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Abstract. Variance reduction has always been a central issue in Monte Carlo experiments. Pop-
ulation Monte Carlo can be used to this effect, in that a mixture of importance functions, called a
D-kernel, can be iteratively optimized to achieve the minimum asymptotic variance for a function
of interest among all possible mixtures. The implementation of this iterative scheme is illustrated
for the computation of the price of a European option in the Cox-Ingersoll-Ross model. A Central
Limit theorem as well as moderate deviations are established for the D-kernel Population Monte Carlo
methodology.
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1. Introduction

The main bulk of the literature on Monte Carlo methods concentrates on the approximation of integrals

π(h) =
∫

Ω

h(x)π(x)µ(dx) ,

where µ is a measure on Ω, π a density and h a particular π-measurable function of interest on the same set
Ω. In particular, the focus of many studies is to reduce the variance of estimators of π(h), whether locally,
that is, for a given model and a given function, or globally, as in for instance Rao–Blackwellization, control and
antithetic variates or quasi-random techniques (see, e.g., [17, 20]). An illustration of this focus is provided in
mathematical finance by the numerous improvements brought upon the computation of option prices (see, e.g.,
[13, 15, 16]).
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In the particular case of importance sampling estimators, that is,

π̂ISg,N (h) = N−1
N∑
i=1

h(xi)π(xi)/g(xi) , x1, . . . , xN
iid∼ g,

where g is a distribution dominating π (with density denoted by g), the variance is equal to

g
[
(hπ/g − π(h))2

]
/N ,

if π(h2π/g) <∞. A puzzling feature of this class of estimators is the well-known optimality of the importance
distribution

g�(x) = |h(x)|π(x)
/∫ |h(y)|π(y)µ(dy)

when aiming at minimizing the variance of π̂ISg,N . This result [20] is paradoxical in that it produces a zero
variance estimator when h is either positive or negative (indeed, in both cases, π̂ISg�,N = π(h)). The paradox
is only superficial, though, in that it points out the fact that, in Monte Carlo settings, there is no ultimate
importance function when there is no restriction on the choice of these functions (and when the costs of
constructing and simulating these distributions are not taken into account). In particular, g� cannot be used in
practice because it depends on the integral

∫ |h(y)|π(y)µ(dy). This result is thus rather understood as providing
a goal for choosing a importance function g tailored for the approximation of π(h).

If the normalizing constants of either the target distribution π or the importance function g are unknown,
an alternative to π̂ISg,N is the self-normalized importance sampling estimator, that is

π̂SNISg,N (h) =
N∑
i=1

h(xi)π(xi)/g(xi)
/ N∑

i=1

π(xi)/g(xi) . x1, . . . , xN
iid∼ g,

where the sum of the weights normalizes the weighted sum. If g
(
(1 + h2)(π/g)2

)
<∞, the asymptotic variance

of π̂SNISg,N (h) is given by π
[
(h− π(h))2π/g

]
. In this case, g� is no longer the best choice: rather,

g�(x) = |h(x) − π(h)|π(x)
/∫

|h(y) − π(h)|π(y)µ(dy)

minimizes (in g) the asymptotic variance of π̂SNISg,N (h). This second optimum is not available either, because it
still depends on π(h) [8].

The formal aspect of this optimality result may explain why there is little in the literature besides general
recommendations that the support of g should be the support of |h(x)|π(x) or of |h(y)− π(h)|π(y), or yet that
the tails of g should be at least as thick as those of |h(x)|π(x). Note however that a recent reference is the
cross-entropy method of [21] where the parameter of a family of proposals is optimized, either directly or by an
iterative process, to reach minimal variance or maximal entropy against the target |h(x)|π(x), the function h
being of the specific rare event shape h(x) = I(S(x) ≤ γ). The population Monte Carlo methodology studied
in this paper encompasses cross-entropy as a special case.

The current paper establishes that the population Monte Carlo (PMC) technique of Cappé et al. [7] and Douc
et al. [12] can easily be adapted to this purpose and can result in considerable variance reduction. We recall
that [7] introduced this method, following the denomination of Iba [14], to advertise the availability of universal
adaptive sampling machines that do not encounter the formidable difficulties of designing adaptive MCMC
algorithms. Douc et al. [12] showed in addition that those PMC algorithms can accommodate a progressive
adaption to a given target distribution with a diminishing Kullback divergence. We now explain why this is
also the case for variance diminution and optimal importance function approximation.
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There is a large bulk of literature on adaptive Monte Carlo methods but we refrain from presenting a survey
of these methods because, while the related papers all aim at higher efficiency, their focus is mainly on sequential
problems (or targets), mostly with varying dimensions, and their degree of adaptivity is often limited (as for
instance in particle filters. A reference worth mentioning however is Del Moral et al. [10] since these authors
focus on a specific adaptive importance sampling strategy for moving and fixed targets. The former case includes
optimization via simulated annealing and tempering. As in Population Monte Carlo, the choice of the transition
kernels is not restricted in the sequential Monte Carlo method of Del Moral et al. [10]. But the adaptivity in this
paper is understood in a different way: the target density is approximated by a sequence πn of other densities
and kernels Kn are used to move the simulations from πn−1 towards πn. Even though this is not a requirement
of Del Moral et al. [10], their favorite choice for Kn is an MCMC kernel associated with πn. At last, there
is no learning mechanism: if Kn is poorly chosen, there is no clear correction within the methodology, while
the current paper mostly aims at this goal, namely to pick the most efficient kernel within a class of possible
kernels, while cutting the MCMC connection. Using Markov kernels does not mean we are implementing an
MCMC technology.

In Section 2, we recall the main features of the PMC algorithm, including the expressions for the asymptotic
variances of the unnormalized and self-normalized versions of the PMC estimator. In Section 3, we establish that
our updating scheme for the mixture weights in the PMC algorithm does induce a decrease in the asymptotic
variance at each step. Section 4 provides an additional improvement through the cumulated estimation of π(h).
The following Section 5 reinforces our theoretical assessment of the methodology by establishing moderate
deviations for the normalized PMC estimator, thus strengthening the CLT obtained previously. In Section 6,
we illustrate the variance reduction for a toy example before launching into the evaluation of a European option
price for the Cox-Ingersoll-Ross model, which provides an interesting and realistic high-dimensional setting. We
also improve on earlier importance sampling strategies for this model.

2. Population Monte Carlo

2.1. Monte Carlo setting

We suppose that the target distribution π is at least known up to a normalizing constant, π(x) ∝ π̃(x)
with π̃ known. For the importance sampling estimation of π(h), the quality of both the unnormalized and the
self-normalized approximations to π(h) strongly depends on the choice of the proposal distribution g, a choice
that is quite delicate for complex distributions like those that occur in high dimensional problems.

We first recall that sampling importance resampling (SIR) [18,19] can be used to reset a given weighted sample
from g to a sample from the target distribution π. Once the importance weights are derived, ωi ∝ π(xi)/g(xi),
a (non-iid) sample from π, x̃1, . . . , x̃M can be derived from the instrumental sample x1, . . . , xN by resampling
using the importance weights in {x1, . . . , xN}, that is,

x̃i = xJi , 1 ≤ i ≤M ,

where the random variables J1, . . . , JM are distributed as

P [Jl = i|x1, . . . , xN ] =

⎛⎝ N∑
j=1

π(xj)
g(xj)

⎞⎠−1

π(xi)
g(xi)

= ωi,t

(see, e.g., [17] Sect. 14.3.5). Multinomial sampling, i.e.

