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MODERATE DEVIATIONS FOR TWO SAMPLE T-STATISTICS

Hongyuan Cao1

Abstract. Let X1, ..., Xn1 be a random sample from a population with mean µ1 and variance σ2
1 , and

Y1, ..., Yn2 be a random sample from another population with mean µ2 and variance σ2
2 independent

of {Xi, 1 ≤ i ≤ n1}. Consider the two sample t-statistic T = X̄−Ȳ −(µ1−µ2)√
s2
1/n1+s2

2/n2
. This paper shows that

ln P (T ≥ x) ∼ −x2/2 for any x := x(n1, n2) satisfying x → ∞, x = o(n1 + n2)
1/2 as n1, n2 → ∞

provided 0 < c1 ≤ n1/n2 ≤ c2 < ∞. If, in addition, E|X1|3 < ∞, E|Y1|3 < ∞, then P (T≥x)
1−Φ(x)

→ 1 holds

uniformly in x ∈ (0, o((n1 + n2)
1/6)).
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1. Introduction and main results

Let {X, Xn, n ≥ 1} be a sequence of independent non-degenerate real-valued random variables on the
probability space (Ω, Σ, P ). Put

Sn =
n∑

i=1

Xi, B2
n =

n∑
i=1

EX2
i , V 2

n =
n∑

i=1

X2
i .

In classical limit theorems, moment conditions and other related conditions are sufficient and usually necessary
(see Petrov 1995 [3]). For instance, for independent and identically distributed (i.i.d) random variables, the
central limit theorem holds if and only if EX2I(|X | ≤ x) is slowly varying as x → ∞. On the other hand, limit
theorems for self-normalized sums Sn/Vn put those classical limit theorems on a new perspective. Shao (1997)
[5] showed that no moment conditions are needed for the self-normalized large deviation result

Sn

Vn
√

n

and that the tail probability of Sn/Vn is Gaussian like when X is in the domain of attraction of the normal
law and sub-Gaussian like when X is in the domain of attraction of a stable law. Giné et al. (1997) [1] proved
that the tails of Sn/Vn are uniformly sub-Gaussian when the sequence is stochastically bounded whereas Shao
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(1999) [6] found that a Cramér type result for self-normalized sums holds only under a finite third moment
condition. What’s more, some finer results were obtained on the self-normalized limit theorems for independent
but not necessarily identically distributed random variables. Jing et al. (2003) [2] obtained a Cramér-type large
deviation result for general independent random variables with zero means and finite variances. They showed
that

P (Sn/Vn ≥ x) = (1 − Φ(x))

(
1 + O(1)(1 + x)3B−3

n

n∑
i=1

E|Xi|3
)

(1.1)

for 0 ≤ x ≤ Bn/(
∑n

i=1 E|Xi|3)1/3, where O(1) is bounded by an absolute constant. Some refinements of this
result may be found in [4].The above result is useful because it not only supplies the relative error but also a
Berry-Esseen rate of convergence. Besides, Jing, Shao and Wang proved that the exponential moment condition
needed for the normalized sum can be remarkably reduced to only the finite moment condition of low order, and
hence such a large deviation have applications to a variety of fields, and in particular, to statistics. From the
statistics point of view, self-normalization is more fit to do inferences because the parameters involved in many
classical limit theorems are usually unknown, one has to use some statistics to estimate them first and then apply
the estimators in the classical limit theorems. This commonly used practice is indeed the self-normalization.

The main purpose of this paper is to study the moderate deviation for the two-sample t-statistics. We will
show that the main result of Jing et al. (2003) [2] holds for the two-sample t-statistics.

