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THE FRACTIONAL MIXED FRACTIONAL BROWNIAN MOTION
AND FRACTIONAL BROWNIAN SHEET

Charles El-Nouty1

Abstract. We introduce the fractional mixed fractional Brownian motion and fractional Brownian
sheet, and investigate the small ball behavior of its sup-norm statistic. Then, we state general conditions
and characterize the sufficiency part of the lower classes of some statistics of the above process by an
integral test. Finally, when we consider the sup-norm statistic, the necessity part is given by a second
integral test.

Mathematics Subject Classification. 60F15, 60G15.

Received September 29, 2005. Revised May 2, 2006.

1. Introduction and main results

Let {BH1(s), s ≥ 0} be a fractional Brownian motion (FBM) with index 0 < H1 < 1, i.e. a centered Gaussian
process with stationary increments satisfying BH1(0) = 0, with probability 1, and IE(BH1(s))

2 = s2H1 , s ≥ 0.
Denote by σH1 the covariance function of BH1 . Moreover, recall that BH1 can be represented as a random
integral, i.e.

BH1(s) =
∫
IR

gH1(s, u) W̃ (du), (1.1)

where W̃ (u), u ∈ IR, is a Wiener process,

gH1(s, u) = k−1
2H1

(
max(s− u, 0)H1−1/2 − max(−u, 0)H1−1/2

)
,

and k2H1 is a normalizing constant. We refer to Li and Shao [18] for further information on this field.

A natural extension of BH1 in 2-dimensional space is given by

BH2,H3(s2, s3) =
∫ s2

−∞

∫ s3

−∞
gH2(s2, u2) gH3(s3, u3) W

(
d(u2, u3)

)
, (1.2)

where W (u2, u3), u2 ∈ IR, u3 ∈ IR, is a standard Brownian sheet and 0 < H2, H3 < 1. Its covariance function
σH2,H3 is given by

σH2,H3

(
(s2, s3), (s

′
2, s

′
3)
)

= σH2(s2, s
′
2) × σH3(s3, s

′
3).
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BH2,H3 is named the fractional Brownian sheet (FBS). There is a huge literature on this process. We refer to
Ayache et al. [1], Ayache and Xiao [2], Belinsky and Linde [3], Kühn and Linde [14], Mason and Shi[20] and
Xiao and Zhang [25] for further information on the FBS.

The study of the FBM and its extension was motivated by natural time series in economics, fluctuations in
solids, hydrology and more recently by new problems in mathematical finance, telecommunication networks and
the environment.

In the sequel, we assume that BH1 and BH2,H3 are independent. Let λ1 and λ2 be two real numbers such
that λ1λ2 �= 0. In the spirit of Cheridito [5] and El-Nouty [9], we introduce the fractional mixed fractional
Brownian motion and fractional Brownian sheet (FMFBMFBS) defined as follows

X(w1, w2, w3, s) = λ1 s
H2+H3BH1(w1) + λ2 s

H1BH2,H3(w2, w3),

and consider the sup-norm statistic

Y (t) = sup
0≤s≤t

sup
0≤w1,w2,w3≤s

| X(w1, w2, w3, s) |, t ≥ 0.

Note first that, by the scaling property, we have for any ε > 0

IP
(
Y (t) ≤ ε tH1+H2+H3

)
= IP

(
sup

0≤s≤1
sup

0≤w1,w2,w3≤s
| X(w1, w2, w3, s) | ≤ ε

)

= IP
(
Y (1) ≤ ε

)
:= φ(ε),

where φ is named the small ball function and γ := H1 +H2 +H3 the scaling factor.

The motivation supporting this paper is threefold:

– The first goal of the FMFBMFBS deals with the potential applications to the above mentioned fields.
Since the FMFBMFBS can be analyzed based on the large bodies of knowledge on FBM and FBS, it can
be used in the same fields. This may look like a tautology, but this remark applies to fractional mixed
fractional Gaussian processes (i.e. a suitable combination of some appropriate fractional Gaussian
processes). For example, to modelize the discounted stock price, the fractional version of the Samuelson
model [23] was studied by Cutland et al. [6]. But, since it had also some deficiencies, Cheridito [5]
introduced some mixed fractional Gaussian processes. The FMFBMFBS could be used to modelize
the diffusion of atmospheric pollutants, either accidental (nuclear, chemical) or not (air pollution). To
validate this model, we could compare the theoretical results to those obtained by Gassmann and Bürki
[12] and Gassmann et al. [13].

– A second application deals with the small ball probability problem of the sum of two joint centered
Gaussian random vectors X and Y in a separable Banach space E with norm ‖.‖. This problem was
investigated in Li [16], when X and Y are not necessarily independent and have a standard small
ball factor (cf. El-Nouty [7, 11]). Here we assume BH1 and BH2,H3 are independent but BH2,H3 can
have a log-type small ball factor (cf. El-Nouty [11]). Thus, the study of the small ball behavior of
the FMFBMFBS gives a first answer of the small ball probability problem of the sum of two centered
independent Gaussian random vectors, having a log-type small ball factor.

– Last but not least, this paper extends El-Nouty’s results [7–11] and consequently answers some new
questions. Recall first two definitions of the Lévy classes, stated in Révész [22]. Let {Z(t), t ≥ 0} be a
stochastic process defined on the basic probability space (Ω,A).
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Definition 1.1. The function f(t), t ≥ 0, belongs to the lower-lower class of the process Z, (f ∈ LLC(Z)), if
for almost all ω ∈ Ω there exists t0 = t0(ω) such that Z(t) ≥ f(t) for every t > t0.

