )

=
1
2

EPν

∫ T∧τn

0

(
m2

t + ν2
t

)
dt < +∞. �

For Q = Pν ∈ Me
′, the entropy with respect to P is

h(Q|P) = EQ ln
(

dQ

dP

)
= EQ

(
1
2

∫ T

0

m2
t dt +

1
2

∫ T

0

ν2
t dt

)
.

We will next formulate the dual problem for an investor having an initial wealth x as mentionned in Section 1.
The agent invests in the construction of a hedging portfolio V x,θ and in the same time sells a contingent claim
H at the date t = 0. We suppose that the price of the option of payoff H is included in the initial wealth.
Hence the agent’s program is:

(PH) v(x + p, H) := sup
θ ∈ A(x+p)

E

[
−e−γ(V x+p,θ

T −H)
]

= − inf
θ ∈ A(x+p)

E

[
e−γ(V x+p,θ

T −H)
]
.

We set
(P0) v(x, 0) := sup

θ ∈ A(x)

E

[
−e−γV x,θ

T

]
= − inf

θ ∈ A(x)
E

[
e−γV x,θ

T

]
.

(P0) is the program of the agent having the initial wealth x, and invests only in the construction of a portfolio θ.
In the two cases the agent is maximizing the expected utility v. Then, the indifference price (cf. [8]) is defined
by the equality:

v(x + p, H) = v(x, 0)
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or equivalently,
1
γ

ln [−v(x + p, H)] =
1
γ

ln [−v(x, 0)] .

From now, we set

V (x, H) :=
1
γ

ln [−v(x, H)] .

Henceforth, we will try to compute V (x, H) in order to get a fair characterization of the optimal hedging θ̂ and
the price p.

Let us calculate now
V (x, H) = inf

θ ∈ A(x)

1
γ

ln E

[
exp

(
−γ
(
V x,θ

T − H
))]

.

Let us exhibit another set of martingale measures which will fully characterize the dual problem.
Let θ be in Ab(x). We define the set

M′
θ :=

{
Q � P | V x,θ Q-integrable and h(Q|P) < +∞} .

By using Lemma 2.1, if θ ∈ Ab(x)

1
γ

ln E

[
exp

(
−γ
(
V x,θ

T − H
))]

= sup
Q∈M′

θ

{
EQ
[
−V x,θ

T + H
]
− 1

γ
h(Q|P)

}
. (2.5)

Indeed, if Q is not in the set M′
θ, h(Q|P) = +∞. As H is almost surely finite, and as θ ∈ Ab(x) implies

EQ
[
V x,θ

T

]
≤ x, (2.6)

hence we have

1
γ

sup
Q∈M′

θ

{
EQ
[
−γ
(
−V x,θ

T + H
)]

− h(Q|P)
}

≥ 1
γ

sup
Q∈M′

e

{
EQ
[
−γ
(
−V x,θ

T + H
)]

− h(Q|P)
}

≥ sup
Q∈M′

e

{
EQ
[
−
(
−V x,θ

T + H
)]

− 1
γ

h(Q|P)
}

≥ −x + sup
Q ∈ Me

′

{
EQ (H) − 1

γ
h(Q|P)

}
. (2.7)

Consequently,

V (x, H) = inf
θ ∈ A(x)

1
γ

ln E

[
exp

(
−γ
(
V x,θ

T − H
))]

= inf
θ ∈ Ab(x)

1
γ

ln E

[
exp

(
−γ
(
V x,θ

T − H
))]

.

Hence V (x, H) ≥ −x + sup
Q ∈ Me

′

{
EQ (H) − 1

γ
h(Q|P)

}
.

If we can find θ̂ ∈ A(x) and Q̂ ∈ M′
e such that

1
γ

ln E

[
exp

(
−γ
(
V x,θ̂

T − H
))]

= −x + EQ̂ (H) − 1
γ

h(Q̂|P),

the previous inequality is an equality.
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We first study the problem:

sup
Q ∈ Me

′

{
EQ (H) − 1

γ
h(Q|P)

}
= sup

Pν ∈ Me
′

{
EPν

(H) − 1
2γ

EPν

∫ T

0

(
m2

t + ν2
t

)
dt

}
.

We will solve the formulated control problem in the following section.

3. Properties of the optimal dual process

Denote by Ke
′ the set of progressively measurable processes ν such that Pν ∈ Me

′.
We define the process (Mν

t )0≤t≤T by

Mν
t := EPν

[
H − 1

2γ

∫ T

0

(
m2

t + ν2
t

)
dt | Ft

]
.

