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ASYMPTOTIC BEHAVIOR OF THE HITTING TIME, OVERSHOOT
AND UNDERSHOOT FOR SOME LEVY PROCESSES
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Abstract. Let (X, t > 0) be a Lévy process started at 0, with Lévy measure v. We consider the first
passage time T of (X¢, t > 0) to level z > 0, and K, := X7, — = the overshoot and L, := x — XTf
the undershoot. We first prove that the Laplace transform of the random triple (7%, K., L) satisfies
some kind of integral equation. Second, assuming that v admits exponential moments, we show that
(ﬁ, K., L) converges in distribution as x — oo, where T; denotes a suitable renormalization of 7%.
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INTRODUCTION

1. Let (X¢, t > 0) be a Lévy process, which is right continuous with left limits and starts at 0. Let
Xt:UBt—Cot+Jt tZO, (01)

be the canonical decomposition, when ¢y € R, ¢ > 0 and (B, t>0) is a one-dimensional Brownian
motion started at 0. (J;, t>0) is a pure jump Lévy process which is independent from (B, t>0).
In addition Jp = 0. Recall (see for instance Th. 2.1, Chap. 2, [13]) that (J;, ¢>0) is the sum of
a compound Poisson process and a square integrable martingale whose jumps are of magnitude less
than 1.

For simplicity, we may assume that ¢ = 1.

2. We are interested in the first hitting time of level z > 0

T, :=inf{t > 0; X; > z}. (0.2)
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We also consider the overshoot K, and the undershoot L,:

K, :=Xr, —z, (0.3)
Lx =T — XTw* .

The aim of this paper is to study the joint distribution of the triple (7%, K., L,).

. In the usual theory of risk in continuous time the surplus of an insurance company is modelled by a

stochastic process (Z;,t > 0). The real number x = Z; denotes the initial surplus, and the random

time T, := inf {t > 0; Z; < 0} may be interpreted as the ruin time. Historically, the first model (called

classical or the Cramér-Lundberg one) was initiated by Lundberg [16] and Cramér [3,4]. It refers to

the case when (Z;,¢ > 0) is the sum of a drift and a compound Poisson process. The later represents

the aggregate claims. In [8], Dufresne and Gerber have added a Brownian perturbation in the surplus

process. Thus, the process (x — Z;,t > 0) corresponds to a particular case of our process (X, t>0).

A lot of authors have developed extensions and have considered a great variety of processes (Zz, ¢t > 0).

They have mainly focused on the choice of more adapted processes (Z;,t > 0) to take into account the

complex reality. It is not our purpose to present here all these developments. For more information one

should refer to Rolski, Schmidli, Schmidt and J. Teugels’ book [17], in which a large panel of models

can be found.

Here are a few papers which are closely connected to the limit distribution of (T, K, L;), as © — oo.

(a) Bertoin and Doney in [2] proved that the ruin probability P(T, < oo) is equivalent to Ce™ ", as
x — o0. The authors has given in their paper an expression of the constant C' with the ascending
ladder height process associated with (X;,¢ > 0). When the Lévy process (X;,¢ > 0) has no
negative jumps, then C' and a may be calculated explicitly.

(b) In the discrete time model, i.e. when (Xt > 0) is replaced by a random walk, Gut [11] has
considered the limit distribution of normalized passage times.

(¢) In both [10] and [7] analytical conditions are given to ensure that the ratio Xp, /x almost surely
converges to 1, as x — 00, in the discrete time model as well as in the case of Lévy processes.

(d) Doney and Kyprianou [6] have showed that (K, L) converges in the distribution sense as x goes
to infinity.

Our study presents the following features:

(a) original analytic arguments of complex analysis are used, and especially meromorphic and holo-
morphic functions (see Th. 2.8);

(b) a decorrelation phenomenon: the couple (K,,L,) and a relevant normalization of T, become
asymptotically independent, (z — oc) (¢f. Ths. 2.1 and 2.3);

(¢) new functional equations (c¢f. Ths. 2.4 and 2.5).

. Let us briefly describe the organization of the paper. In section 1, we will set up notation and assump-

tions. In Section 2, we will suppose that the Lévy measure v of (Xy, ¢ > 0) satisfies the condition (H),

which is defined in item 1.4 of Section 1.

In Section 2 we will list the main results of the paper. The two major theorems (¢f. Ths. 2.1 and 2.3)

are related to the convergence in distribution of the triple (i;, K,,L,;) with x — oo. In addition f;

is expressed in terms of T, and z and it depends on the sign of E(X;). In Section 2.2 we present the

important theorems which permit to demonstrate Theorems 2.1 and 2.3. Our approach is based on the

study of the Laplace transform F' of (T, Ky, Ly):

F(Gauapam) =E (e_GTw_qu_pr]]-{Tw<oo}) ;0 p, p = 0. (05)



60 B. ROYNETTE, P. VALLOIS AND A. VOLPI

When v(R) is finite, it is shown in Theorem 2.4 that F(0, u, p, -) satisfies some kind of integral equation.
Introducing the Laplace transform F(6, u, p,-) of F(0, u, p,-):

o~ +OO
F(0,1,p,q) := / e E(0, 1, p,y)dy, (0.6)
0

we proved in Theorem 2.5 that, under (H), the function F (0, , p, -) solves an equation which looks like
an integral equation. Then an asymptotic development of F(0, i, p,z) (2 — oo) with a finite number
of terms like C(6, u, p)e’a(e)“’ is given in Theorem 2.8. In the third Section 2.3 we will determine the
behavior of the ruin probability P(T,, < oc), when z runs to infinity. Theorem 2.10 asserts that the
ruin probability has a polynomial rate of decay at oo as soon as v admits polynomial moments. All
the proofs of results stated in Section 2 are postponed in Section 3.

Finally, in the last Section 4 we will give some complements and comments.

1. CHARACTERISTIC EXPONENT AND ELEMENTARY PROPERTIES

1.1 Let ¥ be the characteristic exponent of a Lévy process (X;, ¢t >0) with canonical decomposition (0.1), i.e.
E(e’Xt) = (@ (¢ € R). With the Lévy-Khintchine formula, we get:

2
¢ . ; .
Vlg) = =5 —ieq + /R(e W —1—iqylyy<1y)v(dy), qER, (1.7)

where v is the Lévy measure which satisfies / (y2 A 1)1/(dy) < 00.
R

It is well known (cf. [18], example 25.12) that as soon as / [y 1)y >137(dy) < oo then
R

EflX1]] < oo, (1.8)
and
E(Xl) = —il/}l(O) = —c+ / y]l{\y\ZI}V(dy) (19)
R
When (J;,t > 0) is a compound Poisson process, there exists a relation between the drift term ¢o in (0.1) and ¢:

c=co— /Ry]l{|y|<1}l/(dy). (1.10)

1.2 The following assumptions will be needed throughout the paper:

~1
/ ey (dy) < oo, Vs €] —00,0] (1.11)
and
/ e®v(dy) < oo, for some s > 0. (1.12)
1
It is convenient to introduce:
7y, :=sup {s > 0; / e*v(dy) < oo}. (1.13)
1

It is clear that (1.12) implies that r, €]0, oo].
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Under (1.11) and (1.12), the function ¥ may be extended to the half-space {z € C; Im(z) > —r,}. Let ¢ denote
the function: ¢(q) := ¥ (iq),q > —r,. If we consider the definition of ¢ and the identity (1.7), we can infer that:

E(e™9Xt) = e!#(@), (1.14)
and )
q _
pla) =5 +eq+ /R(e W — 14 qylyy<1y)v(dy), (1.15)
for any ¢ €] — 7y, o0[.
Note that:
#(0) = ~E(Xy). (1.16)

Assumptions (1.11) and (1.12) imply that ¢ is a function defined on | — r,, co[ and:
©"(q) =1+ / y?e y(dy), for any ¢ €] —r,,00].
R

Consequently, ¢ is convex on | — 7, 00[. It can be easily shown that ¢(o0) := lim ¢(x) = co.