Definition 1.2. The function f(t), t ≥ 0, belongs to the lower-upper class of the process Z, (f ∈ LUC(Z)), if
for almost all ω ∈ Ω there exists a sequence 0 < t1 = t1(ω) < t2 = t2(ω) < ... with tn → +∞, as n→ +∞, such
that Z(tn) ≤ f(tn), n ∈ IN∗.

In the spirit of Talagrand [24] and El-Nouty [7–11], the main aim of this paper is to characterize the lower
classes of Y for any 0 < H1, H2, H3 < 1. El-Nouty [7] characterized the lower classes of a large class of statistics
of the FBM. The role of a log-type small ball factor was studied in El-Nouty [11] by considering the FBS. Here
the FMFBMFBS enables us to compare the influence of the FBM and the FBS, and consequently to measure
the weight of a standard type small ball factor versus a log-type one.

Set α = min(H1, H2, H3), which is in ]0, 1[. We introduce the number β taking its values in {0, 1 + 1/α}.
When H2 �= H3 or H1 < H2 = H3, β = 0, whereas, when H2 = H3 ≤ H1, β = 1+1/α. The small ball behavior
of the FMFBMFBS is given in the first result.

Theorem 1.1.There is a constant K0, 0 < K0 ≤ 1, depending on H1, H2, H3, λ1 and λ2 only, such that we have
for 0 < ε < 1

exp

(
−
(
log(1/ε)

)β

K0 ε1/α

)
≤ φ(ε) ≤ exp

(
−
K0

(
log(1/ε)

)β

ε1/α

)
·

Note first that the minimum α plays a key role. This is not really surprising. Indeed this phenomenon was
already observed in El-Nouty [9]. We can also remark that, when β = 1 + 1/α, we have a log-type small ball
factor. This is a consequence of the small ball behavior of the FBS which was studied by Belinsly and Linde
[3] and Mason and Shi [20]. Recall also that the existence of small ball constants for the FBM was showed by
Li and Linde [17]. Hence, when H1 ≤ min(H2, H3), Theorem 1.1 (and consequently the sharpness of Ths. 1.2
and 1.3) can be improved by establishing the existence of the small ball constant for the FMFBMFBS.

It appears that the sufficiency part of the lower classes of Y can be stated in a general framework. Roughly
speaking, we follow the same lines as those of El-Nouty [7,11].

Let {Y0(t), t ≥ 0} be a real-valued statistic of BH1 and BH2,H3 , such that Y0(t) is a nondecreasing function
of t ≥ 0.

The following notation is needed. If IK is a Hausdorff compact space, we denote by C(IK) the space of all
continuous functions from IK to IR equipped with the classical sup-norm. Let XX = C([0, 1]) × C([0, 1]2) be the
product space equipped with the product topology. Denote by L(BH1 , BH2,H3) the Gaussian measure associated
to BH1 and BH2,H3 and defined on IB, the Borel σ-field of XX.

We assume that Y0 satisfies the three following conditions :
(C1) The scaling condition. There exists γ0 > 0 such that

IP(Y0(t) ≤ εtγ0) = IP(Y0(1) ≤ ε) := φ(ε).

(C2) The convexity condition. There exists a convex and IB-measurable function g : (XX, L(BH1 , BH2,H3)) → IR

such that for any t ≥ 0, Y0(t) = g
(
BH1(s1t), BH2,H3(s2t, s3t); 0 ≤ s1, s2, s3 ≤ 1

)
, and Y0(t) < +∞, with

probability 1.
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(C3) The log-type small ball condition. There exist α0 ∈]0, γ0], β0 ∈ IR and a constant K, 0 < K ≤ 1, depending
on γ0, α0 and β0 only, such that we have for 0 < ε < 1

exp

(
−
(
log(1/ε)

)β0

Kε1/α0

)
≤ φ(ε) ≤ exp

(
−
K
(
log(1/ε)

)β0

ε1/α0

)
·

Note that these conditions generalize those of El-Nouty [7,11]. The small ball function still plays a key role.
The convexity of the function ψ defined by ψ(ε) = − logφ(ε), 0 < ε < 1, is ensured by the condition (C2) (see
Borell [4], p. 243, Ledoux and Talagrand [15] and Lifshits [19], pp. 108–137).

Our second result is given in the following theorem.

Theorem 1.2. Let f(t) be a positive nondecreasing function of t ≥ 0. Assume that there exists m > 0 such

that
f(t)
tγ0−α0

(
log

tγ0

f(t)

)−β0α0 ≥ m.

If

f(t)
tγ0

is bounded and
∫ +∞

0

f(t)−1/α0t(γ0/α0)−1

(
log

tγ0

f(t)

)β0

φ

(
f(t)
tγ0

)
dt < +∞.

then we have

f ∈ LLC(Y0).
The sup-norm statistic Y clearly satisfies the three above conditions with γ0 = γ = H1 + H2 + H3, α0 = α =
min(H1, H2, H3), β0 = β ∈ {0, 1 + 1/α} and K = K0. Now, we characterize the necessity part of the lower
classes of the FMFBMFBS. Our main result is stated in the following theorem.

Theorem 1.3. Let f(t) be a positive nondecreasing function of t ≥ 0 such that
f(t)
tγ

is a nonincreasing function
of t > 0.

If
f ∈ LLC(Y )

then we have

lim
t→+∞

f(t)
tγ

= 0 and
∫ +∞

0

f(t)−1/γ
φ

(
f(t)
tγ

)
dt < +∞.