(Jl)1≤l≤M
iid∼ M(1, (ωi,t)1≤i≤N )
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is a possible implementation of the SIR methodology but more efficient alternatives that reduce the variance of
the resulting estimators are also available ([17], Chap. 14). However, to keep the description of the algorithms
as simple as possible, we will use multinomial sampling in the following.

The Population Monte Carlo (PMC) method introduced in Cappé et al. [7] intrinsically is a form of iterated
sampling importance resampling with dynamically adapted importance functions. We refer to Cappé et al. [7],
and to Robert and Casella ([17] Chap. 14) for details on the motivations and foundations of this method, and we
simply recall the essential feature of the method: At iteration t of the PMC algorithm, N values are simulated
from a proposal distribution and this proposal distribution is based on the N × (t − 1) past realizations, with
basically no constraint on the form of dependence on the past. This allows for a wide variety of adaptive
scenarios, a fact somehow missed in Cappé et al. [7] where the proposal was fixed.

If we define renormalized importance weights associated with weights ωj,t (1 ≤ j ≤ N) as

ωi,t = ωi,t

/ N∑
j=1

ωj,t ,

the generic PMC algorithm reads as follows:

Generic PMC algorithm
At time 0,

a) Generate (xi,0)1≤i≤N
iid∼ g0 and compute ωi,0 = π(xi,0)/g0(xi,0);

b) Generate (Ji,0)1≤i≤N
iid∼ M(1, (ωi,0)1≤i≤N ) and set x̃i,0 = xJi,0,0 (1 ≤ i ≤ N).

At time 1 ≤ t ≤ T

a) Conditionally on past xi,j ’s and x̃i,j ’s, generate independently xi,t ∼ gi,t and compute ωi,t = π(xi,t)/gi,t(xi,t);

b) Generate (Ji,t)1≤i≤N
iid∼ M(1, (ωi,t)1≤i≤N ) and set x̃i,t = xJi,t,t (1 ≤ i ≤ N).

Obviously, the quasi-total freedom in the construction of the above gi,t’s has drawbacks, namely that some
proposals do not necessarily lead to improvements in terms of variance reduction or of target approximation.
Therefore, we now restrict the family of proposals from which to select the new gi,t’s to mixture of fixed proposals
and we establish in the next section that variance improvement does occur within this family. This particular
type of algorithm was already shown in [12] to lead to a reduction in the asymptotic Kullback-Leibler distance
between the target and the proposal, for a specific update in the mixture weights.

2.2. D-kernel PMC

We assume from now on that we use in parallel D fixed kernels Qd(·, ·) with densities qd and that the proposal
is a mixture of those kernels

gi,t(x) =
D∑
d=1

αt,Nd qd(x̃i,t−1, x) ,
∑
d

αt,Nd = 1 ,

where the weights αt,Nd > 0 can be modified at each iteration. The amount of adaptivity we allow in this version
of PMC is thus restricted to a possible modification of the weights αt,Nd . (The Qd’s may correspond to random
walk steps with different scales or to different blocking strategies of the Gibbs sampler.) The importance weight
associated with this mixture proposal is

π(xi,t)
/ D∑
d=1

αt,Nd qd(x̃i,t−1, xi,t) ,
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while simulation from gi,t can be decomposed in the two usual mixture steps: first pick the component d then
simulate from the corresponding kernel Qd. The resulting algorithm is then a specific case of PMC algorithm
where the weights αt,Nd are updated as follows:

Generic D-kernel PMC algorithm
At time 0, produce the sample (x̃i,0, Ji,0)1≤i≤N and set α1,N

d = 1/D for all 1 ≤ d ≤ D.
At time 1 ≤ t ≤ T

a) Conditionally on the αt,Nd ’s, generate

(Ki,t)1≤i≤N
iid∼ M(1, (αt,Nd )1≤d≤D)

b) Conditionally on (x̃i,t−1,Ki,t)1≤i≤N , generate independently

(xi,t)1≤i≤N ∼ QKi,t(x̃i,t−1, ·)

and set ωi,t = π(xi,t)
/ D∑

d=1

αt,Nd qd(x̃i,t−1, xi,t);

c) Conditionally on (x̃i,t−1,Ki,t, xi,t)1≤i≤N , generate

(Ji,t)1≤i≤N
iid∼ M(1, (ωi,t)1≤i≤N )

and set (1 ≤ i ≤ N , 1 ≤ d ≤ D)

x̃i,t = xJi,t,t , αt+1,N
d = Ψd ((x̃i,t−1, xi,t,Ki,t)1≤i≤N )

such that
∑D
d=1 α

t+1,N
d = 1 .

In the above algorithm, Ψd (1 ≤ d ≤ D) denotes an update function that depends upon the past iteration.
We assume that the individual kernel importance weights are almost surely finite, that is,

∀d ∈ {1, . . . , D}, π {qd(x, x′) = 0} = 0, (A1)

where π = π ⊗ π. Under (A1), Douc et al. [12] proved that the updates Ψd of the mixture weights given by

αt+1,N
d =

N∑
i=1

ωi,tId(Ki,t)

guarantee a systematic decrease of the Kullback-Leibler distance between the target and the D-kernel mixture,
a long-term run of the algorithm providing the mixture that is (entropy-) closest to the target. Moreover,
Theorem 5.1 of [12] leads to a LLN (in the number of simulations at a given iteration) for the output of the
generic D-kernel PMC algorithm.

Theorem 2.1. Under (A1), for any function h in L1
π and for all t ≥ 0, both the unnormalized and the

self-normalized PMC estimators are convergent,

π̂PMC
t,N (h) =

1
N

N∑
i=1

ωi,th(xi,t)
N→∞−→P π(h) and π̂SPMC

t,N (h) =
N∑
i=1

ωi,th(xi,t)
N→∞−→P π(h) .
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As noted earlier, the unnormalized PMC estimator can only be used when π is completely known and even in
those instances it is not necessarily improving upon the self-normalized PMC estimator.

A CLT can also be established in this setting, under the additional following integrability condition

π

{
(1 + h2(x′))

π(x′)
qd(x, x′)

}
<∞ for a d ∈ {1, . . . , D}. (A2)

Note that this condition must only hold for one 1 ≤ d ≤ D rather than for all d’s. Theorem 5.2 of Douc et al.
[12] then provides a CLT for the generic D-kernel PMC algorithm.

Theorem 2.2. Under (A1) and (A2), if for all t ≥ 1,

∀1 ≤ d ≤ D, αt,Nd
N→∞−→P αtd > 0 ,

then both
√
N

(
N∑
i=1

ωi,th(xi,t) − π(h)

)
and

√
N

(
1
N

N∑
i=1

ωi,th(xi,t) − π(h)

)
(1)

converge in distribution as n goes to infinity to normal distributions with variances

σ2
1,t = π

(
(h(x′) − π(h))2

π(x′)∑D
d=1 α

t
dqd(x, x′)

)

and

σ2
2,t = π

⎧⎨⎩
(

π(x′)∑D
d=1 α

t
dqd(x, x′)

h(x′) − π(h)

)2 ∑D
d=1 α

t
dqd(x, x

′)
π(x′)

⎫⎬⎭ .