Let us discuss the behavior of ¢ in the vicinity of —r,.

1. When r, = oo then p(—r,) := lim ¢(q) = cc.
q—00

——ry

2. When r, < oo and / ™Yy (dy) = oo then p(—r,) == lim ¢(q) = 0.
1 q
3. In the case:
r, < oo and / ™Yy (dy) < oo, (1.17)
1

then p(—r,) is a real number and:

o |tﬂt\3

50(77"1/) - —cry + / (eTVy -1~ 7nl/y]]-{|y|<1})I/(dy)' (118)
R

Let ¢, be the real number defined as:

o |tﬂw

— ety + / (™Y — 1 —ryylyy<1y)v(dy) = 0. (1.19)
R

Hence:
o(=r)) >0 c<ey. (1.20)
In the rest of the paper we assume
p(=ry) €]0,00] (1.21)
holds in any case.
1.3 In the sequel of the paper it will be convenient to deal with the parameter E(X;). Note that this expectation
may be expressed in terms of ¢ and v, via (1.9).
The zeros of
po(.) == () — 0 (1.22)
are important parameters of our study . We can plot two graphs:
(1) one represents ¢ and corresponds respectively to the three cases: E(X;1) < 0, E(X;) > 0 and E(X;) = 0;
(2) another which represents ¢y;

(see Figs. 1 and 2 for illustration).
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y A
p(u) o(u) o
-, =% =1(0) u =1y —70(ONs 0 %) -y =(0) =0 =(0) wu
8) B(X1) = —¢/(0) < 0 b) E(X1) = —¢/(0) > 0 ¢) B(X;) = —/(0) = 0
F1GURE 1. Graph of ¢.
po(u)
— . -
o A
—0
F1GURE 2. Graph of pg.
From Figures 1 and 2, we can easily infer the existence of x > 0 so that:
1. there is a unique ~;(¢) > 0 which satisfies:
p(15(0)) =0, VO €l0,x] (1.23)
and
« >0 if >0, or#=0and E(X;)>0
70 (6) { —0 iff=0and E(X,)<0; (1.24)
2. there is a unique vo(#) > 0 which satisfies:
p(—0(0) =0, Vo€ (1.25)
and
<0 if #>0, ord=0and E(X;) <0
_70(9){ —0 if0=0 and E(X;) > 0. (1.26)

So, when 6 > 0 is rather small, the positive (resp. negative) zero of ¢y is 73 (0) (resp. —vo(0)).

1.4 In the rest of the paper, excepted in Section 2.3, we will require that v and ¢ satisfy (1.11), (1.12) and
(1.21). On principle, let us consider these three conditions as as- sumption (H).

Note that, under (H), there is x > 0 so that (1.23)—(1.26) holds.
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2. THE RESULTS
We keep notation given in Section 1.

2.1. Normalized limit distribution of (7, K,,L,), as * — o

In this section we will investigate the limit behavior of the triple (T, K., L,), as * — oo. Recall that K,
and L, are defined by (0.3), resp. (0.4). Here as three cases: either E(X;) > 0, or E(X;) < 0 or E(X;) = 0.
First, it can be assumed that E(X;) < 0.

Theorem 2.1. Under (H) and E(X;) < 0 then, conditionally on {T, < oo}, the triple

(ﬁ (Term),Kx,Lz converges in distribution when x — oo to the 3-dimensional law

N(O; —M) ®@w~. In addition, w™ is the probability measure on Ry x R, :

©"(=70(0))
_ -1 0
W (b, D) =g s {%; ) 0.0(d,dl) + (70O — 110501 vi(dk) di
-y
+/ (/ (1 _ e’YO(O)(b"I‘y))P(Tb < oo)n(b,dk,dl)db ﬂ{k>0,l>0}) l/(dy)] 5 (21)
R 0

vi(dk) is the image of v(dk) by the map y — y — I, and n(b,dk,dl) is the distribution of (K, Ly,) conditionally
on {Tp < oo}.
If moreover the support of v is included in [0;00[, w™ (dk,dl) is given explicitly:

-1 0
w™ (dk,dl) = X {705 ) do,0(dk, dl) + (O — 1)1 450,501 vi(dk) dl] . (2.2)

Remark 2.2.
1. N(0;0%) denotes the Gaussian distribution with mean 0 and variance 2.
2. a) We may observe that time and positions become asymptotically independent. However the two
components of the positions are not independent. In Section 4.2, we give a stochastic interpretation of

the limit distribution w~ (dk, dl) defined by (2.2).
b) Obviously K, + L, = Xr, — Xy - is the jump size of (X;, t>0) at T,. It is easy to infer

from Theorem 2.1 that (i (Tm + m) , X7, — XT[) converges in distribution, as x — oo, to

N
N (O; —%) ®w where w is the probability measure on R, :
~ -1 [40(0) e s 1 —~4(0)s
w(ds) = do(ds) + 1 v(ds
(05) =gy |5 olds) it s ()
—y
n / ( / (1 — O+ )P(T} < co)n(b, ds)db) y(dy)]l{szo}] : (2.3)
r_ \Jo

and n(b, ds) is the distribution of X7, — X7, - conditionally on {73 < oo}.
If the jumps of (X, t>0) are positive, w(ds) can be simplified:

—1  [7/(0)
ol

003 — 1 — 49(0)
70(0)

Let list the results related to the two other cases: E(X7) > 0 and E(X;) = 0.

w(ds) = do(ds) + i Lis>03 V(ds)} . (2.4)
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Theorem 2.3. Assume (H).

1. When E(X7) > 0, then T,, < 0o a.s. and the triple (ﬁ (Tx + ﬁ) , Ky, Lz) converges in distribution,
©’'(0)

as ¥ — 00, to N(O; ,m) ® w™T, where wt is defined by the relation obtained after replacing vo(0)

by —v(0) in (2.1).
In particular if (X¢, t>0) has only positive jumps:

1 {73 (0)
E(X) | 2

wt (dk,dl) = So,0(dke, dl) + (1 — e 0 ONT o0y vi(dk) dl} : (2.5)

2. When E(X;) =0, then (Z—g, K., Lx) converges in distribution, as x — 0o, to p@w°. o denotes the law

of the first hitting time of level ﬁ by a standard Brownian motion started at 0. Let us recall that

T
J e " o(dz) = e V® . Moreover ¢"(0) = 1+ [; y?v(dy).