Let X1, ..., Xn1 be a sample of i.i.d. random variables with mean µ1 and variance σ2
1 and Y1, ..., Yn2 be

another sample of i.i.d. random variables with mean µ2 and variance σ2
2 , independent of X1, ..., Xn1 . Consider

the two sample t-statistic

T =
X̄ − Ȳ − (µ1 − µ2)√

s2
1/n1 + s2

2/n2

,

where

X̄ =
n1∑
i=1

Xi, Ȳ =
n2∑
i=1

Yi,

s2
1 =

1
n1 − 1

n1∑
i=1

(Xi − X̄)2, s2
2 =

1
n2 − 1

n2∑
i=1

(Yi − Ȳ )2.

This statistic is frequently used to construct confidence interval and do hypothesis testing for the difference
between two means. There are several premises underlying the use of two sample t-test. It is assumed that
the data has been derived from populations with normal distribution. Based on the fact that si → σi a.s. for
i = 1, 2, with moderate violation of the assumption, quite often statisticians recommend to use the two sample
t-test provided the samples are not too small and the samples are of equal or nearly equal size.

The aim of this paper is to give a theoretical justification for the use of two-sample t-statistics when the pop-
ulations are not normally distributed. The main results are moderate deviations for the two-sample t-statistic.

Theorem 1.1. Assume that there are 0 < c1 ≤ c2 < ∞ such that

c1 ≤ n1/n2 ≤ c2. (1.2)

Then for any x := x(n1, n2) satisfying x → ∞, x = o((n1 + n2)1/2)

ln P (T ≥ x) ∼ −x2/2 (1.3)

as n1, n2 → ∞, where an ∼ bn means limn→∞ an/bn = 1.

Theorem 1.2. Let n = n1 + n2. Assume that E|X1|3 < ∞, E|Y1|3 < ∞ and (1.2) is satisfied. Then

P (T ≥ x)
1 − Φ(x)

= 1 + O(1)(1 + x)3n−1/2d3 (1.4)
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for 0 ≤ x ≤ n1/6/d, where d3 = (E|X1−µ1|3+E|Y1−µ2|3)/(σ2
1 + σ2

2)3/2 and O(1) is a finite constant depending
only on c1 and c2. In particular, we have

P (T ≥ x)
1 − Φ(x)

→ 1 (1.5)

uniformly in x ∈ (0, o(n1/6)).

It is well-known that when σ1 = σ2, one can use the pooled two-sample t-statistic T ∗ defined by

T ∗ =
X̄ − Ȳ − (µ1 − µ2)√

s∗2(1/n1 + 1/n2)
,

where

s∗2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
·

We have similar results for T ∗.

Theorem 1.3. Assume that (1.2) is satisfied. Then for any x := x(n1, n2) satisfying x → ∞, x = o((n1 +
n2)1/2)

ln P (T ∗ ≥ x) ∼ −x2/2

as n1, n2 → ∞.

Theorem 1.4. Assume E|X1|3 < ∞ and E|Y1|3 < ∞. Assume also (1.2) is satisfied. Then

P (T ∗ ≥ x)
1 − Φ(x)

= 1 + O(1)(1 + x)3n−1/2d3 (1.6)

for 0 ≤ x ≤ n1/6/d, where d3 = (E|X1−µ1|3+E|Y1−µ2|3)/(σ2
1 + σ2

2)3/2 and O(1) is a finite constant depending
only on c1 and c2. In particular, we have

P (T ∗ ≥ x)
1 − Φ(x)

→ 1 (1.7)

uniformly in x ∈ (0, o(n1/6)).

Remark 1.1. We remark that it is not necessary to assume finite variances of X1 and Y1 in Theorem 1.1.
Theorem 1.1 remains valid when both X1 and Y1 are in the domain of attraction of a normal law. See the proof
of Theorem 1.1.

2. Proofs

Our proofs are based on self-normalized large and moderate deviations for independent random variables.
We restate them below for easy reference.