Mν is a martingale process under Pν .

According to the Theorem 1.1 there is a process zν F -adapted with values in R2such that
∫ T

0

(
(z1,ν

t )2 +

(z2,ν
t )2

)
dt < +∞ P-a.s. and:

Mν
t := Mν

0 +
∫ t

0

(zν
s )′ dW̃s = Mν

0 +
∫ t

0

z1,ν
s dW̃ (1)

s +
∫ t

0

z2,ν
s dW̃ (2)

s , 0 ≤ t ≤ T.

Let
(
XH,ν

t

)
0≤t≤T

be the process defined by:

XH,ν
t := EPν

[
H − 1

2γ

∫ T

t

(
m2

s + ν2
s

)
ds | Ft

]
,

and
XH

t := ess sup
ν

XH,ν
t .

It is clear that

XH,ν
t =

1
2γ

∫ t

0

(
m2

s + ν2
s

)
ds + Mν

t .

Moreover, Mν
0 = XH,ν

0 . We obtain using Girsanoy theorem

dXH,ν
t =

1
2γ

(
m2

t + ν2
t

)
dt + z1,ν

t dW̃
(1)
t + z2,ν

t dW̃
(2)
t

=
1
2γ

(
m2

t + ν2
t

)
dt + z1,ν

t dW
(1)
t + z2,ν

t dW
(2)
t − z1,ν

t mtdt − z2,ν
t νtdt

=
1
2γ

[(
m2

t + ν2
t

)− 2γ
(
z1,ν

t mt + z2,ν
t νt

)]
dt + z1,ν

t dW
(1)
t + z2,ν

t dW
(2)
t .

We also remark that XH,ν
T = H .

Henceforth, (XH,ν , z) verifies the backward stochastic differential equation ( BSDE in short){
−dXH,ν

t = fm,t(zν , ν)dt − z1,ν
t dW

(1)
t − z2,ν

t dW
(2)
t , 0 ≤ t ≤ T

XH,ν
T = H

(3.1)
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with fm,t(zν, ν) = − 1
2γ

[(
m2

t + ν2
t

)− 2γ
(
z1,ν

t mt + z2,ν
t νt

)]
, fm,t(zν, ν) being the BSDE’s generator.

The comparison’s theorem suggests to characterize the process XH
t := ess sup

ν
XH,ν

t as the solution of the

BSDE of generator
f̂m,t(z) = max

ν
fm,t(z, ν) = fm,t(z, ν̂)

with
ν̂ = γz(2),

and henceforth,

f̂m,t(z) = −
[
m2

t

2γ
− mtz

(1)
t − γ

2

(
z
(2)
t

)2
]

.

Then we regard the BSDE with quadratic coefficients in z:{
−dXH

t = f̂m,t(z)dt − z
(1)
t dW

(1)
t − z

(2)
t dW

(2)
t

XH
T = H.

(3.2)

An existence and uniqueness result of solution of BSDE with quadratic coefficients in [14], see also Section 1.3,
allows to prove that the previous BSDE has an unique solution (XH , z),

with E
∫ T

0

((
z
(1)
t

)2

+
(
z
(2)
t

)2
)

dt < ∞.

We deduce from comparison’s theorem for quadratic BSDE (cf. Sect. 1.3) that:

∀ ν ∈ Ke
′ XH

t ≥ XH,ν
t a.s.

Lemma 3.1. We assume that the process mt is bounded.
Let ν̂ be the process defined by:

ν̂t = γz
(2)
t 0 ≤ t ≤ T,

where (XH , z) is the unique solution of the previous BSDE.

We have ν̂ ∈ Ke
′ and XH

t = EPν̂

(H |Ft) − 1
2γ

EPν̂

(∫ T

t

(
m2

s + ν̂2
s

)
ds|Ft

)
.

A consequence of this lemma is that XH
t = XH,ν̂

t = sup
ν ∈ Ke

′
essXH,ν

t , and henceforth:

XH
0 = sup

Q ∈ Me
′

{
EQ (H) − 1

γ
h(Q|P)

}
= EPν̂

(
H − 1

2γ

∫ T

0

(
m2

t + ν̂2
t

)
dt

)
.

Proof. We first prove that the process XH is bounded. We have:

XH
t ≥ XH,0

t = EP0

(
H − 1

2γ

∫ T

t

m2
s ds|Ft

)
.