The additional condition in Theorem 2.2 is necessary to ensure a stabilization of the weights as the number of
simulations increases. It is guaranteed in cases like those of Douc et al. [12] updating scheme and we will show
below that it also holds for our updating scheme. The quantities σ2

1,t and σ2
2,t exhibited in this result are thus

associated with the limiting set of weights (αt1, . . . , α
t
D), defined on the simplex set of R

D,

SD =

{
α = (α1, . . . , αD); ∀d ∈ {1, . . . , D}, αd ≥ 0 and

D∑
d=1

αd = 1

}
.

We now proceed to exhibit an updating scheme on the weights αtd such that the asymptotic variances σ2
1,t and

σ2
2,t are decreasing at each iteration of the D-kernel PMC algorithm.

3. PMC as a variance reduction scheme

3.1. Self-normalized PMC estimator

For the estimator
∑N

i=1 ωi,th(xi,t), we first introduce notations that simplify the study of its asymptotic
variance. If νh denotes the measure on Ω × Ω defined by

νh(dx, dx′) = π(x′) (h(x′) − π(h))2 π(dx)π(dx′), (2)

which naturally appears in σ2
1,t, we define two functions σ2

1 and F1 on SD such that

σ2
1(α) = νh

(
1
/ D∑
d=1

αdqd(x, x′)

)
and F1(α) =

(
νh

(
αdqd(x, x′)

(
∑D

l=1 αlql(x, x′))2

)/
σ2

1(α)

)
1≤d≤D

·
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Clearly, σ2
1 is then the asymptotic variance associated with a given set of weights, while F1 takes its values in

SD and is thus a transform (or update) of the weights. The central result of this paper is that this particular
choice of update induces a reduction of the asymptotic variance at each step of the PMC algorithm:

Proposition 3.1. Under (A1) and (A2), for all α ∈ SD, we have

σ2
1(F1(α)) ≤ σ2

1(α) .

Proof. We have

σ2
1(F1(α)) = νh

⎛⎝ 1∑D
d=1 αdqd(y, y′)νh

(
qd(x,x′)

(
∑D

l=1 αlql(x,x′))2

)
⎞⎠σ2

1(α)

= νh

⎛⎝ 1∑D
l=1 αlql(y, y′)

1∑D
d=1

αdqd(y,y′)∑D
l=1 αlql(y,y′)

νh

(
qd(x,x′)

(
∑D

l=1 αlql(x,x′))2

)
⎞⎠σ2

1(α)

≤ νh

⎛⎝ 1∑D
l=1 αlql(y, y′)

D∑
d=1

αdqd(y, y′)∑D
l=1 αlql(y, y′)

1

νh

(
qd(x,x′)

(
∑

D
l=1 αlql(x,x′))2

)
⎞⎠σ2

1(α)

=
D∑
d=1

αdνh

⎛⎝ qd(y, y′)/(
∑D
l=1 αlql(y, y

′))2

νh

(
qd(x, x′)/(

∑D
l=1 αlql(x, x′))2

)
⎞⎠σ2

1(α) = σ2
1(α) ,

the inequality following from Jensen’s inequality. �

We thus take advantage of the diminution of the asymptotic variance to construct a sequence on SD such
that {

α1,1 = (1/D, . . . , 1/D)
α1,t+1 = F1(α1,t) for t ≥ 1 .

(3)

At each step of the PMC algorithm, the asymptotic variance is therefore decreasing. Since σ2
1 is a convex

function on the connected compact set SD, it thus has a unique minimum. If we denote this minimum by

α1,min = arg min
α∈SD

σ2
1(α) ,

we then have the convergence result for this updating mechanism (whose proof is given in Appendix 7.1).

Proposition 3.2. Under (A1) and (A2),

lim
t→∞α1,t = α1,min.

Propositions 3.1 and 3.2 together establish the convergence to the minimal variance solution of the ideal algo-
rithm, that is, the one using the update mechanism α1,t+1 = F1(α1,t). To complete the validation of a practical
algorithm, we now have to replace the ideal updating with a practical updating and to show that the substi-
tution does not jeopardize convergence. In other words, we need to establish the convergence of the mixture
weights to the α1,t’s and this is sufficient for Theorem 2.2 to apply, i.e., for the asymptotic variance to be a
valid assessment of our algorithm.



434 R. DOUC ET AL.

We thus define, as a substitute to F1, the following update of the mixture weights

αt+1,N
d =

N∑
i=1

ω2
i,t

⎛⎝h(xi,t) −
N∑
j=1

ωj,th(xj,t)

⎞⎠2

Id(Ki,t)

N∑
i=1

ω2
i,t

⎛⎝h(xi,t) −
N∑
j=1

ωj,th(xj,t)

⎞⎠2 , (4)

which also holds when ω2
i,t is replaced with ω2

i,t in both the numerator and the denominator and is thus
independent of the normalizing constant to some extent. The convergence of this updating scheme is then
ensured by the following result, whose proof is deferred to Appendix 7.2

Proposition 3.3. Under (A1) and (A2), for all t ≥ 1 and ∀1 ≤ d ≤ D,

αt,Nd
N→∞−→P α

t
d (5)

where the αt,Nd ’s are defined by equation (4) and the αtd’s are given in (3).

Note that in the proof of Proposition 3.2 (see Appendix 7.2), we prove in addition that

σ̂2
1,t = N

N∑
i=1

ω2
i,t

⎛⎝h(xi,t) −
N∑
j=1

ωj,th(xj,t)

⎞⎠2

(6)

is a consistent estimator of σ2
1,t(α

t).

3.2. Unnormalized PMC estimator

The same sequence of results holds for the unnormalized estimator 1
N

∑N
i=1 ωi,th(xi,t). We first define a

measure on Ω × Ω
ρh(dx, dx′) = π(x′)h(x′)2π(dx)π(dx′) ,

which relates to σ2
2,t since

σ2
2,t = π

(
h2(x′)

π(x′)∑D
d=1 α

t
dqd(x, x′)

)
− 2π(h) + π(h)2 .

We also consider two functions σ2
2 and F2 on SD as

σ2
2(α) = ρh

(
1
/ D∑
d=1

αdqd(x, x′)

)
− 2π(h) + π(h)2

and

F2(α) =

{
ρh

(
αdqd(x, x′)

(
∑D
l=1 αlql(x, x′))2

)/
σ2

2(α)

}
1≤d≤D

.

Then we can use the same steps as in Section 3.1 and derive convergence from the results there. First, as a
corollary to Proposition 3.1, we establish the decrease in the asymptotic variance for the ideal weights:

Proposition 3.4. Under (A1) and (A2), for all α ∈ SD, we have

σ2
2(F2(α)) ≤ σ2

2(α).
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Second, if we set the sequence of ideal weights as{
α2,1 = (1/D, . . . , 1/D)
α2,t+1 = F2(α2,t) for t ≥ 1

(7)

then we deduce from Proposition 3.2 that this ideal sequence converges to the optimal set of weights since, as
σ2

2 is convex on SD, it also has a unique minimum

α2,min = arg min
α∈SD

σ2
2(α) .

Proposition 3.5. Under (A1) and (A2),

lim
t→∞α2,t = α2,min.