Proposition 2.1 ([5], Th. 3.1, Rem. 4.2). Assume that {Xn, n ≥ 1} is a sequence of i.i.d. random variables
with E(X1) = 0 and E(X2

1 ) < ∞. Then there exist 0 < ε0 ≤ 1 and n0 such that for any 1/ε0 ≤ x ≤ ε0
√

n and
n ≥ n0

P (Sn ≥ xVn) ≤ exp(−x2/4). (2.1)

Next proposition is an extension of Theorem 3.1 of Shao (1997) [5].
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Proposition 2.2. Let {Xi, 1 ≤ i ≤ n1} and {Yi, 1 ≤ i ≤ n2} be two independent sequences of i.i.d. random
variables with zero means. Let an,1 and an,2 be two sequences of real numbers. Assume that the following
conditions are satisfied:

(i) both X1 and Y1 are in the domain of attraction of a normal law;
(ii) an,1 → a1 and an,2 → a2 as n → ∞, where a1 �= 0, a2 �= 0;
(iii) n1/n → b1 and n2/n → b2 as n → ∞, where 0 < b1 < ∞, 0 < b2 < ∞.

Then for any sequence of positive numbers {xn, n ≥ 1} with xn → ∞ and xn = o(
√

n) as n → ∞

lim
n→∞ x−2

n ln P

⎛
⎜⎝ an,1

∑n1
i=1 Xi + an,2

∑n2
i=1 Yi(

a2
n,1

∑n1
i=1 X2

i + a2
n,2

∑n2
i=1 Y 2

i

)1/2
≥ xn

⎞
⎟⎠ = −1

2
·

Proof. The proof follows the same lines of that of Theorem 3.1 in [5] except that we define l(x) and zn in (4.3)
in [5] as follows

l(x) = a2
1 b1E(X2

1I{|X1| ≤ x}) + a2
2 b2E(Y 2

1 I{|Y1| ≤ x})
and

zn = inf
{

s : s > b + 1,
l(s)
s2

≤ x2
n

n
}, where b = inf{x ≥ 1 : l(x) > 0

}
.

The details are omitted here. �
Let {Xi, i ≥ 1} be independent random variables. Assume EXi = 0 and 0 < EX2

i < ∞. For convenience,
we introduce

∆n,x =
(1 + x)2

B2
n

n∑
i=1

EX2
i I{|Xi|>Bn/(1+x)} +

(1 + x)3

B3
n

n∑
i=1

E|Xi|3I{|Xi|≤Bn/(1+x)}

for x ≥ 0.

Proposition 2.3 ([2], Th. 2.1). There is an absolute constant A(> 1) such that

P (Sn ≥ xVn)
1 − Φ(x)

= eO(1)∆n,x and
P (Sn ≤ −xVn)

Φ(−x)
= eO(1)∆n,x (2.2)

for all x ≥ 0 satisfying
x2 max

1≤i≤n
EX2

i ≤ B2
n (2.3)

and
∆n,x ≤ (1 + x)2/A, (2.4)

where |O(1)| ≤ A.

Proposition 2.4 ([2], Th. 2.3). Let 0 < δ ≤ 1 and set

Ln,δ =
n∑

i=1

E|Xi|2+δ, dn,δ = Bn/L
1/(2+δ)
n,δ .

Then
P (Sn/Vn ≥ x)

1 − Φ(x)
= 1 + O(1)

(
1 + x

dn,δ

)2+δ

(2.5)

and
P (Sn/Vn ≤ −x)

Φ(−x)
= 1 + O(1)

(
1 + x

dn,δ

)2+δ

(2.6)
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for 0 ≤ x ≤ dn,δ, where O(1) is bounded by an absolute constant. In particular, if dn,δ → ∞ as n → ∞, we
have

P (Sn ≥ xVn)
1 − Φ(x)

→ 1,
P (Sn ≤ −xVn)

Φ(−x)
→ 1 (2.7)

uniformly in 0 ≤ x ≤ o(dn,δ).