Since the process (mt) is bounded, we deduce that XH is uniformly lower bounded. We remark also that if we
set:

f̃m,t(z) = mtz
(1) +

γ

2

(
z(2)

)2

,
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the solution of the BSDE with generator f̃m,t and deterministic condition C is given by

X̂t = C ẑt = 0, 0 ≤ t ≤ T.

We have f̃m,t(z) ≥ f̂m,t(z). The comparison’s theorem for quadratic BSDE allows us to deduce that:

XH
t ≤ sup ess H, 0 ≤ t ≤ T.

Let now (τn) be the sequence of stopping times defined by:

τn = inf{t ≥ 0 | γ2

∫ t

0

(
z(2)

s

)2

ds ≥ n}.

The process ν(n) defined by: ν
(n)
t = γz

(2)
t I[0,τn](t) is in Ke

′ and:

XH
t∧τn

= XH
0 +

1
2γ

∫ t∧τn

0

(
m2

s +
(
γz(2)

s

)2
)

ds +
∫ t∧τn

0

z(1)
s dW̃ (1)

s +
∫ t∧τn

0

z(2)
s dW̃ (2)

s

with W̃
(1)
t = W

(1)
t − ∫ t

0 ms ds and W̃
(2)
t = W

(2)
t − ∫ t

0 γz
(2)
s ds.

Under Pν(n)
, W̃ is a standard Brownian motion and we have:

EPν(n)

XH
t∧τn

= XH
0 +

1
2γ

EPν(n)
∫ t∧τn

0

(
m2

s +
(
γz(2)

s

)2
)

ds.

If we note Mt = ξν̂
t , then

Mt = exp
(∫ t

0

(
ms dW (1)

s + γz(2)
s dW (2)

s

)
− 1

2

∫ t

0

(
m2

s +
(
γz(2)

s

)2
)

ds

)

and henceforth the previous equality can be written:

EMt∧τn ln Mt∧τn = EPν(n)

XH
t∧τn

− XH
0 .

Since XH is bounded, we deduce that:

sup
n

EMt∧τn ln Mt∧τn < +∞.

Hence the discrete parameter martingale (Mt∧τn ln Mt∧τn)n ∈ N is in the class LlogL ([15], exercise 1.16, p. 58).
We easily deduce that Mt is a martingale and that EMt ln Mt < +∞ for 0 ≤ t ≤ T ; which proves that
ν̂ ∈ Ke

′. �
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4. Optimal trading strategy

This section is devoted to the proof of the theorem below.

Theorem 4.1. If mt is a bounded process, then the quantity defined in Section 1.2

V (x, H) = −x + sup
Q ∈ M′

e

{
EQ (H) − 1

γ
h(Q|P)

}
. (4.1)

Furthermore, V (x, H) =
1
γ

ln E

[
exp

(
−γ
(
V x,θ̂

T − H
))]

with

θ̂t = − mt

γσg
t Sg

t

+
z
(1)
t

σg
t Sg

t

(4.2)

where (XH , z) is the solution of (3.2).

4.1. Proof of the theorem 4.1

Proof. We set Q̂ = Pν̂ . According to Lemma 3.1 we know that Q̂ ∈ Me
′.

We are seeking for θ̂ ∈ A(x) such that

1
γ

ln E

[
exp

(
−γ
(
V x,θ̂

T − H
))]

= −x + EQ̂ (H) − 1
γ

h(Q̂|P).

This equality is equivalent to

ln E

[
exp

(
−γ
(
V x,θ̂

T − H
))]

= −γx + EQ̂ (γH) − h(Q̂|P)

= EQ̂ (−γ (x − H)) − h(Q̂|P)

= EQ̂
(
−γ
(
V x,θ̂

T − H
))

− h(Q̂|P)

if V x,θ̂ is a Q̂-martingale.

Hence according to the Lemma 2.1,

dQ̂

dP
=

exp
(
−γ
(
V x,θ̂

T − H
))

E exp
(
−γ
(
V x,θ̂

T − H
)) ·

We are led to search θ̂ such that V x,θ̂ is a Q̂-martingale and

exp
(
−γ
(
V x,θ̂

T − H
))

= eγV (x, H) dQ̂

dP
·

Hence

−γ
(
V x,θ̂

T − H
)

= γV (x, H) + ln
dQ̂

dP
and

V x,θ̂
T = −V (x, H) + H − 1

γ
ln

dQ̂

dP
·
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As V x,θ̂ must be a Q̂-martingale, we will in fact seek for θ̂ such that

V x,θ̂
t = −V (x, H) + EQ̂

(
H − 1

γ
ln

dQ̂

dP
|Ft

)
·

We know that

XH
t = ess sup

Pν ∈ M′
e

EPν

(
H − 1

2γ

∫ T

t

(
m2

s + ν2
s

)
ds|Ft

)

= EQ̂

(
H − 1

2γ

∫ T

t

(
m2

s + ν̂2
s

)
ds|Ft

)
.