Third, we now exhibit the empirical version of the updating scheme which ensures that the practical version of
the algorithm also converges, by virtue of Theorem 2.2 and Propositions 3.4 and 3.5. In the unnormalized case,
it is now given by

αt+1,N
d =

N∑
i=1

ω2
i,th

2(xi,t)Id(Ki,t)
/ N∑

i=1

ω2
i,th

2(xi,t) . (8)

Finally, as a corollary to Proposition 3.3, we then have the overall convergence guarantee:

Proposition 3.6. Under (A1) and (A2), for all t ≥ 1 and ∀1 ≤ d ≤ D,

αt,Nd
N→∞−→P α

t
d (9)

where the αt,Nd ’s and the αtd’s are defined by equations (8) and (7), respectively.

Note again that

1
N

N∑
i=1

⎛⎝ωi,th(xi,t) −N−1
N∑
j=1

ωj,th(xj,t)

⎞⎠2

is a consistent estimator of σ2
2,t.

4. A cumulated estimator

While each iteration of the PMC algorithm leads to an asymptotic decrease in the variance of the PMC
estimator when compared with the previous iteration estimator, provided updates (4) or (8) are used, those
previous iterations can obviously be recycled into a weighted cumulated estimator of the PMC estimators over
iterations. Since, as noted in Theorem 2.2, each PMC sample is asymptotically independent of the others, the
asymptotic variance of the weighted estimator is simply the sum of the cumulated weighted variances and the
weights in this cumulated estimator can thus be directly optimized, as explained below.

The cumulated self-normalized PMC estimator, π̂CSNβ (h), of π(h) is chosen as

π̂CSNβ (h) =
T∑
t=0

βt

(
N∑
i=1

ωi,th(xi,t)

)
, with β = (β1, . . . , βT ) ∈ ST+1 . (10)

Under assumptions (A1–A2), Theorem 2.2, implies that

√
N
{
π̂CSNβ (h) − π(h)

} N→∞−→L N
(

0,
T∑
t=0

β2
t σ

2
1,t

)
.



436 R. DOUC ET AL.

We can therefore minimize this asymptotic variance by picking the weights as (1 ≤ t ≤ T )

βmint = σ−2
1,t

/
(
T∑
t=0

σ−2
1,t ) and

T∑
t=0

(βmint )2σ2
1,t =

(
T∑
t=0

σ−2
1,t

)−1

.

Furthermore, this optimal βmint can be consistently estimated by

β̂mint =
σ̂−2

1,t∑T
t=0 σ̂

−2
1,t

, (11)

where σ̂2
1,t is defined in (6). Therefore,

Proposition 4.1. For an arbitrary h in L1
π, for any T ,

(i) under (A1), π̂CSN
β̂min

(h) N→∞−→P π(h);

(ii) under (A1–A2),
√
N
{
π̂CSN
β̂min

(h) − π(h)
}
N→∞−→L N

{
0,
(∑T

t=0 σ
−2
1,t

)−1
}

.

Note that a corresponding result also holds for the unnormalized PMC estimator.

5. Moderate deviations

Theorem 2.2 has established that the self-normalized PMC algorithm enjoys asymptotic normality. We
can however prove a much more detailed evaluation of its asymptotic properties since we are able to derive a
Moderate Deviation Principle (MDP) associated with this algorithm. The main interest of an MDP is that
the rate function is expressed in terms of the variance, and thus a decrease in the variance leads to improved
exponential bounds.

Consider a family of bounded measurable functions ψ0, . . . , ψT . Now, recall that by application of Theorem
2.2, for any t ∈ {0, . . . , T},

√
N

(
N∑
i=1

ωi,tψt(xi,t) − π(ψt)

)
N→∞−→L N (

0, σ2
1,t(ψt)

)
where σ2

1,t(h) is now defined as a function of h by

σ2
1,t(h) = π

(
(h(x′) − π(h))2

π(x′)∑D
d=1 α

t
dqd(x, x′)

)
.

Denote by VT (ψ0:T ) the diagonal matrix with diagonal elements σ2
1,t(ψt) (0 ≤ t ≤ T ) and define

M t
N (ψt) =

√
N

bN

N∑
i=1

(ω̄i,tψt(xi,t) − π(ψt))

and MT
N (ψ0:T ) = (M0

N(ψ0), . . . ,MT
N(ψT )), where bN satisfies

lim
N→∞

bN = lim
N→∞

√
Nb−1

N = ∞ .
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The Moderate Deviation Principle then holds under the following additional assumption: there exists λ > 0
such that

∀d ∈ {1, . . . , D}, sup
x

∫
exp

{
λ

π(x′)
qd(x, x′)

}
π(dx′) <∞. (A3)

This results complement the Central Limit Theorem obtained in Theorem 2.2. For applications of Moderate
Deviation Principle, see for example Bucklew [6] or Dembo and Zeitouni [11].

Theorem 5.1. Under assumptions (A1–A2–A3),the function defined for all xT ∈ R
T+1 by

IT (xT ) = sup
λT ∈RT+1

{
〈xT ,λT 〉 − 〈λT , VT (ψ0:T ) · λT 〉

2

}
,

=
〈xT , V −1

T (ψ0:T ) · xT 〉
2

is a good rate function and the family of random variables (MT
N (ψ0:T ))N≥1 satisfies the Moderate Deviation

Principle with speed b2N and good rate function IT , i.e.

− inf
int(Γ)

IT ≤ lim inf
N→∞

1
b2N

log P(MT
N (ψ0:T ) ∈ Γ)

≤ lim sup
N→∞

1
b2N

log P(MT
N (ψ0:T ) ∈ Γ) ≤ inf

Γ̄
IT

for Γ ∈ B(RT+1).

In the above bounds, int(Γ) denotes the interior of Γ and Γ̄ the closure of Γ. For example, considering only
the last generation of particles, we obtain at time T the exact rate for typical deviations as for all positive r’s

lim
N→∞

1
b2N

log P(|MT
N(ψT )| > r) = − r2

2σ2
1,T (ψT )

which is decreasing as iterations increase, by our result of Section 3, reinforcing the appeal of our adaptation
procedure. Proof of Theorem 5.1 is provided in Appendix 7.3. It relies mainly on Gärtner-Ellis theorem, using
a recurrence procedure and suited conditioning.

Note that this result is stated under the assumption that the functions ψ0, ..., ψT are bounded. This is quite
a restriction, obviously, and its only justification is to provide a short and self-contained proof of the MDP. If
we suppose instead (A1–A2–A3) and that for all t = 0, ..., T

∀d ∈ {1, . . . , D}, sup
x

∫
ψt(x′) exp

{
λ

π(x′)
qd(x, x′)

ψt(x′)
}
π(dx′) <∞ (A4)

then the conclusion of Theorem 5.1 still holds. (The corresponding lengthy if straightforward modifications of
the proof are left to the reader.)

Note at last that a similar MDP for the cumulated estimator (10) can be established using the main theorem
of this section.

6. Applications

6.1. A normal toy example

We first consider a toy example where the optimal solution is known: using the N (0, 1) density and h(x) = x,
the optimal importance distribution which minimizes the variance of the unnormalized importance sampling
estimator is g∗(x) ∝ |x| exp−x2/2. It actually corresponds to the distribution of the root of an exponential
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Figure 1. Estimation of E[X ] = 0 for a normal variate: decrease of the standard deviation
to its optimal value.