First, we can notice that Theorem 1.2 depends on γ0, α0 and β0. If β0 = 0, Theorem 1.2 looks like Theorem 1
of El-Nouty [7], p. 365, or else like Theorem 1.1 of El-Nouty [11], p. 321. As expected, Theorem 1.3 has the
same form as the theorems obtained by Talagrand [24] and El-Nouty [7–11]. The methodology of Talagrand
[24] can lead to two integral tests in the study of the lower classes of Y . But Theorems 1.2 and 1.3 are sharp.
Indeed, set, if β = 0,

f(t) =
λ tγ

(log log t)α , t ≥ 3, λ > 0.

or else (i.e. β = 1 + (1/α))

f(t) = tγ

(
λ log log log t

)1+α

(log log t)α , t ≥ 16, λ > 0.

If λ is small enough, then Theorem 1.2 yields f ∈ LLC(Y ), and if λ is large enough, then f ∈ LUC(Y ) by
applying Theorem 1.3.
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In Section 2, we prove Theorem 1.1. The proof of Theorem 1.3 is postponed to Sections 3 and 4 and will be
given in details. In Section 4 we establish some key small ball estimates. Note also that these estimates can
be of independent interest. The proofs which are modifications of those of El-Nouty [7,11] will be consequently
omitted, in particular the proof of Theorem 1.2.

In the sequel, there is no loss of generality to assume that H2 ≤ H3.

2. Proof of Theorem 1.1

The proof will be split into two parts: the lower bound and the upper one.

Part I. The lower bound. We have

φ(ε) ≥ IP

({
sup

0≤s≤1
sup

0≤w1≤s
| λ1 s

H2+H3 BH1(w1) | ≤ ε

2

}

⋂ {
sup

0≤s≤1
sup

0≤w2,w3≤s
| λ2 s

H1 BH2,H3(w2, w3) | ≤ ε

2

})
.

Hence we get by independence and monotonicity

φ(ε) ≥ IP

(
sup

0≤w1≤1
| BH1(w1) | ≤ ε

2 | λ1 |

)
× IP

(
sup

0≤w2,w3≤1
| BH2,H3(w2, w3) | ≤ ε

2 | λ2 |

)
. (2.1)

Combining Belinsky and Linde [3], Mason and Shi [20] Monrad and Rootzen [21] and Talagrand [24] with (2.1),
we obtain that:

if H2 = H3 ≤ H1, then φ(ε) ≥ exp

(
−
(
log(1/ε)

)1+(1/α)

C1 ε1/α

)
;

or else φ(ε) ≥ exp

(
− 1
C2 ε1/α

)
,

where C1 and C2 are strictly positive constants.
The proof of the lower part of Theorem 1.1 is complete.

Part II. The upper bound. By choosing s = 1, we get

φ(ε) ≤ IP

(
sup

0≤w1,w2,w3≤1
| λ1 BH1(w1) + λ2 BH2,H3(w2, w3) | ≤ ε

)
.

Since {(w1, 0, 0) : 0 ≤ w1 ≤ 1} ⊂ [0, 1]3 and {(0, w2, w3) : 0 ≤ w2, w3 ≤ 1} ⊂ [0, 1]3, the following inequality
holds

φ(ε) ≤ inf

(
IP

(
sup

0≤w1≤1
| λ1 BH1(w1) | ≤ ε

)
, IP

(
sup

0≤w2,w3≤1
| λ2BH2,H3(w2, w3) | ≤ ε

))
. (2.2)

By considering the four cases H1 ≤ H2 < H3, H2 < H3 and H2 ≤ H1, H1 < H2 = H3, and H2 = H3 ≤ H1, we
use (2.2) and the results in Belinsky and Linde [3], Mason and Shi [20], Monrad and Rootzen [21] and Talagrand
[24]. We emphasize the fact that we obtain a log-type small ball factor if and only if H2 = H3 ≤ H1.

The proof of Theorem 1.1 is now complete. �
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3. proof of Theorem 1.3: Part I

Set at =
f(t)
tγ

and bt = φ(at).

Suppose here that, with probability 1, f(t) ≤ Y (t) for all t large enough. We want to prove that lim
t→+∞ at = 0

and
∫∞
0 a

−1/γ
t bt

dt
t
< +∞.

In the sequel, there is no loss of generality in assuming that f is a continuous function of t ≥ 0. Indeed the
set of points at which f is discontinuous is at most countable and therefore has measure zero.

Lemma 3.1. We have
lim

t→+∞ at = 0. (3.1)

Proof. Let lim
t→∞ at = c ≥ 0. If c > 0, then lim

t→∞ bt = φ(c) > 0, which is impossible. (3.1) is proved. �

To prove Theorem 1.3, we will show that f ∈ LUC(Y ) when
∫∞
0 a

−1/γ
t bt

dt
t

= +∞ and lim
t→+∞ at = 0.

First recall the following corollary (see Talagrand [24], p. 198).

Corollary A. Assume that J ⊂ IN and that, for some numbers K and ε, we have for the family of sets (Ai)i∈J

in a basic probability space

∀ i ∈ J
∑
j>i

IP(Ai ∩Aj) ≤ IP(Ai)

(
K + (1 + ε)

∑
j>i

IP(Aj)

)
. (3.2)

Then, if ∑
i∈J

IP(Ai) ≥ 1 + 2K
ε

, (3.3)

we have
IP
(⋃

i∈J

Ai

)
≥ 1

1 + 2ε
· (3.4)

Our aim is to construct a suitable set J which satisfies hypothesis (3.2) and (3.3).

Lemma 3.2. When
∫∞
0

a
−1/γ
t bt

dt
t

= +∞ and lim
t→+∞ at = 0, we can find a sequence {tn, n ≥ 1} with the two

following properties
tn+1 ≥ tn(1 + a

1/γ
tn

), (3.5)
and

∞∑
n=1

btn = +∞. (3.6)

Proof. For the construction of {tn, n ≥ 1}, we proceed by induction over n. Set t1 = 1. Having constructed tn,
we define

sn = tn

(
1 + a

1/γ
tn

)
.