Furthermore,

EQ̂

(
ln

dQ̂

dP
|Ft

)
= EQ̂

(∫ T

0

mt dW
(1)
t +

∫ T

0

ν̂t dW
(2)
t − 1

2

∫ T

0

(
m2

t + ν̂2
t

)
dt|Ft

)

=
∫ t

0

ms dW (1)
s +

∫ t

0

ν̂s dW (2)
s − 1

2

∫ t

0

(
m2

s + ν̂2
s

)
ds

+EQ̂

(∫ T

t

ms dW (1)
s +

∫ T

t

ν̂s dW (2)
s − 1

2

∫ T

t

(
m2

s + ν̂2
s

)
ds|Ft

)

= ln ξν̂
t + EQ̂

(∫ T

t

ms dW̃ (1)
s +

∫ T

t

ν̂s dW̃ (2)
s +

1
2

∫ T

t

(
m2

s + ν̂2
s

)
ds|Ft

)

= ln ξν̂
t + EQ̂

(
1
2

∫ T

t

(
m2

s + ν̂2
s

)
ds|Ft

)
.

Hence we have

V x,θ̂
t = −V (x, H) + EQ̂ (H |Ft) − 1

γ
ln ξν̂

t − 1
2γ

EQ̂

(
1
2

∫ T

t

(
m2

s + ν̂2
s

)
ds|Ft

)

= −V (x, H) − 1
γ

ln ξν̂
t + XH

t .

Then we find θ̂: (for a better understanding we set ν̂ := ν̃)

− 1
γ

d ln ξν̃
t = − 1

γ

[
mt(dW̃

(1)
t + mtdt) − 1

2
m2

t dt + ν̃t (dW̃
(2)
t + ν̃tdt) − 1

2
ν̃2

t dt

]

= −
[
m2

t

2γ
+

γ

2

(
z
(2)
t

)2
]

dt − mt

γ
dW̃

(1)
t − z

(2)
t dW̃

(2)
t .

dXH
t = −f̂m,t(z)dt + z

(1)
t dW̃

(1)
t + z

(2)
t dW̃

(2)
t + z

(1)
t mtdt + z

(2)
t ν̃tdt

=
[
−f̂m,t(z) + z

(1)
t mtdt + z

(2)
t ν̃t

]
dt + z

(1)
t dW̃

(1)
t + z

(2)
t dW̃

(2)
t

=
[
−f̂m,t(z) + mtz

(1)
t + γ

(
z
(2)
t

)2
]

dt + z
(1)
t dW̃

(1)
t + z

(2)
t dW̃

(2)
t

=
[
m2

t

2γ
+

γ

2

(
z
(2)
t

)2
]

dt + z
(1)
t dW̃

(1)
t + z

(2)
t dW̃

(2)
t .
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We get

dV x,θ̂
t = − 1

γ
d ln ξν̂

t + dXH
t

=
(−mt

γ
+ z

(1)
t

)
dW̃

(1)
t

=
(−mt

γ
+ z

(1)
t

)
σg

t Sg
t

σg
t Sg

t

dW̃
(1)
t

=

−mt

γ
+ z

(1)
t

σg
t Sg

t

dSg
t .

θ̂t = − mt

γσg
t Sg

t

+
z
(1)
t

σg
t Sg

t

·

It remains to show that θ̂ ∈ A(x) and that V x,θ̂ is a Q̂-martingale. Finally we will have that θ̂ is the optimal
trading strategy.

We recall that XH
t = EPν̂

(
H − 1

2γ

∫ T

t

(
m2

s + ν̂2
s

)
ds|Ft

)
.

We define the sequence of trading strategies

θn = θ̂1[0,τn] with τn = inf
{
t ∈ [0, T ] | V x,θ̂

t ≤ −n
}

θn ∈ Ab(x) since V x,θn

t = V x,θ̂
t∧τn

≥ −n.