Table 1. Estimation of E[X ] = 0 for a normal variate using the D-kernel PMC algorithm
with D = 3, N = 100 000 and normal, Cauchy and transformed Gamma independent kernels:
evolution of the PMC estimates, kernel weights and asymptotic standard deviation estimates
over 20 iterations.

t π̂PMC
t,N (x) αt+1,N

1 αt+1,N
2 αt+1,N

3 σ1,t

1 0.0000 0.1000 0.8000 0.1000 0.9524
2 –0.0030 0.1144 0.7116 0.1740 0.9192
3 –0.0017 0.1191 0.6033 0.2776 0.8912
4 –0.0006 0.1189 0.4733 0.4078 0.8608
5 –0.0035 0.1084 0.3545 0.5371 0.8394
10 0.0065 0.0519 0.0622 0.8859 0.8016
15 0.0033 0.0305 0.0136 0.9559 0.7987
20 –0.0042 0.0204 0.0041 0.9755 0.7984

E (1/2) random variable with random sign, that is, (−1)s
√

E (1/2) where s ∼ B(0.5), a Bernoulli distribution
with parameter 1/2. We then choose g∗ as one of D = 3 independent kernels, the other kernels being the
N (0, 1) and the C (0, 1) (Cauchy) distributions. Note that the fact that the proposals are independent does
not modify the validity of the above results. In particular, conditions (A1–A2) do hold in that case. (The only
modification in the algorithm is that the resampling step is no longer necessary.) Remark also that conditions
(A3-4) are verified here and the MDP then holds.

Table 6.1 presents the results of the variance D-kernel PMC scheme with N = 100 000 and T = 20. At
each iteration, the (estimated) asymptotic variance of the self-normalized PMC estimator decreases and the
weights of the mixture proposal correctly concentrate around the correct optimal kernel. The optimal standard
deviation in that case is equal to 2/

√
2π = 0.7979. Figure 1 represents the convergence to this optimal value

over 50 iterations.
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6.2. The Cox-Ingersoll-Ross model

The Cox-Ingersoll-Ross (CIR) model (Cox et al. [9]) is a diffusion process used to model interest rate changes.
The fundamental stochastic differential equation of the CIR model is

drt = (η − krt)dt+ σ
√
rtdWt, (12)

where (Wt)[0,T ] is a Brownian motion under the risk neutral measure P. In the financial application, (rt)[0,T ]

represents the short term rate over the measurement period. A quantity of interest is the so-called European
caplet option, which is an option written on the interest rate with the following payoff function at deadline (or
maturity) T :

M max(rT −K, 0),
where K is called the strike rate and M the nominee amount. The actualized price of the caplet at time 0 is
therefore given by

EP

[
exp

(
−
∫ T

0

rtdt

)
M max(rT −K, 0)

]
. (13)

The explicit calculation of (13) is obviously intractable even though the transition density of the diffusion is
available (Cox et al. [9]).

The standard approach to processing diffusions is to use a symmetrized Euler approximation scheme, which
consists in discretizing the time interval [0, T ] into n steps and in studying instead the discrete time process
(rnpT/n)0≤p≤n with rn0 = r0 and

rn(p+1)T/n =
∣∣∣∣rnpT/n + (η − krnpT/n)

T

n
+ σ

√
rnpT/n

(
W(p+1)T/n −WpT/n

)∣∣∣∣ , (14)

since the differences W(p+1)T/n −WpT/n are iid N (0, T/n). The quantity of interest (13) is then approximated
by

P = E

[
exp

{
−(T/n)

(
(rn0 + rnT )/2 +

n−2∑
p=1

rn(p+1)T/n

)}
M max(rnT −K, 0)

]
,

where rn(p+1)T/n ∼
∣∣∣N (

rnpT/n + (T/n)(η − krnpT/n), (T/n)σ2rnpT/n

)∣∣∣. Details on the symmetrized Euler approx-
imation can be found in Glasserman [13] as well as Bally and Bossy [3, 4] and Talay et al. [5]. (Note that the
true distribution of the sequence (rnpT/n)0≤p≤n is known and does not require the Euler scheme.)

Even when using the Euler approximation, the explicit derivation of P is impossible and we need to use
Monte Carlo simulation to approximate this T + 1 dimensional integral. Some importance sampling techniques
have already been proposed by Arouna [1, 2], Su and Fu [22] and we now study the behavior of our D-kernel
PMC scheme. While the exact distribution in (14) can be used in the Monte Carlo approximation, it seems
rather natural to force the process to end up as much as possible above K for rT −K to be positive.

Our two alternatives to the Euler distribution in (14) are both based on the introduction of a location drift
on the Brownian motion (Wt)t. More precisely, for θ ∈ R, we define the family of all equivalent probability
measures Q(θ) with respect to P that follow from introducing a drift of θ in (Wt). By Girsanov’s theorem, we
know that, under the measure Q(θ),

drt = (η − krt + θσ
√
rt)dt+ σ

√
rtdW̃t,

where
(
W̃t

)
[0,T ]

is a Brownian motion and the change of measure process is given by

dP

dQ(θ)
= exp

(−θWT − 0.5θ2T
)
. (15)
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Figure 2. Cox-Ingersoll-Ross European option simulation: range of N simulated process
(rnpT/n)1≤p≤n (lighter background) compared with the corresponding N resampled process
(r̃npT/n)1≤p≤n (darker background) for K = 0.09, using a D = 3-kernel PMC algorithm with
θ = 0, θ = 1 and θ = 2, T = 10 iterations and N = 10, 000 simulations.

Reverting to the symmetrized Euler approximation, we can then define (and simulate) the associated process

rn(p+1)T/n =
∣∣∣∣rnpT/n +

(
η − krnpT/n + θσ

√
rnpT/n

) T
n

+ σ
√
rnpT/nεp

∣∣∣∣ , (16)

where the ε′ps are iid N (0, T/n), and compute the importance sampling weight associated with the simulation.
(In the discrete case, the change of measure is the same as (15).) Obviously, the importance weights are based
on the comparison between (14) and (16) and do not take into account the Euler approximation. Note that the
idea of a location drift is already present in the literature (see, e.g., [1,2,22]), with [22] deriving optimal choices
of θ towards variance minimizing. As in the toy example, we are using independent proposals and thus do not
require the resampling step in the algorithm.

The choice of θ being open, a D-kernel scheme can be used to select efficient values within a finite number of
values of θ, towards the approximation of P. Let us stress once more that the underlying idea of the alternative
proposals is to force rnT to be larger than K in order to decrease the variance of the Monte Carlo estimator and so
positive values of θ are called for. Note that the case θ = 0 corresponds to a crude Monte Carlo approximation.
Figure 2 compares the observed range (that is, the area between the minimum and the maximum values of
rpT/n for each p) of the proposed processes (rnpT/n) with the observed range of 1000 resampled processes using
the importance weights. While the range of the proposed values is obviously larger, the decrease in the range
due to resampling is quite limited, which signals a good enough fit between the target distribution and the
optimized mixture.