The probability measure w® on Ry x Ry is defined as follows:

1
w®(dk, dl) =50 {50,0(0114:, dl) + 201 >0, 150 vi(dk) di
-y
72/ (/ (b + y)n(b, dk,dl)db Lo, lzo}) v(dy)| , (2.6)
R_ 0

when n(b,dk,dl) is the distribution of (Kp, Ly).
This expression may be simplified if (X¢, t>0) has only positive jumps (i.e. v(] —o0,0[) =0):

1
U}O(dk',dl) = 50”—(0) [5070(dk,dl) + 2“1{]@20’ >0} Vk(dl) dk’} . (27)

We will present two complements of Theorems 2.1 and 2.3.
1. Let us introduce:

1 T
ﬁ (1Tx + m) when E(Xl) <0
T, = = (7. + ¢,f0)) when E(X;) > 0 (2.8)
% when E(X;) = 0.

In Section 4.1, a rate of convergence of fz to the associated Gaussian distribution, as z — oo is given.
2. In Section 4.2, we will provide a stochastic realization of the probability measure w™, resp. w™ defined
by (2.2), resp. (2.5).
2.2. Auxiliary results

To study the joint distribution of (T, K, L), the Laplace transform F of this three dimensional r.v. is used:
F(O0,p,px) =B (e Temmfemrban ), (2.9)

forany 8 >0, u >0, p > 0.
a) When v(R) < oo (i.e. (J,t > 0) is a compound Poisson process), we first prove (see Th. 2.4 below) that
F(0, u, p,-) satisfies a kind of integral equation.
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Theorem 2.4. Assume A = v(R) < co. For any 0 > 0, u >0 and p > 0, the function F(0,p,p,.) is solution
of the following integral equation:

G(x) = Fo(0, 11, p,x) + F1(0, 1, p, ) + AoG () Vo >0 (2.10)
where
ap = JEA+2(\+0), (2.11)
Fo(6, . poz) = e (cotoos, (2.12)
e*(Cgﬁ*Otg)I
0, p,px) = elmpteotan)y _ o—ny) 1 (g
) = ot [ ) v(dy)

e P

+ / (e—(p+ae—Co)(y—x) _ e—u(y—x)) v(dy
Oée(ﬂ—/)'i‘co —ap) Ja,00[ ( )

elu—p)z _ o—(cotap)z
+ / e " u(dy)
ag(p—p+cotag) Szl

e—(co+a9):c

— ] /000 (e_(’H““’_C")y — e_“y> v(dy), (2.13)

ag(p—p+co—ag

and Ny 1is the operator:

1 0o (z—y)Az
AoG(z) = a_/ v(dy) / e~ (e_“"l“l - e_(m_“)“") G(x —a—y)da. (2.14)

0 J—oc0 —o0

The positive operator Ay will be studied in details in Section 4.3. In particular, it is proved that, under
suitable assumptions, F' (6, i, p,-) is the unique function G which solves the equation (2.10), and can be strongly
approximated by a series.

b) However the operator Ay cannot be defined if v is not a finite measure. The formula (2.10) does not permit
to consider Lévy processes which are not reduced to a Brownian motion with drift plus a compound Poisson
process. To avoid this difficulty, we introduce the Laplace transform ﬁ(ﬂ, wyp,-) of F(0,u,p,-):

F(0,p,p,q) = / e WE(O, p, p,y)dy. (2.15)
0

This definition is meaningful for any ¢ such that Re (¢) > 0, since F (6, u, p,.) is a bounded function on [0, co].
Taking the Laplace transform in (2.10), proves (see Th. 2.5 below) that under (H), F(6, 1, p,.) verifies some

kind of integral equation which remains valid when v is a Lévy measure with no necessary finite mass.

Before stating this result, let us denote by R the operator:

Rh(q) == [ OOO v(dy) /0 o (e*q<b+y>f1) h(b)db, (2.16)

where g € C, Re(q) > 0 and h € L>®(Ry).
Note that the identity (1.11) implies that Rh(q) is well defined.
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Theorem 2.5. Let us assume that (H) holds. Let 0,u,p >0, g € C, Re(q) > 0. We get:

~ 1 q—00) /00 [e(quﬂ)y —e o= (O Py _ o—ny
r 97 yPyq) = < + - ¥ v dy
6 i00,9) o(q) — 0 2 0 qa+tp—p %(0) +p—n (dy)
+RE(0.0.)(a) ~ RFG.pop. )05(6) ) (217)
where v (0) is defined in (1.23) and (1.24).
Remark 2.6.
1. If v(] — 00,0[) = 0 then RF(0,u,p,.) is cancelled, and ﬁ(@,,u,p, q) is given by the following explicit
formula:
~ 1 q—5(0) /00 [e—(q+p)y_e—uy e~ (6 (O)+p)y _ e—uy] )
F(O, p,p,q) = ( + - - v(dy) ) . 2.18
0:,0) o(q) — 0 2 0 qtp—n %(0) +p—n () (2.18)
2. If v(]0,00[) = 0 (2.17) is reduced to:
FO,p1,p.9) = =0 5 TRE(0, 1 p, ) (@) =RE(O, 1. p. ) (7(9))) - (2.19)

3. Let us briefly detail the case § = p = p =0 (i.e. F(0,0,0,x) is the ruin probability). If E(X;) > 0, it is
easy to check that f : 2 — 1 satisfies (2.17). In the more interesting case: E(X;) < 0, since ~5(0) = 0,
then the relation (2.17) may be simplified. Suppose moreover that v(] — oo,0[) = 0, then (2.18) is

reduced to:
. oo 1 E(Xy)
F(0,0,0,q :/ e YP(T, < oo)dy = — + . 2.20
0.0.0.0) = [ BT, < o)ty = £+ = (2:20)
Therefore (2.20) generalizes identity (3.3) in [8].
Since {Ty < oo} = { X > y}, where X, := sup Xy, then (2.20) is equivalent to:
>0
E(e™#%=) = ~E(X;)—~, ¢>0. (2.21)

(q)’
Note that in the case v(]0,c0[) = 0, then F(0,0,0,z) = P(T, < co) = e~ 00z,

c) Let us briefly indicate how Theorem 2.5 enables to obtain the asymptotic behavior of (fx, K,, Lx) as r —
0o. Using the Mellin-Fourier inverse transformation, it is actually possible to recover F'(,u,p,-) (see the
formula (3.70) in Sect. 3.4). It implies that the asymptotic behavior of F(0, u, p,z), * — oo depends on the
poles of ﬁ(@, s p, ). According to (2.17), the complex zeros of ¢y are the poles of ﬁ(@, iy p,+). Under (H) and
(2.23), we may determine in Proposition 2.7 the zeros of py. Hence, we may obtain an expansion of F(0, u, p, )
as © — oo (see Th. 2.8 below). Finally that allows to determine the limit distribution of the random triple
considered above as x goes to infinity.

Let

B, :=sup{b>0; ¢— / e~ %¥y(dy) admits a meromorphic extension to D_p}, (2.22)
1
where D_j, := {q € C; Req > —b}.

Note that B, > r, and B, may be equal to co. Then ¢ has a meromorphic extension to D_p, . For simplicity,
this extension will be denoted ¢ .
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Our last assumption on v is:
VB €]0,B,[, 3K, Ry > 0,so that :

o -B < <
/ e_qyy(dy)‘ < Kl|q|, for any ¢ so that { BsReq=0
1

|Im ¢| > Ryp.

(2.23)

A large class of measures v satisfying (H) and (2.23) will be given in Section 4.4.
First, we will concentrate on the complex zeros of the function ¢y defined by (1.22). Then, we will give in
Theorem 2.8 an asymptotic expansion of F(0, u, p,z) as x — oo.