We have

e
−γ
(
V x,θn

T − H
)

= e
−γ
(
V x,θ̂

T∧τn
− H

)
= e−γV (x, H)e−γXH

T∧τn ξν̂
T∧τn

.

We want to show that e−γ(V x,θn
T −H) converges in L1(P) towards e−γ

(
V x,θ̂

T −H
)

(θ̂ ∈ A(x)).
As ξν̂ is a martingale, the sequence (ξν̂

T∧τn
)n≥1 is uniformly integrable, and since XH is bounded, so does

e
−γ
(
V x,θn

T − H
)
. Almost sure convergence and uniform integrability imply the convergence in L1(P).

We deduce that θ̂ ∈ A(x). �

Remark 4.1. The process mt is bounded. The equality V (x + p, H) = V (x, 0) implies that the indifference
price (cf. [8]) is

p = sup
Q ∈ Me

{
EQ (H) − 1

γ
h(Q|P)

}
− sup

Q ∈ Me

{
− 1

γ
h(Q|P)

}
.
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4.2. The case ρ = 1

In this case we get

dSe
s

Se
s

= (µe
s + σe

sms) ds + σe
sρsdW̃ (1)

s (4.3)

i.e. there is only one martingale measure denoted previously P0 := Pν |ν≡0 and it is clear that

XH
. = EP0

(
H − 1

2γ

∫ T

.

m2
s ds|F.

)
.

To study then the indifference price one has to deal with no arbitrage argument. Indeed when ρ = 1, the two
assets of spot prices Se and Sg are perfectly correlated. Then for instance if we assume that the coefficients of
the model are constant and σg strictly positive we have the relation, see [4],

µe = µg σe

σg

between the coefficients, to avoid arbitrage opportunities.
If we denote by pH

t the indifference price process defined by

pH
. = XH

. − X0
.

then it is clear that pH
t = EP0

(H |Ft) which is the Black-Scholes price. Using the BSDE techniques we have
developped in the preceding sections, if we set

zH = z(1) − z̃(1)

with (XH , z) and (X0, z̃) being solutions for the BSDE (3.2), then we have

−dpH
t = mtz

H
t dt − zH

t dW
(1)
t , pH

T = H

i.e.

−dpH
t = −zH

t

(
dW

(1)
t − mtdt

)
= −zH

t dW̃
(1)
t .

Hence, also, we obtain

pH
t = EP0

(H |Ft) .

Henceforth, when mt is bounded, the exponential criterion can be viewed as an extension of Black-Scholes style
pricing.

5. Conclusion

We characterize the optimal solution to the program of maximizing exponential utility from net terminal
wealth for an agent, in the situation of incomplete markets. This is done, by an appropriate definition of the
domain of validity of the dual problem. Nevertheless, we were forced to limit ourselves to the case of a bounded
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risk premium process, opening thus our work to further research in view of the relaxation of such a condition.
Another way of continuing the research will be to study in our general model the expansion of the hedging
near the perfect correlation case, by the bias of Malliavin calculus. Our study can be applied to the hedging
of temperature weather derivatives and of index options. We have fully solved the dual problem by means,
which to our knowledge, are original. In addition, we have got out Lemma 3.1 which allows us to emphasize
the assumption that mt is bounded to well determine the optimal hedging strategy (cf. Th. 4.1).

Appendix

Now we state the following decomposition theorem of local martingales (Th. 1.1):

Proof. We first regard the case N Q̄-martingale. Then, following [13], Proposition 8.6 p. 375, we have such a
decomposition of N . We will only prove that if NT ∈ L2(Q̄), then EQ̄ < N, N >T < +∞.

Let τn = inf{t ∈ [0, T ] | 〈N, N〉t ≥ n and Nt ≥ n}, n ≥ 1.
The increasing sequence of stopping times (τn)n≥1 converges towards +∞;

(Nt∧τn)0≤t≤T is a square integrable Q̄-martingale, for any n ≥ 1:

EQ̄
(
N2

T∧τn

)
= EQ̄〈N, N〉T∧τn = n < +∞. By continuity of t �−→ Nt and by using the monotone convergence

theorem, we have:

EQ̄
(
N2

T

)
= EQ̄ lim

n
N2

T∧τn

= lim
n

EQ̄
(
N2

T∧τn

)
= EQ̄〈N, N〉T < +∞.

The end of the proof is done in the proof of the Theorem 3.4, Ch. V, p. 200, [15]. �
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