We thus ran a simulation experiment with the following parameters: η = 0.016, k = 0.2, σ = 0.02, M = 1000,
r0 = 0.08, T = 1 and n = 299, For simplicity’s sake, we only took three values of θ, θ = 0, 1, 2, the value θ = 0
acting as a stabilizing factor in the importance weight (since it ensures that assumptions (A1–A2) hold).
Obviously, a finer grid of values of θ with D larger than 3 could have been chosen as well, at the cost of
more simulations. Tables 2–4 present the results of this experiment over N = 100 000 simulations and T = 10
iterations of the weight update for K = 0.07, K = 0.08 and K = 0.09. The larger the bound K, the larger the
weight on the larger value of θ. In the three cases, the decrease in variance from the equally weighted D-kernel
proposal is quite appreciable. (A phenomenon that is quite common in practice is the quick decrease of the
variance in the very first iterations, followed by a much slower decline that explains why we stopped at T = 10
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Table 2. Cox-Ingersoll-Ross European option: approximation of the price P for K = 0.07
using a D-kernel PMC algorithm with θ = 0, θ = 1 and θ = 2.

t P̂PMC
t,N αt,N1 αt,N2 αt,N3 σ2

1,t

1 9.2635 0.3333 0.3333 0.3334 27.0664
2 9.2344 0.4748 0.3703 0.1549 13.4474
3 9.2785 0.5393 0.3771 0.0836 9.7458
4 9.2495 0.5672 0.3835 0.0493 8.5258
5 9.2444 0.5764 0.3924 0.0312 7.8595
6 9.2400 0.5780 0.4014 0.0206 7.5471
7 9.2621 0.5765 0.4098 0.0137 7.2214
8 9.2435 0.5727 0.4183 0.0090 7.1354
9 9.2553 0.5682 0.4260 0.0058 7.0289
10 9.2602 0.5645 0.4320 0.0035 6.8854

Table 3. Same table as Table 2 for K = 0.08.

t P̂PMC
t,N αt,N1 αt,N2 αt,N3 σ2

1,t

1 1.8784 0.3333 0.3333 0.3334 2.1781
2 1.8791 0.2458 0.4187 0.3355 1.9287
3 1.8793 0.1797 0.5078 0.3125 1.7329
4 1.8848 0.1279 0.5924 0.2797 1.5670
5 1.8877 0.0878 0.6704 0.2418 1.4374
6 1.8881 0.0589 0.7340 0.2071 1.3303
7 1.8892 0.0359 0.7873 0.1768 1.2530
8 1.8853 0.0229 0.8275 0.1496 1.2010
9 1.8860 0.0137 0.8613 0.1250 1.1593
10 1.8879 0.0079 0.8883 0.1038 1.1262

Table 4. Same table as Table 2 for K = 0.09.

t P̂PMC
t,N αt,N1 αt,N2 αt,N3 σ2

1,t

1 0.0555 0.3333 0.3333 0.3334 0.0114
2 0.0559 0.0333 0.2474 0.7193 0.0053
3 0.0554 0.0026 0.1108 0.8866 0.0043
4 0.0558 0.0001 0.0443 0.9556 0.0039
5 0.0557 0.0000 0.0164 0.9836 0.0038
6 0.0559 0.0000 0.0059 0.9941 0.0038
7 0.0559 0.0000 0.0028 0.9972 0.0038
8 0.0555 0.0000 0.0010 0.9990 0.0038
9 0.0558 0.0000 0.0003 0.9997 0.0038
10 0.0556 0.0000 0.0002 0.9998 0.0037

iterations. In fact, more iterations would see complete disappearance of one component for Tables 2 and 3, and
of two components for Table 4. This feature is also found in the EM algorithm, whose links with the D-kernel
PMC are discussed in [12].)

The gain compared with the naive Monte Carlo approximation to P is quite important: for K = 0.07,
K = 0.08 and K = 0.09, the variances are 21.59, 7.914 and 0.1937, respectively. Note that Su and Fu [22]
derived optimal values for θ in exactly the same setting, obtaining θ = 0.487, θ = 1.077 and θ = 1.234 in
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the three cases, respectively. An interesting byproduct of our simulation experiment is that, while θ = 0.487
does lead to a smaller variance when K = 0.07, namely 2.318, compared with 6.88, the second case leads to
almost the same variance, 1.126 versus 0.9939, when K = 0.08 since the optimal value is θ = 1.077, and, even
more surprisingly, the case K = 0.09 produces a much smaller variance, 0.0037 versus 0.0112. We have thus
uncovered an improvement over their proposed value. (The reason for this discrepancy is that Su and Fu [22]
ran a fixed number of iterations of their optimization algorithm, rather than to wait for the minimum, θ = 2,
which then produces a much smaller variance than the proposed value θ = 1.234.)

As a final comment, we want to stress that, while P is a real quantity π(h), the function h in the (discretized)
expectation involves the whole vector of rt’s. Therefore this example provides furthermore an interesting
illustration of the ability of PMC to also function in high dimensional problems (even though it obviously takes
advantage of the special features of the problem).

Acknowledgements. This work was partially supported by an ACI “Nouvelles Interfaces des Mathématiques” grant from
the Ministère de la Recherche, France. We are grateful to Bruno Rémillard for helpful comments on the CIR model.

7. Proofs

7.1. Proof of Proposition 3.2

The proof of this result follows the same lines as the proof of Proposition 4.3 in Douc et al. [12]. The only
condition to check is the equivalent of Proposition 4.2 in [12]. For every α ∈ SD, α = α1,min, we now show that
there exists a neighborhood Vα of α such that if αt0 ∈ Vα then (αt)t≥t0 leaves Vα within a finite time. Then,
by continuity of σ2

1(α), there exists ε > 0 such that

−εσ2
1(α) ≥ σ2

1(α
1,min) − σ2

1(α) = νh

(
1∑D

d=1 α
1,min
d qd(x, x′)

− 1∑D
d=1 αdqd(x, x′)

)

≥ νh

(∑D
d=1(αd − α1,min

d )qd(x, x′)

(
∑D

d=1 αdqd(x, x′))2

)
=

D∑
d=1

α1,min
d

[
σ2

1(α) − νh

(
qd(x, x′)

(
∑D

l=1 αlql(x, x′))2

)]
.

Thus, there exists 1 ≤ d ≤ D such that

νh

(
qd(x, x′)

(
∑D

l=1 αlql(x, x′))2

)
≥ (1 + ε)σ2

1(α)

which implies that [F1(α)]d ≥ (1 + ε)αd. Since F1(·) is continuous, this implies that there exists Vα a neighbor-
hood of α such that for all α′ ∈ Vα, [F1(α′)]d ≥ (1 + ε/2)α′

d. Since 0 ≤ αd ≤ 1, it follows that if αt0 ∈ Vα then
(αt)t≥t0 = (F t−t01 (αt0))t≥t0 will leave Vα within a finite time. The proof is completed.

7.2. Proof of Proposition 3.3

The case t = 1 is obvious. Now, assume (5) holds for some t ≥ 1. Recall that νh is defined in (2). We now
prove that the following convergence results

1
N

N∑
i=1

ω2
i,t

⎛⎝h(xi,t) −
N∑
j=1

ωj,th(xj,t)

⎞⎠2

Id(Ki,t)
N→∞−→P νh

(
αtdqd(x, x

′)

(
∑D

l=1 α
t
lql(x, x′))2

)
, (17)

1
N

N∑
i=1

ω2
i,t

⎛⎝h(xi,t) −
N∑
j=1

ωj,th(xj,t)

⎞⎠2

N→∞−→P σ
2
1(αt). (18)
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Only the first convergence needs be considered since the latter can be easily deduced from the former by summing
over d. To prove Eq. (17), we will show that

1
N

N∑
i=1

ω2
i,tH(xi,t)Id(Ki,t)

N→∞−→P νH

(
αtdqd(x, x

′)

(
∑D

l=1 α
t
lql(x, x′))2

)

for any function H satisfying π(H) = 0 and

π
{
(1 +H(x′))π(x′)/qd(x, x

′)
}
<∞ for some d ∈ {1, . . . , D}. (19)

We apply Theorem A.1 of [12] with

GN = σ
(
(x̃i,t−1)1≤i≤N , (α

t,N
d )1≤d≤D

)
and UN,i = N−1ω2

i,tH(xi,t)Id(Ki,t).