Proposition 2.7. Let us suppose that (H) and (2.23) hold. Then for any 0 € [0, k], there exists Bp > 0 such that
for any B €]0, By, po admits a finite number of conjugated zeros in the strip D_p g, :={q € C; —B <Req < (p}.
This set of zeros of wg in D_p g, is equal to (cf. Fig. 3 below):

1. {7’70(9)7 *'71(9)7 *T(Q)a e afﬁ}lp(e)a 77_17(9)} Zf 0> 0;
2. {Oa 7’70(0)7 771(0% 7%(0)7 e 77’-}/?(0)7 77_17(0)} Zf 0 =0 and E(Xl) < 0;
3. {7’7%(0) = 07 *'71(0)7 7%(0% t 7*’}/?(0)’ 7%(0)} Zf =0 and E(Xl) > 0’
—B <Re (—(#) <+~ <Re(-m(0)) < —0(0) <0, (2.24)

4. —v(0) is a simple (resp. double) zero of @, if 0 > 0, or § = 0 and E(X1) # 0 (resp. otherwise, i.e.
0 =0 and E(X1)=0).

The zeros of g which are the poles of F (0, i, p, -) will play an important role in our approach, as shown below
(see the proof of Th. 2.8 in Sect. 3.4, and properties in Sect. 4.5).

Theorem 2.8.  Let us suppose (H) and (2.23). Then for any 6 € [0,k], p > 0 and p > 0, there exists
a positive number Cy(8, i, p) >0 and complex z-polynomial functions C1(0, p, p,x), -+ ,Cp(0, u, p,x) so that
F(0, p, p,x) has the following asymptotic expansion as x — oo:

P
F(@, oy Py l‘) :00(97 22 p)e*’YU(G)z + Z a; (C’L (9; ey Py x)ef'y.;(e)a: + a(oa sy Ps z)eiw(e)m)
=1

+0 (e7P7), (2.25)

1
where a; = 3 if vi(0) is real and a; =1 otherwise. The degree of Ci(0, , p,.) is n; — 1, where n; is the order of
multiplicity of —v;(0). In addition, O is uniform with respect to u >0, p >0 and 6 € [0, K].

Remark 2.9.

1. In (2.25), it is understood that B may be chosen in ]0, B, [ closest as possible to B,,.
2. In Section 4.5 we study the coefficients C;(0, u, p, x).
3. Obviously, (2.25) and (2.24) imply that:

lim F (6, 1, p, 2)e7* 9" = Cy (6, 1, ). (2.26)

xr—00

This property has already been reached in [2] in the particular case: 6 = u=p = 0:
F(0,0,0,2) = P(T, < 00)~Co(0,0,0)e™ 0% a5 2 — oo, (2.27)
(1) Heuristically, no assumption on the negative jumps is required to get:

F(O,p,p,x) < Ce 0O (2.28)
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However to obtain an equivalent, or an asymptotic development of F' (0, u, p, z) when = goes to infinity, it
is natural to suppose that the negative and the positive parts of the jumps of (X;,¢ > 0) are controlled.
Our asymptotic development looks like a perturbation theorem around the case of Brownian motion
with negative drift.

2.3. Polynomial decay

According to item 3 of Remark 2.9, under (H) and (2.23), the ruin probability goes to 0, with exponential rate.
The aim is to prove that under weaker assumptions,

F(z) := F(0,0,0,2) = P(T, < ) (2.29)

has a polynomial type rate of decay, as x — oo.
In this section we suppose neither (H) nor (2.23).

Theorem 2.10. Let us assume that

/R|y|]l{‘y‘>1}u(dy) < 00 and E(Xl) = —Cc+ /Ry]l{‘y‘zuu(dy) <0. (230)

and
(o)
/ yPr(dy) < oo, for some p>2. (2.31)
0

Let n be the integer part of p — 2, then

Ve e Ry P(T, < c0) < 7 f’;n , (2.32)
where C,, > 0.
3. PROOFS
3.1. Proof of Theorems 2.1 and 2.3
Our approach is only based on the following estimate:
F(O, 1, p, ) ~ Co(6, p, p)e % as 2 — oo, (3.1)

where F(0, ui, p, ) (resp. 70(0)) is defined by (2.9) (resp. (1.25) and (1.26)). The coefficient Cy(6, i, p) comes
from (2.25) included in Theorem 2.8.

Theorems 2.1 and 2.3 related to the three cases E(X1) > 0, E(X;) < 0 and E(X;) = 0 may be proved by
using the same technique. Therefore we will only consider the case E(X1) = 0 and the case E(X1) < 0 (see
Sect. 4.6 t00).

3.1.1
Let us start with the case E(X;) = 0.
() Since o(—70(0)) = 6, ©(0) = 0 and ¢’'(0) = 0, we may use the asymptotic expansion of ¢ at 0 at order 2:

2
0= p(—10(6)) = p(—h) = =" (0) + o(h?). (32)
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Therefore:

20
Y0(0) = h = 10) +0o(V0). (3.3)

Recall that (3.1) is uniform with respect to 6 € [0, x]. Then replacing 6 by % in (3.1) brings to:
0 0%z K. pL,
F (ﬁaﬂap7x> :E<e ng e pLL]]‘{Tz<OO})

0 _ /26

NCO <_27Map>e \/V’”(O) as T — 00,
x

_\/T
~Co(0,pu,p)e V'O as x— 0. (3.4)

T
(i) We would like to demonstrate in this item that Cy(0, p, p) and e \/W“’) are Laplace transforms of prob-

ability measures on [0, 00[x [0, c0[ and [0, co[ respectively. As for e_\/ *””1“’)\/@, it is well known (c¢f. [12] p. 96
formula (8.6)) that it is the Laplace transform of the first hitting time to level , /ﬁ for a standard Brownian

motion started at 0.
Let us prove that Cy(0, i, p) is a Laplace transform. We modify the identity (4.34) in Section 4.5 via the

relation: )
e~ W —1+ay / —az
_— " = z—y)e “*dz.
pe ; (z—y)

Co(0, 1, p) :%(0) {1 o /O T oo ( /0 . y)e(ﬂ“)zdz) v(dy)

-2 /O (/Oy(erb)IE (e“K”ﬂLb]l{Tb<oo})db> V(dy)} . (3.5)

— 00

Then, we obtain:

Let n(b, du,dz) be the distribution of the couple (Kp, Lp). Consequently, Co(0, i, p) may be written as follows:

Co(0, 11, p) :80,%(0) 1+ 2/000 e Hz (/[Zyoo[(y - z)eﬂ<yz>u(dy)> dz
2 / / e Hiep? / i ( / y(y—i—b)n(b,du,dz)db) V(dy)}
/ / e Me Py (du, dz), (3.6)
with w® defined in (2.6). 0

3.1.2

Next we study the case E(X;) < 0.
(7) On one hand, from (3.1), we have:

Ty pKa— FO,p,p.x)  F(b,pp )
0T, K.—pL, _ s Hos Py _ s My Py
B (eI < 00) = H N = F(0.0.0.2)

o C000,14,0) —(30(0)=r0(0))a

C’O(O 0 O) as x — 0. (3.7)
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On the other hand, the behavior of vy(#) in a neighborhood of 0 is the following:

B - 1 (p”( - '70(0))
Y0(0) —70(0) = 2 (—0(0)) o+ 2¢3(—70(0))

62 +0(6%) (6 —0). (3.8)

Combining (3.7) and (3.8) leads after easy calculations to:

Py _ 19" (=20(0) y2
E efﬁ(Tﬁm)i#KwiquTz <00 | ~ 7CO(O’M’p)e 20800  as x — 0o, (3.9)
Co(0,0,0)
_ 19" (=70(0) g2
Let us observe that e ?#(=w©)" is the Laplace transform (with respect to the 6 variable) of the Gaussian