We set tn+1 = sn(1 + a
1/α
sn ).
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(3.5) is obviously proved.

To prove (3.6), it is enough to show that, for n sufficiently large, we have

In =
∫ tn+1

tn

a
−1/γ
t bt

dt
t

≤ K btn ,

where K is a constant.

Set In1 =
∫ sn

tn
a
−1/γ
t bt

dt
t

and In2 =
∫ tn+1

sn
a
−1/γ
t bt

dt
t

. Consider first In1. We obtain

In1 ≤ (sn − tn)f(tn)−1/γ
φ
(
atn

)
= btn .

Consider now In2. Since tn+1 ≤ 2sn, f is nondecreasing and a−1/γ
t ≤ a

−1/α
t , we have

In2 ≤
∫ tn+1

sn

a
−1/α
t bt

dt
t

≤ (tn+1 − sn)f(sn)−1/α
t
(γ/α)−1
n+1 φ

(
asn

)
≤ 2(γ/α)−1 btn .

Hence, we get In = In1 + In2 ≤
(
1+ 2(γ/α)−1

)
btn . �

The sequence {tn, n ≥ 1} we have constructed is not yet appropriate. We need a further construction (the
reason for which will become apparent only later).

We need the following definition and notation.

Definition 3.1. Consider the interval Ak = [2k, 2k+1[, k ∈ IN. If a−1/γ
ti

∈ Ak, i ∈ IN∗, then we note u(i) = k.

Notation.
1. Ik = {i ∈ IN∗, u(i) = k ∈ IN} which is finite by Lemma 3.1;

2. Nk = exp

(
K0 (γ log 2)β kβ 2γ(k−1)/α

)
, where K0 has the same value as in Theorem 1.1;

3. Fm,k = {i ∈ IN∗, i ∈ Ik,m < i, card(Ik∩]m, i]) ≤ Nk},m ∈ IN∗, k ∈ IN;

4. k0 = inf
{
n ∈ IN, 2γn/α ≥ 2γ/α

K0(2γ/α − 1)(γ log 2)β
+

22γ/α

K2
0 (2γ/α − 1)

}
, (k0 depends on K0, γ and α only);

5. Vm =
⋃

k∈IN
Fm,k, where m is fixed, u(m) = k1 and k ≥ k1 + k0;

6. W =
⋃

m≥1

Vm.

Now we can define our set J as follows
J = IN −W.

Lemma 3.3. We have
∑
n∈J

btn = +∞. (3.7)
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Given n ∈ J,m ∈ J, n < m, such that card(Iu(n) ∩ [n,m]) > exp(K02u(n)−1), we have

tm
tn

≥ exp

(
exp
(K0

4
2min(u(n),u(m))

))
. (3.8)

Proof. We show first ∑
i∈Vm

bti ≤
3
4
btm . (3.9)

We have for any i ∈ Ik
1

2(k+1)γ
≤ ati ≤

1
2kγ

,

and consequently by Theorem 1.1

exp

(
− (γ log 2)β(k + 1)β 2γ(k+1)/α

K0

)
≤ bti ≤ exp

(
−K0(γ log 2)βkβ 2γk/α

)
.

Hence, we have

∑
i∈Fm,k

bti ≤ Nk exp

(
−K0(γ log 2)βkβ 2γk/α

)
≤ exp

(
−(2γ/α − 1)K0(γ log 2)βkβ 2γ(k−1)/α

)
.

Then, we obtain

∑
i∈Vm

bti ≤ btm

+∞∑
k=k0+k1

1
btm

exp

(
−(2γ/α − 1)K0(γ log 2)βkβ 2γ(k−1)/α

)

≤ btm

+∞∑
k=k0+k1

exp

(
(γ log 2)β(k1 + 1)β

(2γ(k1+1)/α

K0
−K0(2γ/α − 1)2γ(k−1)/α

))
. (3.10)

Setting l = k − (k0 + k1) and recalling the definition of k0, we get

(γ log 2)β

(
2γ(k1+1)/α

K0
−K0(2γ/α − 1)2γ(k−1)/α

)

≤ 2γk1/α

(
2γ/α (γ log 2)β

K0
− 2γl/α − 2γ(l+1)/α (γ log 2)β

K0

)
≤ −2γ(l+k1)/α ≤ −2l+k1 . (3.11)

Combining (3.10) with (3.11), we get

∑
i∈Vm

bti ≤ btm

+∞∑
l=0

exp(−2l) ≤ btm

+∞∑
l=0

3
4 2l+1

=
3
4
btm .

Hence (3.9) is proved.

Let p ∈ IN, Jp = J ∩
( ⋃

0≤k1≤p

Ik1

)
and Wp = W ∩

( ⋃
0≤k1≤p

Ik1

)
=
( ⋃

0≤k1≤p

Ik1

)
− Jp.
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The definition of Wp and (3.9) yield

∑
i∈Wp

bti ≤
p∑

k1=0

∑
m∈Ik1

∑
i∈Vm

bti ≤ 3
4

p∑
k1=0

∑
m∈Ik1

btm =
3
4

∑
m∈(

⋃
0≤k1≤p Ik1 )

btm .

Since
(⋃

0≤k1≤p Ik1

)
is finite, we have

∑
i∈Jp

bti ≥ 1
4

∑
m∈(

⋃
0≤k1≤p Ik1 )

btm .

Let p→ +∞. Then, we have
1
4

∑
m∈(

⋃
0≤k1≤p Ik1 )

btm → +∞ by Lemma 3.2, and Jp → J .