Conditionally on GN , (Ki,t, xi,t)1≤i≤N are independent and for all (d,A) in {1, . . . , D} × A,

P (Ki,t = d, xi,t ∈ A| GN ) = αt,Nd Qd(x̃i,t−1, A).

To apply Theorem A.1 of [12], we just need to check condition (iii). We have

E

(
N∑
i=1

ω2
i,tH(xi,t)Id(Ki,t)

N
I{ω2

i,tH(xi,t)Id(Ki,t)>C}
∣∣∣∣∣GN

)

≤
D∑
j=1

1
N

N∑
i=1

∫
π(dx)

π(x)H(x)αt,Nd qd(x̃i,t−1, x)

(
∑D

l=1 α
t,N
l ql(x̃i,t−1, x))2

I{
π(x)2H(x)

D−2q2
j
(x̃i,t−1 ,x)

>C

}

≤
D∑
j=1

1
N

N∑
i=1

∫
π(dx)

π(x)H(x)
αt,N
d

qd(x̃i,t−1, x)
I{

π(x)2H(x)
D−2q2

j
(x̃i,t−1,x)

>C

}

N→∞−→P

D∑
j=1

∫
π(dx′)π(dx)

π(x)H(x)
αt
d
qd(x′, x)

I{
π(x)2H(x)

D−2q2
j
(x′,x)

>C

}

by the LLN stated in Theorem 2.1 and since the induction assumption implies that αt,Nd
N→∞−→P αtd which is

positive by the updating formula of αtd. The rhs converges to 0 as C gets to infinity using (19) and π{H(x′) =
∞ or qj(x, x′) = 0} = 1. Thus, Theorem A.1 of Douc et al. [12] applies and

1
N

N∑
i=1

ω2
i,tH(xi,t)Id(Ki,t) − E

(
1
N

N∑
i=1

ω2
i,tH(xi,t)Id(Ki,t)

∣∣∣∣∣GN
)

N→∞−→P 0.

To complete the proof, we only need to show that

E

(
1

N

N∑
i=1

ω2
i,tH(xi,t)Id(Ki,t)

∣∣∣∣∣GN

)
=

1

N

N∑
i=1

∫
π(dx)

π(x)H(x)αt,N
d qd(x̃i,t−1, x)

(
∑D

l=1 αt,N
l ql(x̃i,t−1, x))2

N→∞−→P νH

(
αt

dqd(x, x′)

(
∑D

l=1 αt
lql(x, x′))2

)
.

(20)

Using again the LLN stated in Theorem 2.1,

1
N

N∑
i=1

∫
π(dx)

π(x)H(x)αtdqd(x̃i,t−1, x)

(
∑D

l=1 α
t
lql(x̃i,t−1, x))2

N→∞−→P νH

(
αtdqd(x, x

′)

(
∑D

l=1 α
t
lql(x, x′))2

)
. (21)
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Thus, to establish (20), we use (21) and check that the difference between both terms converges to 0 in prob-
ability. To see this, first note that for all t ≥ 1, for all d in {1, . . . , D}, αtd > 0 and thus, by the induction

assumption, for all d in {1, . . . , D}, α
t,N
d −αt

d

αt
d

N→∞−→P 0. It has been shown in Douc et al. [12] that

∣∣∣∣∣ αt,Nd qd(x̃i,t−1, x)∑D
l=1 α

t,N
l ql(x̃i,t−1, x)

− αtdqd(x̃i,t−1, x)∑D
l=1 α

t
lql(x̃i,t−1, x)

∣∣∣∣∣ ≤ 2 sup
l∈{1,...,D}

∣∣∣∣∣αt,Nl − αtl
αtl

∣∣∣∣∣ .
Combining with

∣∣ A
B2 − C

D2

∣∣ ≤ ∣∣A
B

∣∣ ∣∣D−B
BD

∣∣+ ∣∣ 1
D

∣∣ ∣∣A
B − C

D

∣∣ yields by straightforward algebra,∣∣∣∣∣ αt,Nd qd(x̃i,t−1, x)

(
∑D

l=1 α
t,N
l ql(x̃i,t−1, x))2

− αtdqd(x̃i,t−1, x)

(
∑D

l=1 α
t
lql(x̃i,t−1, x))2

∣∣∣∣∣
≤ 1∑D

l=1 α
t,N
l ql(x̃i,t−1, x)

(
sup

l∈{1,...,D}

∣∣∣∣∣αt,Nl − αtl
αtl

∣∣∣∣∣
)

+
1∑D

l=1 α
t
lql(x̃i,t−1, x)

(
2 sup
l∈{1,...,D}

∣∣∣∣∣αt,Nd − αtd
αtd

∣∣∣∣∣
)

≤
(

1

αt,N
d

+
2
αt
d

)
1

qd(x̃i,t−1, x)

(
sup

l∈{1,...,D}

∣∣∣∣∣αt,Nl − αtl
αtl

∣∣∣∣∣
)
.

The proof follows from αt,N
d −αt

d

αt
d

N→∞−→P 0 and

1
N

N∑
i=1

∫
π(dx)

π(x)H(x)
qd(x̃i,t−1, x))

N→∞−→P π

{
H(x′)π(x′)
qd(x, x′)

}
.

7.3. Proof of Theorem 5.1

We will need the following technical lemma:

Lemma 7.1. Assume (A1). Then for all δ > 0,

lim sup
N→∞

1
b2N

log P(|MT
N (ψT ) − M̃T

N (ψT )| > δ) = −∞

where

M̃T
N(ψT ) =

1
bN

√
N

N∑
i=1

π(xi,T )∑D
d=1 α

T,N
d qd(x̃i,T−1, xi,T ))

(ψT (xi,T ) − π(ψT )).

The proof of this lemma is deferred till the end of this appendix. We first establish the main result, namely,
Theorem 5.1.

Proof. The proof proceeds by induction. First note that the random variables M t
N (ψt) and M̃ t

N (ψt) are ex-
ponentially equivalent up to the speed b2N by Lemma 7.1. It is thus sufficient by Gärtner-Ellis’ Theorem ([11]
Th. 2.3.6) to prove that

lim
N→∞

1
b2N

log E

(
exp

{
b2N

T−1∑
t=0

λtM
t
N (ψt) + b2NλT M̃

T
N(ψT )

})
=

〈λT , VT (ψ0:T ) · λT 〉
2

·
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Namely, we prove here a MDP for M̃T
N(ψT ). More precisely, we now show that limN→∞AN = 0 where

AN :=
1
b2N

log E

(
eb

2
N

∑T−1
t=0 λtM

t
N (ψt)+b

2
NλT M̃

T
N (ψT )

)
− 〈λT , VT (ψ0:T ) · λT 〉

2

=
1
b2N

log E

(
exp

{
λT b

2
NM̃

T
N (ψT ) − λ2

T b
2
N σ̂

2
1,T (ψT )
2

+
λ2
T b

2
N

2
∆N

+b2N
T−1∑
t=0

λtM
t
N(ψt)

})
− 〈λT−1, VT−1(ψ0:T−1) · λT−1〉

2

where ∆N = σ̂2
1,T (ψT ) − σ2

1,T (ψT ),

σ̂2
1,T (ψT ) = Var

(
bNM̃

T
N (ψT )