¢"(=70(0))
" (=70(0))
is the Laplace transform of a probability measure on [0, co[x [0, cof.

distribution with mean 0 and variance As a result Theorem 2.1 will be proved as soon as we

Co(0,p,p)
C(0,0,0)

We proceed as in the case 3.1.1 above. We begin by using the relation (4.34):

demonstrate that

Co(0,1,p) 1 ~10(0) o0 o= (=70(0)+p)y _ e—uyy
Co(0,0,0) ~ Co(0,0,0)/(—70(0)) { 2 +/o ) )
- [T ) + REO.p ) (-0(0)] (3.10)
It follows:
Col0,11,p) 1 2000 Ty ([ @z g, )
Co(0,0,0) — Co(0,0,009(—70(0)) [ o (/0 e ) (d9)
_ ooe*uy ye*(ﬂ*u)z 2\ v (=0 ) )
/ < / d) (dy) + RE(0, 1,p, )( 7(0))] (3.11)

Using the Fubini theorem we get:

CO(GJMP) _ 1 770(0) B 0 e,YO(O)Z o e P? eiu(yiz)]/ .
Co(0,0,0) ~ Co(0,0,0)(—0(0)) l a A 2 </W[ <dy>>d

+/0 (/_y(evow)z —1E (e—ukb—prl{Tb<m}) db) V(dy)} ) (3.12)

—0o0 0

Let n(b, du,dz) be the distribution of (K3, Lp) conditionally on {7}, < co}. Then:

CO(GJMP) _ 1 770(0) B © e,YO(O)Z —1)e P? eiu(yiz)]/ .
Co(0,0,0) ~ Co(0,0,0)(—0(0)) l a A 2 </W[ <dy>>d

+ /O h /0  arpgre /_ OOO ( /O _y(e%<0>z — DP(T, < oo)n(b,du,dz)db) V(dy)}

= / / e Me Pw (du,dz), (3.13)
o Jo

with w™ defined in (2.1).
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3.2. Proof of Theorem 2.4

In this subsection it is assumed that: A := v(R) < co. Then (J;, ¢ >0) is a compound Poisson process. As a
result, it admits a first jump time 71, exponentially distributed with parameter v(R) (cf. [18], Th. 21.1). The
process (Xiyr, — Xr, ; t > 0) is again a Lévy process distributed as (X;, ¢ >0). This property is the key of our
approach that we will briefly describe. Let us consider three cases:

o T,=inf {t>0; By—cot >a}<m if sup (B:— cot) >z,
0<t<m

o T, =m if sup (B —cot) <z and J, + B —com1 > x,
0<t<m

e T, > 11 otherwise. Then, conditionally on {T, > 71}, T, — 71 is distributed as fz, x,, Where (fz ;x> 0)

is an independent copy of (T ; « > 0). (T,; z > 0) is independent from (X;, ¢>0) as well. This
“renewal” part gives rise to the integral kernel Ay defined in (2.14).

This leads us to decompose F'(0, 1, p,.) defined by (2.9), as follows:

F(g7 1w, p, x) —E (efeTxquwprz]l{Tx<Tl}) +E (efGwaquprx ]l{Tw:Tl})
+E (eieTxi#K"zipr ]l{'rl<Tx<oo}) . (314)

We will calculate the two first terms of (3.14) in Lemmas 3.1, 3.2. The third one will be determined in Lemma 3.3.
Lemma 3.1. Let ag be the real number, defined in (2.11), then:

E (e_eTw_HKz_pr ]l{Tw<n}) = o~ (cotag)z (3.15)
Proof of Lemma 3.1. Let (Et , t>0) be the Brownian motion with drift —cg:
Byi=By—cpt  Vt>0. (3.16)

We set fa = 1inf {t > 0; Et >a}, x> 0.
Then, {T, <7} ={Tx <7} as and K, =L, =0on {T, < 7}
Since 71 is exponentially distributed with parameter A and is independent from 7)., we have:

E (e 0T #Kempleq o)) =B (e OFOT) (3.17)
According to ([12], exercise 5.10 p. 197) we can conclude that (3.15) holds. O
Lemma 3.2. We have:
E (e—eTxquwprx]l{Tzzﬁ}) _ o—(cotag)z / (e(,p+c0+ag)y B e—uy) v(dy)
ag(p—p+co+ ag) Jioql

e P

+ / (e—(p+ae—co)(y—w) — e—u(y—w)> v(dy)
ap(p—p+co—ag) Sz (

elb=p)z _ o—(cotag)z
n [ e
Oéa(ﬂ—p+00+0(9) ]z, 00[

e—(c()—i-ae):c

o0
- / (e—(p+ae—00)y — e_“y) v(dy).

ap(p—p+co—ag) Jo

(3.18)
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Proof of Lemma 3.2. Let us write: Y7 := J,,. We observe that on {T,, = 71}, Y7 > 0. Morever:

(T, =7} ={sup By <z, B,, + Y1 >z}, (3.19)
t<t11
and
Ke=B.+Yi—a2 , Ly=xz-B,, (3.20)

where (By, t>0) is defined by the relation (3.16). Conditioning by (1, Y1) implies that:
A =E (7T b g )

oo o ~
- —(A+0 —(pu—p)Bi—p(y—z
—e px/o dt e~ )t/ y(dy)E(e (h=p)Be—p(y a)ﬂ{supugt&(a‘; x—ygﬁt})

0
(3.21)
. o 1
since the distribution of Y7 is XV'
The density function of (sup B,,, By) is given in (12] p. 95), i.e.:
u<t
2(2b — (l) _(@b-a)?
P(B; €da;supB, €db| = ——=¢ 2t 1 . dadb. 3.22
( t ugg > \/W {a<b; b>0} ( )
Let us apply Girsanov’s formula:
~ ~ 22b—a) _. . b, _(@va?
P(B; €da;supB, €db | = 2 ——~Ce @ 2l e " 1, dadb. 3.23
( t uglz u ) \/ﬁ {a<b; b>0} ( )
Combining (3.23) and (3.21) leads to:
A= e(“*p)z/ v(dy) e*“y/ da e*(c‘)*“*p)“/ db (2b — a)
0 z—y aVvo0
) 1 o2 (2b—a)?
/ R (e (3.24)
o V2rt3
Let us recall the classical identities (¢f. [14] p. 118, or [9] Sects. 8.432 6 p. 959, and 8.469 3 p. 967):
Ki1(6) := 1 /Oo Leterba— [Tes w50 (3.25)
LAY NN \ 25 ’ '
and
<1 1 27
e 3B = [l VBY
e 2 tdt = e VB >0, Vv >0, 3.26
0o V£t v ( )

obtained by derivation and the changing of variable ¢t — \/g t.