Hence (3.7) is established.

To prove (3.8), set k = u(n), k1 = u(m) and G = Ik∩ [n,m] = {i1, i2, ..., iz} where n ≤ i1 < i2 < ... < iz ≤ m.
We have

tm
tn

=
tm
tiz

tiz

tiz−1

....
ti1
tn

· (3.12)

Note that, when i ∈ Ik, we have ti+1 ≥ ti(1 + a
1/γ
ti

) ≥ ti(1 + 2−k−1). Moreover, since card(G) > exp(K02k−1)
by hypothesis, (3.12) implies

tm
tn

≥ exp

(
exp
(
K02k−1

)
log
(
1 + 2−k−1

))
≥ exp

(
exp
(K0

4
2k
))

, (3.13)

when n, hence k, are large enough.

Thus, whenever k1 ≤ k + k0, (3.13) implies (3.8).

Next assume k1 > k+k0. Since m ∈ J, m �∈ Vn, and consequently n �∈ Fn,k1 . Thus card(Ik1 ∩ [n,m]) > Nk1 .
When n, hence m and k1, are large enough, we have

card(Ik1 ∩ [n,m]) > Nk1 = exp

(
K0

(
γ log 2

)β

kβ
1 2(γ/α)(k1−1)

)
≥ exp

(
K0 2k1−1

)
.

Hence, the arguments leading to (3.13) show that

tm
tn

≥ exp

(
exp
(K0

4
2k1

))
.

The proof of Lemma 3.3 is now complete. �
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4. Proof of Theorem 1.3 : Part II

Consider now the events En = {Y (tn) < f(tn)}. We have directly IP(En) = btn , and
∑

n∈J btn = +∞,
by Lemma 3.3. Therefore our set J satisfies hypothesis (3.3). To verify (3.2), it suffices to prove the following
statement

Given ε > 0, there exist a number K and an integer p such that

∀n ∈ J n ≥ p⇒
∑

m∈J,m>n

IP
(
En ∩ Em

)
≤ IP(En)

(
K + (1 + ε)

∑
m∈J,m>n

IP(Em)
)
. (4.1)

Given n ∈ J, J can be rewritten as follows J = J
′∪
(⋃

k∈IN Jk

)
∪J”, where J

′
= {m ∈ J, tn ≤ tm ≤ 2tn}, Jk =

{m ∈ J ∩ Ik, tm > 2tn, card(Ik ∩ [n,m]) ≤ exp(K02k−1)} and J” = J −
(
J

′ ∪
(⋃

k∈IN Jk

))
.

Our first key small ball estimate is given in the following lemma.

Lemma 4.1. Consider 0 < t < u, and θ, ν > 0. Then, we have

IP
(
{Y (t) ≤ θtγ} ∩ {Y (u) ≤ ν}

)
≤ exp(K5) IP

(
Y (t) ≤ θtγ

)
exp

(
−K5(u− t)

ν1/γ

)
,

where K5 depends on H1, H2, H3, λ1 and λ2 only.

Proof. Set F1 = {Y (t) ≤ θtγ} and F2 = {Y (u) ≤ ν}. Denote by [x] the integer part of a real x. Let δ > 0. We
consider the sequence tk, k ∈ {0, .., n}, where t0 = t, tk+1 = tk + δ and n = [(u− t)/δ]. We have

IP
(
F1 ∩ F2

)
= IP

(
F1 ∩ { sup

0≤s≤u
sup

0≤w1,w2,w3≤s
| X(w1, w2, w3, s) | ≤ ν}

)

≤ IP
(
F1 ∩ { sup

t≤s≤u
sup

0≤w1,w2,w3≤s
| X(w1, w2, w3, s) | ≤ ν}

)

≤ IP
(
F1 ∩ { sup

t≤s≤u
sup

0≤w1≤s
| λ1 s

H2+H3 BH1(w1) | ≤ ν}
)
.

Let Gk be the event defined by

Gk = F1 ∩ { sup
t≤s≤tk

sup
0≤w1≤s

| λ1 s
H2+H3 BH1(w1) | ≤ ν}.

We have F1 ∩ F2 ⊂ Gk.

Moreover, we have

Gk+1 ⊂ Gk ∩ {| λ1 t
H2+H3
k+1 BH1(tk+1) − λ1 t

H2+H3
k+1 BH1(tk) | ≤ 2 ν}.

Xk := λ1 t
H2+H3
k+1 BH1(tk+1) − λ1 t

H2+H3
k+1 BH1(tk) can be rewritten by (1.1) as follows Xk = Xk,1 +Xk,2, where

Xk,1 = λ1 t
H2+H3
k+1 k−1

2H1

∫ tk+1

tk

(tk+1 − x)H1−1/2 W̃ (dx).
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Note also that Xk,1 and Xk,2 are independent.

Since IP
(
| Xk,1 + x | ≤ 2 ν

)
is maximum at x = 0 and Xk,1 and Gk are independent, we have

IP(Gk+1) ≤ IP(Gk) IP
(
| Xk,1 | ≤ 2ν

)
.

The integral representation of Xk,1 implies that IE(Xk,1) = 0 and

VarXk,1 = λ2
1 t

2(H2+H3)
k+1 k−2

2H1

δ2H1

2H1
≥ λ2

1

2H1 k2
2H1

δ2γ := L2 δ2γ .

Denote by Φ the distribution function of the absolute value of a standard Gaussian random variable. Then, we
obtain

IP(Gk+1) ≤ IP(Gk) Φ

(
2 ν
L δγ

)
,

and therefore IP(F1 ∩ F2) ≤ IP(F1) Φ

(
2 ν
L δγ

)n

.