The main idea of the proofs is to first get rid of X̄ and Ȳ in the denominator of T and then to apply the
moderate deviations, Propositions 2.3 and 2.4. Without loss of generality, we assume that µ1 = µ2 = 0. If we
can prove theorems under 0 means, let X ′ = X − µ1, Y ′ = Y − µ2, the results hold for T ′ = X′−Y ′√

s
′2
1 /n1+s

′2
2 /n2

.

Yet here, s
′2
1 = s2

1, s
′2
2 = s2

2 and T = T ′. So the result is true for T . Further, we define

V 2
1 =

n1∑
i=1

X2
i , V 2

2 =
n2∑
i=1

Y 2
i .

We prove Theorem 1.1 first.

Proof of Theorem 1.1. The first step is to get rid of X̄ and Ȳ in the denominator of T . Notice that

s2
1 =

1
n1 − 1

n1∑
i=1

(Xi − X̄)2

=
1

n1 − 1

(
n1∑
i=1

X2
i − n1X̄

2

)

=
1

n1 − 1
V 2

1

(
1 − n1X̄

2

V 2
1

)

and similarly,

s2
2 =

1
n2 − 1

V 2
2

(
1 − n2Ȳ

2

V 2
2

)
·

Let

s̄2
1 =

V 2
1

n1 − 1
, s̄2

2 =
V 2

2

n2 − 1
·

Set

T̄ =
X̄ − Ȳ√

s̄2
1/n1 + s̄2

2/n2

.

Then we can see for any x ≥ 0 and 0 < ε < 1/2

P (T̄ ≥ x) ≤ P (T ≥ x) ≤ P (T̄ ≥ x
√

1 − ε) + P

(
n1X̄

2

V 2
1

≥ ε

)
+ P

(
n2Ȳ

2

V 2
2

≥ ε

)
. (2.8)

From Proposition 2.1, we can get for 1/(ε2
0 min(n1, n2)) ≤ ε ≤ ε2

0

P

(
n1X̄

2

V 2
1

≥ ε

)
≤ 2 exp (−εn1/4) (2.9)
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and

P

(
n2Ȳ

2

V 2
2

≥ ε

)
≤ 2 exp (−εn2/4) (2.10)

with n1 and n2 large enough.
To apply Proposition 2.3, we first verify that conditions (2.3) and (2.4) are satisfied. Because of (1.2), without

loss of generality, assume

n1 = b1n, n2 = b2n, b1 + b2 = 1 with b1 > 0 and b2 > 0.

In our case, we introduce a new sequence of independent random variables {Zi} defined as below:

Zi =
{

Xi/n1 for 1 ≤ i ≤ n1

−Yi−n1/n2 for n1 < i ≤ n.

Then

EZ2
i =

1
n2

{
σ2

1/b2
1 for 1 ≤ i ≤ n1

σ2
2/b2

2 for n1 < i ≤ n
≈ 1

n2
, (2.11)

B2
n =

n∑
i=1

E|Zi|2 =
1
n

(σ2
1/b2

1 + σ2
2/b2

2) ≈
1
n

, (2.12)

where a ≈ b means 0 < lim inf a/b ≤ lim sup a/b < ∞. So as long as x = o((n1 + n2)1/2), condition (2.3) is
satisfied.

Next, we turn to condition (2.4). Since n1Zi, 1 ≤ i ≤ n1 are independent having the same distribution as
X1, and n2Zi, n1 < i ≤ n are independent having the same distribution as Y1, we have