This allows to first compute explicitly the integral with respect to d¢ in (3.24):

o0 T x
A= 2e(“*p)m/ v(dy) e*“y/ da e*(coﬂ‘*p)a/ e~ (2b=a) qp, (3.27)
0 r—y aVvo0
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In a second step we evaluate the integral with respect to db:

e(/l‘_p)l‘

A= /00 v(dy) e /x da e~ (cotn=pla (e_‘“’l“l - e_‘”(%_“)) . (3.28)
Qg 0 T—y

Let us introduce two cases x —y > 0 and x —y < O:

eln—p)z z
A= / v(dy) e_“y/ e~ (cotn=rtas)a g,
a9 [0,2] z—y

elh—p)z 0 *
+ / I/(dy) e HY {/ e (cotn—p—aq)a da+/ o~ (cotu—ptas)a 4,
Qg ]z, 00[ z—y 0

e(—2a9+;¢—p)x 0 T i
— 7/ v(dy) e_“y/ e~ (cotu—pas)a qq (3.29)
% 0 z—y
If the integral is computed according to da, we may easily obtain (3.18). a

Lemma 3.3.  In (3.14), the third expectation is equal to:

1 [ (z—y)Azx
E (e7/Temmfemple 10 o1 coy) = —a/ V(dy)/ e e (e’ag'“' - 6(2””’“)“") F@0,p,p,r—a—y)da.
a6) — —oo
(3.30)

Morever:
emaelal _ o= (rma)as > ) if a<(z—y) Az, (3.31)
so Ny defined by (2.14) is an non-negative operator.

Proof of Lemma 3.3. Formula (3.30) may be proved proceeding analogously to the proof of previous lemma. O

Remark 3.4. By introducing adapted functional Banach spaces, we may study in Section 4.3 (¢f. Th. 4.2 and
Prop. 4.3) the operator Ayg. We can prove that F(0, u, p,.) is the unique solution of (2.10). Moreover, if 6 > 0,
or # =0 and E(X;) <0, then F(0, u, p,.) has a sub-exponential rate of decay:

FO,p,p,x)<Ce ™ Vx>0, forsome C>0,v>0. (3.32)

The optimal value of v has be given in Remark 2.9.
Note that if 6 = 0 and E(X7) > 0, then F(0,0,0,2z) = 1, hence there is no hope to obtain a sub-exponential
rate of decay.

3.3. Proof of Theorem 2.5

Assume that v satisfies the assumptions given in Theorem 2.5. The proof of Theorem 2.5 will be divided into
two steps. We will first prove (2.17) when v(R) < co. In a second step, we will approximate v by a sequence of
finite measures (v,). Then by replacing v by v, and by taking the limit n — oo, it will be proved that (2.17)
remains valid.
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Step 1. Let us suppose that v(R) < co.
a) Taking the Laplace transform in functional equation (2.10) leads to:

F(0,11,p,9) = Fo(0, 11, p,q) + Fy (0, 11, p,q) + AgF (0, 11, p, ) (@) ¢ € Do,
with Dy := {2z € C,Re(z) > 0}.

The identity (2.12) implies:
1

F0(97M,P,Q) = m-

As for I (0, 1, p, ), starting from (2.13), we split the integral in four parts:
Fi(8, 11,y q) =/ e 1 F (0, i, p,x)d
0

= 11(9,u,p, Q) + 12(97N;P;Q) + 13(9a,uapa Q) + I4(9,u,p, Q)

where

16 ) = /oo e~ (atctag)x / (e(chagfp)y _ efuy> v(dy) | dz
R o @(ptctag—p) \Joaq

1

— = —(q+p)y _ —(q+u+c+ae)y) d
e e v ,
ae(q+c+ae)(u+c+aefp)/o ( (dy)

> e—(gt+p)z
I 9’ el = ei(eragic)(yim) —efﬁ"(y*m) v(d dx
20, 11,0, q) /0 ag(p+c—ag—p) (/]%oo[( ) (dy)

1 © /e—(ptas—c)y _ o—(at+p)y  o—(at+P)y _ o—hy
= + v(dy),
ap(p+c—ag—p) Jo q+c—ag q+p—p
10 ) /00 e—(atp—mz _ o—(g+ctag)z / 0 (dy) ) d
3\Ys My Py = e v x
S 0 ap(p —p+c+ap) 00 Y
1 o0 e—(@tr)y _ g—ny  o—(atptetan)y _ g—py
aglp—p+c+ag) Jo qg+p—p g+ c+ag
o e_(qu‘CJFCVG)x — —~
L a) == /o ag(—p+p+c—ap) de (VJr(er o —c¢) = VJF(M)

v () — v (p+ ap —c)
ao(q+c+ o) (—p+pu+c—ag)’

and v+ denotes the Laplace transform of V0,00

—

) = Py 0) = T e m(dy), qe] - roool.

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)
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Therefore:

vt(g+p) n vt(g+p)
ap(q+ctap)(qg+p—p)  ag(g+c—ag)(g+p—p)

F1(9,u,p,q) -

2;4\‘(/)4—049—0)
(m+c—ag—p)g+c—ag)(qg+c+ap)

2 7 (1)

(n+c—ao—p)qg+p—p)(qg+c+ag)

Let us introduce:
Co(q) = (q+c+ap)(g+c—ag) = q* + 2cq — 2(A+6)-

A straight calculation gives:

— 2
Fl(ea,ufapatﬁz <

Co(q) q+p—p p—p+c—ag

vHg+p) — v (p) vt (u) —vt(p+ c))
b) Let us now compute /\/077(9, L, py ) (q).
Setting b = = — a — y in (2.14) leads to:

AGF(Ga ey Py )(I)
— i V(dy)/ e~ c@—b=y) (e*aelx*y*b\ _ e*(x+y+b)a9) F(6, u, p, b)db
0

Qg J_ oo
1 O

-y
- = I/(dy)/ e~ cl@—b—y) (e*ae(r*y*b) _ e*(x+y+b)a9) F(0, 11, p,b)db
0

ag J_ oo

=H\F0,p,p,.)(x) + 10, 1, p, )

e—(c+ozg)a;
“on (RE(O, 1, p, ) (g — ¢) = RF(0, p, p, ) (=g — ),

where we recall that R has been defined by (2.16), and

1 oo oo
HF0,p,p,.)(x):= ” / v(dy) /e_c(m_b_y)e_‘”‘m_y—blF(é’,u,p,b)db7

—o0 0

1 [ o A
16..p,5) = [ v(dy) [ e et Do by p by
—00 0
1 —(ctag)z

=—=¢€ v(ag —c) ﬁ(GaH,PaOéG*C),

Qg

and 7 stands for the Laplace transform of v:
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(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)
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We multiply both sides of (3.44) by e~ 9* and we integrate with respect to the Lebesgue measure restricted to
[0, 00]. We get:

s — f/\agfcﬁﬁ,u,p,agfc
AgF(Q,u,p,.)(q):HlF(G,u,p,.)(q)* ( ag()qj-C-i-Oée) )

F(0,p,p,. ) (g —c)— RF (O, p,p,.)(—ag — )