Choosing δ = ν1/γ , we get K5 = − logΦ(
2
L

). Lemma 4.1 is proved. �

Lemma 4.2.
∑

m∈J′ IP(En ∩ Em) ≤ K ′ btn and
∑

m∈(∪k Jk) IP(En ∩ Em) ≤ K” btn , where K ′ and K” are
numbers.

Proof. Setting u = tm, t = tn, θ = atn and ν = f(tm), Lemma 4.1 implies

IP(En ∩ Em) ≤ exp(K5) btn exp

(
−K5(tm − tn)

f(tm)1/γ

)
· (4.2)

Consider first the case when m ∈ J
′
.

Lemma 3.2 implies that, for all i ≥ n, we have ti+1 − ti ≥ ti a
1/γ
ti

= f(ti)1/γ ≥ f(tn)1/γ . Then we can
establish

tm − tn ≥ (m− n)f(tn)1/γ and f(tm) ≤ f(tn)

(
tm
tn

)γ

≤ 2γf(tn). (4.3)

Combining (4.2) with (4.3), we get

IP(En ∩ Em) ≤ exp(K5) btn exp

(
−K5(m− n)

2

)
,

which is the first part of Lemma 4.2.

Consider now the case m ∈ Jk.

Combining (4.2) with the definition of Jk, we have

IP(En ∩ Em) ≤ exp(K5) btn exp

(
− K5

2(atm)1/γ

)
·
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Since u(m) = k, we get

IP(En ∩ Em) ≤ exp(K5) btn exp
(
−K5 2k−1

)
,

and consequently by noting that cardJk ≤ card(Ik ∩ [n,m]) ≤ exp(K02k−1) and by assuming K0 < K5, we have

∑
m∈Jk

IP(En ∩Em) ≤ exp(K5) btn exp
(
(K0 −K5) 2k−1

)
.

Hence, Lemma 4.2 is proved. �

To deal with the set J”, we recall the following three lemmas (see El-Nouty [9], p. 117, [11], p. 331, [11],
p. 323).

Lemma A is a standard large deviation result for the sup-norm of a real-valued Gaussian process.

Lemma A. Let {Z(t), 0 ≤ t ≤ 1} be a separable, centered, real-valued Gaussian process such that Z(0) = 0,
with probability 1, and with incremental variance satisfying

(
IE(Z(t+ h) − Z(t))2

)1/2

≤ f(h) ≤ cfh
β1 , β1 > 0.

Then, we have for c−1
f δ > 1

IP
(

sup
0≤t≤1

| Z(t) |≥ δ
)
≤ 1
C

exp
(
−C(c−1

f δ)
2
)
,

where C is a positive constant independent of cf and δ.

Lemma B is the analogue of Lemma A for a two-parameter Gaussian process.

Lemma B. Let X = {X(s1, s2), (s1, s2) ∈ [0, 1]2} be a separable real-valued centered Gaussian process such that
X(0, 0) = 0 with Probability 1 and satisfying for any [s1, s1 + h1] × [s2, s2 + h2] ⊂ [0, 1]2

(
IEX

(
[s1, s1 + h1] × [s2, s2 + h2]

)2
)1/2

≤ κ(h1, h2) ≤ cκ h
α1
1 hα2

2 , α1 > 0, α2 > 0,

where
X
(
[s1, t1] × [s2, t2]

)
= X(t1, t2) −X(s1, t2) −X(t1, s2) +X(s1, s2),

and we write

X
(
[s1, t1] × [s2, t2]

)
=
∫

[s1,t1]×[s2,t2]

X(d(u1, u2)).

Then, we have for c−1
κ δ > 1

IP

(
sup

(s1,s2)∈[0,1]2
| X(s1, s2) | ≥ δ

)
≤ 1
C

exp
(
−C(c−1

κ δ)
2
)
,

where C is a positive constant independent of cκ and δ.
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Lemma C derives from the existence of the right derivative of the convex function ψ = − logφ and gives
sharp bounds for the increments of φ.

Lemma C. We have for ε1 > ε/2 where ε is small enough

exp

⎛
⎜⎝−K3

| ε1 − ε |
(
log(1/ε)

)β

ε1+1/α

⎞
⎟⎠ ≤ φ(ε1)

φ(ε)
≤ exp

⎛
⎜⎝K3

| ε1 − ε |
(
log(1/ε)

)β

ε1+1/α

⎞
⎟⎠ , (4.4)

where K3 > 0.

Building on Lemmas A, B and C, we can establish our last key small ball estimate in the following result.

Lemma 4.3. Let λ be a real number such that 1/2 < λ < 1. Set

r = min

(
1 − max(H1, H2, H3)

3
,
(1 − λ)α

3

)
·

Then, we have for u ≥ 2t

IP
(
Y (t) ≤ θtγ , Y (u) ≤ νuγ

)
≤ φ(θ)φ(ν) exp

(
2

(
t

u

)r

K3

((
log

1
θ

)β

θ1+(1/α)
+

(
log

1
ν

)β

ν1+(1/α)

))

+ 3

(
1

C1,2
exp

(
− C1,2

4λ2
1K

2
H1,2

(
u

t

)r)
+

1
C23,2

exp

(
− C23,2

4λ2
2K

2
H2,2

(
u

t

)r))

+ 3

(
1

C1,1
exp

(
− C1,1

4λ2
1K

2
H1,1

(
u

t

)r)
+

1
C23,1

exp

(
− C23,1

4λ2
2K

2
H2,1

(
u

t

)r))
,

where KH1,1,KH1,2 > 0 depend on H1 only, KH2,1,KH2,2 > 0 depend on H2 (H2 ≤ H3) only, K3 > 0 is defined
as in Lemma C, C1,1, C1,2 > 0 are defined as in Lemma A and C23,1, C23,2 > 0 are defined as in Lemma B.