∆n,x =
(1 + x)2

B2
n

n∑
i=1

EZ2
i I{|Zi|>Bn/(1+x)} +

(1 + x)3

B3
n

n∑
i=1

E|Zi|3I{|Zi|≤Bn/(1+x)}

≤ (1 + x)2EX2
1I{|X1|>σ1

√
n1/(1+x)}

EX2
1

+
(1 + x)3E|X1|3I{|X1|≤√

n1

√
σ2
1+c2σ2

2/(1+x)}

n
1/2
1 (EX2

1 )3/2

+
(1 + x)2EY 2

1 I{|Y1|>σ2
√

n2/(1+x)}
EY 2

1

+
(1 + x)3E|Y1|3I{|Y1|≤√

n2

√
σ2
2+σ2

1/c1/(1+x)}

n
1/2
2 (EY 2

1 )3/2

= o((1 + x)2) (2.13)

by the fact that x = o((n1 + n2)1/2) and that Eξ2I{|ξ|>t} = o(1) and E|ξ|3I{|ξ|≤t} = o(t) as t → ∞ for any
random variable ξ with a finite second moment.

This proves that conditions (2.3) and (2.4) are satisfied. Hence by Proposition 2.3

ln P (T̄ ≥ x) ∼ −x2/2 (2.14)

for x → ∞ and x = o((n1 + n2)1/2). Combining (2.8), (2.9), (2.10) and (2.14) yields (1.3) by the arbitrariness
of ε. �

Proof of Theorem 1.2. From Proposition 2.4, we get

P (T̄ ≥ x)
1 − Φ(x)

= 1 + O(1)(1 + x)3n−1/2d3 (2.15)
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and

P (T̄ ≥ x
√

1 − ε)
1 − Φ(x

√
1 − ε)

= 1 + O(1)(1 + x)3n−1/2d3 (2.16)

for 0 ≤ x ≤ n1/6/d and 0 < ε ≤ 1/2. Choose ε(x, n) properly, say, ε(x, n) = (1 + x)/
√

n.
Noting that when x → ∞,

1 − Φ(x) ∼ e−x2/2

√
2πx

,

we have

1 − Φ(x
√

1 − ε)
1 − Φ(x)

= 1 +
Φ(x) − Φ(x

√
1 − ε)

1 − Φ(x)

= 1 + O(1)
(e−x2(1−ε)/2 − e−x2/2)/x

e−x2/2/x

= 1 + O(1)(eεx2/2 − 1)

= 1 + O(εx2) = 1 + O(1)(1 + x)3n−1/2.

For other x,

1 − Φ(x
√

1 − ε)
1 − Φ(x)

= 1 +
Φ(x) − Φ(x

√
1 − ε)

1 − Φ(x)

= 1 + O(1)
∫ x

x
√

1−ε

1√
2π

e−t2/2 dt

= 1 + O(1)
∫ x

x
√

1−ε

t

x
√

1 − ε
√

2π
e−t2/2 dt

= 1 + O(1)(eεx2/2 − 1)

= 1 + O(εx2) = 1 + O(1)(1 + x)3n−1/2

because εx2 = O(1) and ε = O(1)(1 + x)n−1/2. Also note that by Proposition 2.1,

P (n1X̄
2/V 2

1 ≥ ε) = P

(
(
∑n1

i=1 Xi)2∑n1
i=1 X2

i

≥ εn1

)
≤ exp(−εn1/4) = exp(−εb1n/4)
= exp(−εb1n/8) exp(−εb1n/8)
= o(n−1)(1 − Φ(x))

by noting that log n = o(εn) and x2 = o(εn). Similarly, we have

P (n2Ȳ
2/V 2

2 ≥ ε) = o(n−1)(1 − Φ(x))

thus,

P (n1X̄
2/V 2

1 ≥ ε) = o
(
(1 + x)3n−1/2(1 − Φ(x))

)
, (2.17)

P (n2Ȳ
2/V 2

2 ≥ ε) = o
(
(1 + x)3n−1/2(1 − Φ(x))

)
(2.18)
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and

1 − Φ(x
√

1 − ε) = (1 − Φ(x))
(
1 + O(1)(1 + x)3n−1/2

)
(2.19)

hold, then taking into account of (2.8), the result of Theorem 1.2 follows. �
The proofs of Theorems 1.3 and 1.4 are along the same line as that of Theorems 1.1 and 1.2, so the details

are omitted here.
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