3.48
ap(q+c+ ap) (3.48)
We now focus on the calculation of H; F (0, 1, p,.)(q). By using (3.45), we come to:
T 1 OOC oocb oo7( +c)z . —ag|lr—y—b|
HAF(0,p,p,)(q) = — [ ePu(dy) [ eF(0,p,p,b)db [ e 11T e 270 dy
g J oo 0 0
1 0 —y 00
= ecyu(dy)/ eF (0, u, p, b)db/ e (ato)zg—as(@=y=b)q,
(&%) — 00 0 0
b+y
+— / e“u(dy) / eF (0, u, p, b)db / e~ (ato)zgan(z—y=b)qy
0v(—y) 0
+ — % (dy) / eF (8, i, p, b)db / —late)zeman(@—y=b)qy
Qg ov(—y) bty
The z-integrals can be computed:
77 L [° eran) “oletan 1
HLFO, 1, p, )(q) = — [ eleteovy(q c+a0)V £ (9. 1 p, b)db —————
1E(0, 1, p,)(q) ae[ﬁ V(y)/oe (0, 1, p,b)db
1 [ o 1 — e (atc—ao)(b+y)
+— e(c*a")yy(dy)/ ele@b B (9, 1, p, b) ¢ db
a9 ) o oV (—y) gtc—ap
1 [ o0 —(gtctag)(bty)
+—/e(c+o‘9)yu(dy)/ eletad)b L9 1 p, b) ST
ay J o ov(—y) Q+C+a9
By using (2.16) we may obtain:
— 1 0 —v
HE0, 1, p, )(q) = ———— |RFO, 1, p, )(—crg— +/ d /FG,,,bdb]
0. )0) = s | RO p ) =)+ [ wlan) [F6. 000
L / (e-a) T glemanp
b [y [ el o by
ag(q+c—ap) 0v(—y)
S /00 e~ Yy (dy) /00 e F(0, u, p,b)db
ag(q+c—ag) ) o ov(—y)
+ . /oo e Yy(dy) /00 e F (6,1, p,b)db.
ag(q+c+ag) ) o 0v(-y)
Since
1 1 2
- =— (3.49)

ag(q+c+ap)  ao(qg+c—ap) Co(q)’
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we get:

_ RF(0, p, p,.)(—ap — )
ap(q+ c+ ag)

H F(0, 1, p,.)(q)

n U(ag — c)ﬁ(@,u, p,ag—c)— RF(0, 1, p,.) (g — c)
ap(q+ ¢ — ap)

2
Co(q)

(@) (0,1 p,0) = RF (0. 11,0, )(0)) - (3.50)

Combining (3.33) and (3.48) gives:

2v(q)
Co(q)

~ ~ ~ 2
F(97Mapaq) (1 + ) = F0(05u7p7 q) + F1(05u7p7 q) + —RF(97%P; )(q)

Co(q)
+ %(q) (ﬁ(ag — O)F (8, 1, pyag — ¢) — RE (O, u, p, ) (ag — c)) : (3.51)
As Cy(q) +2v(q) = 2(p(q) — 0), it is easy to check:

~

(9(a) ~ 6)F (6, 11..4) =5 Cola) o0, . pra) + Fi (6,1, p,)| + RE®, 1., )(a)
+ U(ag — ¢)F(, i, p, g — ¢) — RE(6, 1, p, ) (g — ¢) . (3.52)

Let us recall that (H) implies the existence of 7§(f) > 0 such that ¢(y5(6)) = 6 (¢f. (1.23) and (1.24)).
Therefore taking ¢ = ~;(0) in (3.52) brings to:

D(ag — ¢)F(, p, p,cg — ¢) — RE(6, 1, p, ) (g — ¢)
= _%CG (78 (9)) (ﬁO(ea s P ’YS (9)) + F\l (97 Hs P, ’Yg (9))) - RF(Ha s P )(78 (9)) : (353)

First we determine Fo (60, 1, p, 7 (0)) resp. Fi(6, p, p, 75 (0)) by using (3.34) resp. (3.43). Then relations (3.53)
and (3.52) imply directly (2.17).
Step 2. Let v, be the finite measure on R:

Vn(dy) == Ve -1 1(dy) Vn > 1. (3.54)

Let F,, be the Laplace transform of (T, K):

Fo(0,p,p,7) = E (e—OT;L—;tK;L_pLZ I{T;L@O}) , (3.55)
where X' = By — ¢o + J, (J', t > 0) a compound Poisson process with Lévy measure
Un, T = inf{t > 0, X >z} and K}! = X7, —x. Since lim 7' = T, and lim K] = K, we can therefore
infer that (2.17) will result from a limit procedure. O

3.4. Proof of Theorem 2.8

Let us recall that F'(0, i, p,.) resp. ﬁ(@, i, p, .) have been defined by (2.9) resp. (0.6).
In the sequel, B €]0, B, [ is supposed to be as close as possible to B,.
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Step 1. We replace F(0, u, p,.) by f‘(ﬂ, 1L, p, .); an equation associated with F‘(H, Ly Py )
We extend continuously F'(, u, p,.) to the whole line as follows:

F(0, 1, p, ) := F(0, 1, p, 2) Lgsoof (x) + (1 + )11, 4)(2), Vo €R. (3.56)
Let 13(9, 1, p, .) be the Laplace transform of f‘(ﬂ, Ly Py )

ﬁ(@, Wy Py q) = / ef‘”ﬁ(é’, i, p, x)dx . (3.57)
The advantage of using ﬁ(@, i, p,.) instead of F(0, i, p, .) lies in the fact that we shall prove below in Lemma 3.5,

that t — ﬁ(@, iy py g1 + it) is an integrable function on R, for any ¢; in ]0, Bp[ (Bs being defined in Prop. 2.7).
Since f81(1 + z)e dz = £=1=9 (2.17) implies:

q2 b
= eq — ]_ — q
F(Gvua P, Q) :T
1 — A 00 [o—(at+p)y _ o=y —(6(0)+p)y _ g—ny
. (q 70(9)+/ {e M e i e ()
¢(q) — ¢ 2 0 q+p—p Y5(0) +p— p
+REO.p.)(a) ~ RFO,1p.)05(0)) (3.59)
We may observe that
pla) =0 _ »lg) = »(5(0))
q+5(0) q+5(0)
—~*(h —~*(p © o=qy _ o= (0)y — ~ Oyl
_q Yo (0) e q ’yg( ) +/ e € + (q* 7 (0))y {‘yKI}V(dy), (3.59)
2 q+5(0) —00 q+(0)
and a_1 1 0 _1 “(0)
el —1—gq el — o
PN S _ ). 3.60)
q? q+5(0) q? q(q +5(0)) (
Consequently, for any ¢, so that Re ¢ > 0:
E el —1 1 (6)
F 9;#797(] = - *
( ) q? q(q+5(0))
N 1 ., q— 76(9) B /oo e~ — 6778(9)74 + (q - 76(9))y]]-{|y|<1} l/(dy)
¢(q) — 0 a+70)  J_ow q+5(0)
o re—(a+p)y _ =1y e~ (w6 (@)+p)y _ o—ny
L U B
0 q+p—p Y5 (0) +p— p
SRE(0.10.)(0) ~ RE .. )05(0)] - (3.61)

It is clear that (1.11) implies that RF'(6, i, p, .) (defined by (2.16)) is an entire function on C and all the integrals
in (3.61) are holomorphic at least in D_p, . Therefore, the right hand-side of (3.61) is the meromorphic extension

~

of F(8, 1, p,.) to D_p, .
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Before ending step 1, we may remark that if # > 0 or § = 0 and E(X;) # 0, f‘(ﬂ,u,p, .) and ﬁ(@,u,p, .) are
holomorphic in a neighborhood of ¢ = ~5(0). Although ~§(6) is a zero of g, this value is a false singularity for

F(0,,p,.). But if § = 0 and E(X;) = 0, then 75(0) = 0 is a pole for F(0, 1, p, .).

Step 2. t — F(6, i, p, q1 + it) belongs to L (R).

We may consider 6 as a fixed element in [0, k] and By > 0 as being given by Proposition 2.7. In addition, let
q1 E]Oa ﬁe[

Lemma 3.5. Under (H) and (2.23), the function t — F(0, 1, p, qi + it) belongs to L} (R).

So that to prove Lemma 3.5, we may begin with enumerating a few technical inequalities. These relations
will be also used in the sequel.