∣∣∣FT−1
N

)
=

1
N

N∑
i=1

σ̃2
1,T (x̃i,T−1) with

σ̃2
1,T (x) =

∫
π(x′)∑D

d=1 α
T,N
d qd(x, x′)

(ψT (x′) − π(ψT ))2π(dx′)·

Write F̃T
N (resp. FT

N ) the σ-field generated by (xi,t, x̃i,t; 1 ≤ i ≤ N, 0 ≤ t ≤ T ) (resp. (xi,t; 1 ≤ i ≤ N, 0 ≤ t ≤
T )). Then,

AN =
1
b2N

log E

[
E

(
exp

{
λT b

2
NM̃

T
N(ψT ) − λ2

T b
2
N σ̂

2
1,T (ψT )
2

}∣∣∣∣∣ F̃T−1
N

)

× exp

{
λ2
T b

2
N

2
∆N + b2N

T−1∑
t=0

λtM
t
N (ψt)

}]
− 〈λT−1, VT−1(ψ0:T−1) · λT−1〉

2
· (22)

Conditionally on F̃T−1
N , the variables (xi,t) are independent and thus,

BN := E

(
exp

{
λT b

2
NM̃

T
N(ψT ) − λ2

T b
2
N σ̂

2
1,T

2

}∣∣∣∣∣ F̃T−1
N

)

=
N∏
i=1

E

(
exp

{
λT bN√
N

π(xi,T )∑D
d=1 α

T,N
d qd(x̃i,T−1, xi,T ))

(ψT (xi,T ) − π(ψT )) − λ2
T b

2
N σ̃

2
i,T (x̃i,T−1)
2N

}∣∣∣∣∣ F̃T−1
N

)

=
N∏
i=1

E

(
1 +

λT bN√
N

π(xi,T )∑D
d=1 α

T,N
d qd(x̃i,T−1, xi,T ))

(ψT (xi,T ) − π(ψT )) − λ2
T b

2
N σ̃

2
i,T (x̃i,T−1)
2N

+
λ2
T bN

2

2N

(
π(xi,T )∑D

d=1 α
T,N
d qd(x̃i,T−1, xi,T ))

(ψT (xi,T ) − π(ψT ))

)2

+O

(
λ3
T b

3
N

N3/2

)∣∣∣∣∣∣ F̃T−1
N

⎞⎠
=
(

1 +O

(
λ3
T b

3
N

N3/2

)∣∣∣∣ F̃T−1
N

)N
· (23)
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Under the integrability condition (A3) and taking advantage of the fact that ψT is bounded, there exists a
constant γ > 0 such that

sup
x

∫
e
γ π(x′)∑D

d=1 α
T,N
d

qd(x,x′)
|ψT (x)−π(ψT )| D∑

d=1

αT,Nd Qd(x, dx′)

≤ e2γ supx |ψT (x)| + sup
x

∫
e

π(x′)∑D
d=1 α

T,N
d

qd(x,x′)
2γ supx |ψT (x)|

π(dx′) <∞.

This implies that in Eq. (23), O
(
λ3
T b

3
N/N

3/2
) ≤ Kλ3

T b
3
N/N

3/2 where K does not depend on (xi,T )1≤i≤T .
Therefore, (

1 −K
λ3
T b

3
N

N3/2

)N
≤ BN ≤

(
1 +K

λ3
T b

3
N

N3/2

)N
. (24)

Now, consider (λ2
T b

2
N/2)∆N = (b2Nλ

2
T /2)(σ̂2

1,T (ψT ) − σ2
1,T (ψT )). We have that

|σ̂2
1,T (ψT ) − σ2

1,T (ψT )| =

∣∣∣∣∣ 1
N

N∑
i=1

σ̃2
1,T (x̃i,T−1) − σ2

1,T (ψT )

∣∣∣∣∣ .
Note that conditionally on FT−1

N , the (x̃i,T−1)1≤i≤N are iid and x �→ σ̃1,T (x) is bounded under (A3). Thus, by
Hoeffding’s inequality,

P(|σ̂2
1,T (ψT ) − σ2

1,T (ψT )| > ε) ≤ 2 exp(−2N(ε/ sup
x
σ̃2

1,Y (x))2),

which implies that lim supN→∞(bN )−2 log P(|σ̂2
1,T (ψT ) − σ2

1,T (ψT )| > δ) = −∞, ∀δ > 0. Combining this,
equations (24) and (22) and the induction assumption yields that limN→∞AN = 0. The proof is completed. �

We now establish Lemma 7.1.

Proof. Note first that the proof of Theorem 5.1 focusses mostly on establishing the MDP of M̃T
N(ψT ). We use

this argument to deduce the exponential negligibility of MT
N (ψT ) − M̃T

N (ψT ). We first have

Rtn := MT
N (ψT ) − M̃T

N (ψT ) = M̃T
N (ψT )

⎛⎝ 1
1
N

∑N
1

π(xi,T )∑
D
d=1 α

T,N
d qd(x̃i,T−1,xi,T ))

− 1

⎞⎠
so that for all positive δ, L, ε,

P(|Rtn| > δ) ≤ P(|M̃T
N(ψT )| >

√
δεL)

+P

(∣∣∣∣∣ 1
N

N∑
1

π(xi,T )∑D
d=1 α

T,N
d qd(x̃i,T−1, xi,T ))

− 1

∣∣∣∣∣ > √
δε/L

)

+P

(∣∣∣∣∣ 1
N

N∑
1

π(xi,T )∑D
d=1 α

T,N
d qd(x̃i,T−1, xi,T ))

∣∣∣∣∣ < ε

)
.

To establish the desired negligibility, we thus have to prove the negligibility (wrt the MDP) of the three terms
of the right hand side of this last inequality. By the MDP for M̃T

N proved previously, we easily get that for all



MINIMUM VARIANCE IMPORTANCE SAMPLING VIA POPULATION MONTE CARLO 447

positive δ’s, the first term is of no importance since, given the MDP upper bound and the fact that the rate
function is quadratic,

lim
L→∞

lim sup
N→∞

1
b2N

log P(|M̃T
N(ψT )| >

√
δεL) = −∞.

It thus remains to establish negligibility for the second term (the third term can be processed in the same way).
Note first that for all positive K’s, for N sufficiently large, we have

P

(∣∣∣∣∣ 1
N

N∑
1

π(xi,T )∑D
d=1 α

T,N
d qd(x̃i,T−1, xi,T ))

− 1

∣∣∣∣∣ > √
δε/L

)

≤ P

(
| 1√
NbN

N∑
1

(
π(xi,T )∑D

d=1 α
T,N
d qd(x̃i,T−1, xi,T ))

− 1)| > K
√
δε/L

)

which amounts to establish an MDP upper bound for a sequence of (conditionally on F̃T−1
N ) independent

centered rv’s satisfying a common exponential integrability property by (A3). It then follows from standard
calculus (like BN in the previous proof) that there exists σ̄2 such that

lim sup
1
b2N

log P

(∣∣∣∣∣ 1√
NbN

N∑
1

(
π(xi,T )∑D

d=1 α
T,N
d qd(x̃i,T−1, xi,T ))

− 1)

∣∣∣∣∣ > K
√
δε/L

)
≤ − K2

2L2δεσ̄2
·

Since K is arbitrary, this establishes the desired negligibility and thus concludes the proof. �
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