Proof. Set Q = IP
(
Y (t) ≤ θtγ , Y (u) ≤ νuγ

)
.

Set v =
√
ut. If t = o(u) then t = o(v) and v = o(u).

Using (1.1) and (1.2), we see that BH1 and BH2,H3 can be split as follows

BH1 = BH1,1 +BH1,2 and BH2,H3 = BH2,H3,1 +BH2,H3,2, (4.5)

where

BH1,1(w1) =
∫
|x1|≤v

gH1(w1, x1) W̃ (dx1),

and

BH2,H3,1(w2, w3) =
∫
|x2|≤v

∫ w3

−∞
gH2(w2, x2) gH3(w3, x3) W

(
d(x2, x3)

)
.

Note that BH1,1 and BH1,2 are independent as BH2,H3,1 and BH2,H3,2.
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(4.5) implies that the FMFBMFBS X can be rewritten as follows X = X1 +X2 where

X1(w1, w2, w3, s) = λ1 s
H2+H3BH1,1(w1) + λ2 s

H1BH2,H3,1(w2, w3).

Set
Yi(t) = sup

0≤s≤t
sup

0≤w1,w2,w3≤s
| Xi(w1, w2, w3, s) |, t ≥ 0, i ∈ {1, 2}.

Then, given δ > 0, we have (Talagrand [24], pp. 210–211)

Q ≤ φ(θ + 2δ) φ(ν + 2δ) + 3 IP
(
Y2(t) > δtγ

)
+ 3 IP

(
Y1(u) > δuγ

)
.

(4.4) implies

φ(θ + 2δ) ≤ φ(θ) exp

(
2 δ K3

((
log

1
θ

)β

θ1+(1/α)

))
,

and consequently

φ(θ + 2δ)φ(ν + 2δ) ≤ φ(θ)φ(ν) exp

(
2 δ K3

((
log

1
θ

)β

θ1+(1/α)
+

(
log

1
ν

)β

ν1+(1/α)

))
.

If we choose δ =
( t
u

)r

, then we get the first term of the RHS of Lemma 4.3.

Next, we want to obtain an upper bound of

IP
(
Y2(t) > δtγ

)
= IP

(
sup

0≤s≤1
sup

0≤w1,w2,w3≤s
| λ1 s

H2+H3LH1,2(w1) + λ2 s
H1LH2,H3,2(w2, w3) | > δ

)
,

where

LH1,2(w1) =
∫
|x1|≥v/t

gH1(w1, x1) W̃ (dx1),

and

LH2,H3,2(w2, w3) =
∫
|x2|≥v/t

∫ w3

−∞
gH2(w2, x2) gH3(w3, x3) W

(
d(x2, x3)

)
.

We can show, by standard computations, that

IP
(
Y2(t) > δtγ

)
≤ IP

(
sup

0≤w1≤1
| LH1,2(w1) | > δ

2 | λ1 |

)
+ IP

(
sup

0≤w2,w3≤1
| LH2,H3,2(w2, w3) | > δ

2 | λ2 |

)
.

(4.6)
There exists KH1,2 > 0 such that

Var
(
LH1,2(w1 + h1) − LH1,2(w1)

)
≤ K2

H1,2

(v
t

)2H1−2

h2
1.
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Hence, we may apply Lemma A and we get

IP

(
sup

0≤w1≤1
| LH1,2(w1) | > δ

2 | λ1 |

)
≤ 1
C1,2

exp

(
− C1,2

K2
H1,2(v/t)2H1−2

δ2

4λ2
1

)
· (4.7)

Set σH2,2 the covariance function of the process {LH2,2(s), 0 ≤ s ≤ 1}. Since

IE

(
LH2,H3,2(w2, w3) LH2,H3,2(w

′
2, w

′
3)

)
= σH2,2(w2, w

′
2) × σH3(w3, w

′
3),

we have for any [s2, s2 + h2] × [s3, s3 + h3] ⊂ [0, 1]2

IE

(
LH2,H3,2

(
[s2, s2 + h2] × [s3, s3 + h3]

)2
)

= IE

(∫
[s2,s2+h2]×[s3,s3+h3]

LH2,H3,2(d(w2, w3)) ×
∫

[s2,s2+h2]×[s3,s3+h3]

LH2,H3,2(d(w
′
2, w

′
3))

)

≤
∫ s2+h2

s2

∫ s2+h2

s2

| σH2,2(w2, w
′
2) | dw2 dw

′
2 ×

∫ s3+h3

s3

∫ s3+h3

s3

| σH3(w3, w
′
3) | dw3 dw

′
3

:= I × II. (4.8)

Consider II first. We get by the inequality of Cauchy-Schwarz

II ≤
∫ s3+h3

s3

∫ s3+h3

s3

wH3
3 w

′H3
3 dw3 dw

′
3 ≤ h2

3. (4.9)

Let us turn to I.

A straight computation implies that there exists KH2,2 > 0 depending on H2 such that

IE
(
LH2,2(w2)

)2

≤ K2
H2,2 w

2
2 (v/t)2H2−2,

and consequently , by the inequality of Cauchy-Schwarz,

| σH2,2(w2, w
′
2) | ≤ K2

H2,2 w2 w
′
2 (v/t)2H2−2.

So we get
I ≤ K2

H2,2 (v/t)2H2−2 h2
2. (4.10)

Hence, combining (4.8) with (4.9) and (4.10), we have

IE

(
LH2,H3,2

(
[s2, s2 + h2] × [s3, s3 + h3]

)2
)

≤ K2
H2,2 (v/t)2H2−2 h2

2 h
2
3.
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An application of Lemma B with α1 = α2 = 1, cκ = KH2,2(
v

t
)
H2−1

and c−1
κ δ > 1, yields

IP

(
sup

0≤w2,w3≤1
| LH2,H3,2(w2, w3) | > δ

2 | λ2 |

)
≤ 1
C23,2

exp

(
− C23,2

K2
H2,2

(v2

t2

)H2−1

δ2

4λ2
2

)
. (4.11)

Set δ = (
t

u
)
r

. Recall that v2 = ut and r ≤ 1 − max(H1, H2, H3)
3

. Combining (4.6) with (4.7) and (4.11), we
get

IP
(
Y2(t) > δtγ

)
≤ 1
C1,2

exp

(
− C1,2

4λ2
1K

2
H1,2

(
u

t

)r)
+

1
C23,2

exp

(
− C23,2

4λ2
2K

2
H2,2

(
u

t

)r)
,

which is the second term of the RHS of Lemma 4.3.

Finally, we want to establish a similar result for IP
(
Y1(u) > δuγ

)
, which is smaller than

IP

(
sup

0≤w1≤1
| LH1,1(w1) | > δ

2 | λ1 |

)
+ IP

(
sup

0≤w2,w3≤1
| LH2,H3,1(w2, w3) | > δ

2 | λ2 |

)
, (4.12)

where

LH1,1(w1) =
∫
|x1|≤v/u

gH1(w1, x1) W̃ (dx1),

and

LH2,H3,1(w2, w3) =
∫
|x2|≤v/u

∫ w3

−∞
gH2(w2, x2) gH3(w3, x3) W

(
d(x2, x3)

)
.

Since 1/2 < λ < 1, there exists KH1,1 > 0 such that

Var
(
LH1,1(w1 + h1) − LH1,1(w1)

)
≤ K2

H1,1

( v
u

)2H1−2λH1

h2λH1
1 .

Hence, we may apply Lemma A and we get

IP

(
sup

0≤w1≤1
| LH1,1(w1) | > δ

2 | λ1 |

)
≤ 1
C1,1

exp

(
− C1,1

K2
H1,1(v/u)2H1−2λH1

δ2

4λ2
1

)
· (4.13)

Set σH2,1 the covariance function of the process {LH2,1(s), 0 ≤ s ≤ 1}. Since

IE

(
LH2,H3,1(w2, w3) LH2,H3,1(w

′
2, w

′
3)

)
= σH2,1(w2, w

′
2) × σH3(w3, w

′
3),

we have for any [s2, s2 + h2] × [s3, s3 + h3] ⊂ [0, 1]2

IE

(
LH2,H3,1

(
[s2, s2 + h2] × [s3, s3 + h3]

)2
)

≤
∫ s2+h2

s2

∫ s2+h2

s2

| σH2,1(w2, w
′
2) | dw2 dw

′
2 ×

∫ s3+h3

s3

∫ s3+h3

s3

| σH3(w3, w
′
3) | dw3 dw

′
3.
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Then, there exists KH2,1 > 0 such that

IE

(
LH2,H3,1

(
[s2, s2 + h2] × [s3, s3 + h3]

)2
)

≤ K2
H2,1 (v/u)2H2−2λH2 h2

2 h
2
3.

An application of Lemma B with α1 = α2 = 1, cκ = KH2,1

(v
u

)H2−λH2

and c−1
κ δ > 1, yields

IP

(
sup

0≤w2,w3≤1
| LH2,H3,1(w2, w3) | > δ

2 | λ2 |

)
≤ 1
C23,1

exp

(
− C23,1

K2
H2,1

( v
u

)2H2−2λH2

δ2

4λ2
2

)
. (4.14)

Set δ =
( t
u

)r

. Recall that v2 = ut and r ≤ (1 − λ)α
3

. Combining (4.12) with (4.13) and (4.14), we get

IP
(
Y1(u) > δuγ

)
≤ 1
C1,1

exp

(
− C1,1

4λ2
1K

2
H1,1

(
u

t

)r)
+

1
C23,1

exp

(
− C23,1

4λ2
2K

1
H2,1

(
u

t

)r)
,

which concludes the proof of Lemma 4.3. �

Finally, we state the last technical lemma.

Lemma 4.4. There exists an integer p such that, if n > sup
s≤p

(
sup Is

)
, then, for m ∈ J”,m > n, given ε > 0,

we have IP(En ∩ Em) ≤ (1 + ε) btnbtm .

Proof. Let u(n) = k′ and u(m) = k1. We have by Lemma 3.3

tm
tn

≥ exp

(
exp
(K0

4
2min(k′,k1)

))
.

Let p ∈ IN. Then k′ > p and k1 > p. Thus, we have min(k′, k1) > p.

Set t = tn, u = tm, θ = atn and ν = atm . Note that log 1
θ ≤ 1

θ ≤ 2(k′+1)α, log 1
ν ≤ 1

ν ≤ 2(k1+1)α and
1

btn btm
= exp(ψ(θ) + ψ(ν)).

By using Lemma 4.3 and letting p→ +∞, we complete the proof of Lemma 4.4. �

Combining Lemma 4.2 and Lemma 4.4, we get (4.1). Since our set J satisfies hypothesis (3.2) and (3.3),
(3.4) implies that, given ε > 0,

1
1 + 2ε

≤ IP(
⋃
n∈J

En) = IP(
⋃
n∈J

{Y (tn) ≤ f(tn)}),

and consequently f ∈ LUC(Y ). The proof of Theorem 1.3 is now complete. �
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