Lemma 3.6. Let 61 < 02. Let us suppose (2.23). Then:
(1) 3k > 0 so that for any q which satisfies Re q € [01,02], we have:

1
/ (™ — 1+ qylyy<1y) V(dy)‘ < klal, (3.62)
-1
0
[t g via)| <l (3.63)
-1
1
/ (€% =1+ qyly<1y) V(dy)‘ < klql, (3.64)
0
-1
(19) ¥d>0, Jko>0 suchthat sup / eqyy(dy)‘ < ko, (3.65)
Re ¢<d |J -
—B < <
(ti1) YA>0 Fk; >0 suchthat Vg which satisfies : { |Irfq_|§3{q0_ A ’
[ee]
‘/ (e — 1+ qylyy<1y) V(dy)‘ < k(1 +ql), (3.66)
—00
Lo 2
= la < e@l < kg (3.7
(iv) VYheR, sup |[RF(0,u,p,q) <oo. (3.68)
Re g<h
Proof of Lemma 3.6. The proof of Lemma 3.6 may be directly infered from (2.23). ]

Proof of Lemma 3.5. Proposition 2.7 tells us that ¢y has no zero in the strip {g € C; 0 < Req < fBp}. So, if

@1 €]0, Bo[, (g1 +it) — 6 never cancels and (3.61) implies that ¢ — 13(9, L, py q1 + it) is a continuous function. Let
us focus on (3.61). Lemma 3.6 implies that all the numerators in (3.61) are bounded on the line {¢; +it ; t € R},

and the denominators are smaller than C|q?| for some C' > 0 and |q| large. This proves t — 13(9, L, pyq1 + it)
belongs to L!(R). 0
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Step 3. Proof of the asymptotic development (2.25), through the Mellin Fourier inverse transform.

Proposition 2.7 provides the existence of k > 0 and B so that for any 6§ € [0,x], ¢p does not cancel on
{=B+it; t € R} and B # ~5(0).

Let 0 < ¢q1 < fBy. Since t — ﬁ(@,u, p,q1 +it) belongs to L}(R) (¢f. Lem. 3.5), we may use the Mellin Fourier
inverse transform (see for instance [19], p. 232-239). So, for any = > 0:

oo

~ 1 =
O p0) = PTF O ) = 5 [ T E O pan + e, (3.69)
™ — 00
hence
1 o0 L ; =
F.pn) = 5= [ OO pay it = — o [ F@upp, 21, (3.70)
21 0o 21 Ty,
where T'y, is the path:
Iy, :={2=q +it suchthat te€R, ¢increasing}. (3.71)

In Proposition 2.7, it has been proved that there is Ry > Ry, so that ¢y has no zero in the two half-strips

{geC; —B<Req< (pand|Img|> Ry} In particular 13(9, 1L, p, ) is holomorphic in this domain.
Let I'_p 4, r be the rectangular path (see Fig. 3):

' Bgr=TgrUTrUT_grUT_g, (3.72)
where:
Iyr ={q+it; [t|]<R, tgrowing}, (3.73)
I'r ={t+iR; —-B<t<q, tdecreasing}, (3.74)
I pr:={-B+it; |t|<R, tdecreasing}, (3.75)
''p ={t—iR; —-B<t<q, tgrowing}. (3.76)

If the residual theorem is applied to the meromorphic extension of z — e“f‘(@, 1, p,z) to D_p, , the result is
for any R > Ry:

~ P
/ e*F (0, 1, p, z)dz = 2im | Co (0, i, p, Je~ 7007 4 Zai (C’i(ﬁ,u, p,x)e T LU0, u, p, ac)e”(e)x)]
I B, .r

i=1
(3.77)
1. . .
where a; = 3 if —v;(0) is a real number and a; = 1 otherwise, and:
o0, 19) = Res (F(Oupop.2): ~20(6)) (3.78)
Ci(0, p, p, ) == e (D)TReg (ezxﬁ(é’,u, 0, 2); —%(9)) , (3.79)

where Res(f(z);7) denotes the residual of f at point . Let us notice that (3.78) is valid since —o(6) is a

X

simple pole of ﬁ(ﬂ, Ly Py )
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A
R
F7a0) T
: %—71(9)
+_7p(9> |
S R RS BT T O
+-7,(6) ?
+_71(9)
Jﬁ—%(e) — Ry +
-R

FIGURE 3. The path I'_p 4, &.

z 1 _
Since z — % has an holomorphic extension to the whole plan C, the identity (3.56) implies that:
z
00(97 s p) = Res (F\(Ha s Py 2)7 _70(9)) ) (380)
Cil0, 1, p.2) = & ORes (e F(0,1,p,2); —(0)) Vi€ {1, ,p}. (3.81)

We observe that C;(6, u, p, z) = eW(G)zRes(e”ﬁ(G,u,p,z); —7:(0)). We will prove below in Section 4.5, that

z — Ci(6, p, p, z) is a polynomial function (see the formula (4.30)). Since z — 22 F(0, i1, p, z) belongs to L(R),
we come to (cf. (3.69)):

FO,p,p,z) = — i ngnoo . e“f‘(@,u,p,z)dz
a1, R

=— — lim / e“ﬁ(G, Wy p,2)dz — / e”ﬁ(G, Wy p,2)dz
' B,q R

2T R—oo Tn

- / e”ﬁ(G, y p,z)dz — / e”ﬁ(G, Wy p,y2)dz| . (3.82)
I' B R ' r

We claim that in the right hand-side of (3.82), the limits of the second term and the fourth one are null. As for
the third limit, we have:
lim TE (0, 1, p, 2)dz = O(e™P7) (3.83)
R—o0 I_p.r
where O is uniform with respect to 6 € [0, k], p € Ry and p € R;..
Hence, as x — oo:

P
F(0,1,p,7) = Co(6, . p)e @ + 3 as[Ci(6, . p, 2)e O + T(0, 1, p, )™ 70| +0(e75%). (3.84)

i=1
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Remark 3.7. Let us determine the sign of Cy(0, p, p). The asymptotic expansion (2.25) implies that:

lim ™ DF(9, 4, p,x) = Co(6, 1, p) > 0. (3.85)

xr—00
The residual Cy(0, 1, p) at —vo(0) of F(0, p, p,.) cannot cancel because —7(6) is a single pole of ﬁ(@,u, 0s-)
when 6 > 0 or § =0 and E(X;) # 0.

If 6 =0 and ¢ = E(J1), it is easy to see that Cy(0, s, p) # 0 (c¢f. item c) iii) in Section 4.5 below).
We will give in Section 4.5 some complements related to the calculation of the coefficients C; (6, u, p, x).

3.5. Proof of Theorem 2.10
Let us recall that the ruin probability is the function:
F(z) := F(0,0,0,2) = P(T, < c0). (3.86)

Let us denote F' the Laplace transform of F":
Y (oo}
F(q) := / e " F(z)dx VgeC, Re(q)>0. (3.87)
0

In this section, it is only assumed that the Lévy measure v satisfies (2.30) and (2.31).

The proof will be divided into five parts.
Step 1. We will prove that we only need to consider a Lévy measure v whose support is included in [—k, oo],
for some (finite) k& > 0.

The assumption (2.30) implies that there is & > 0 such that
/ Lijyi>13yv(dy) <c. (3.88)
—k

Let (X}, t>0) be a Lévy process with decomposition:
XF=Bi—ct+JF  Vt>0, (3.89)

where (JF, t>0) is a pure jump process independent from (B;, t>0) and with Lévy measure: vy, := I
In addition, it can be supposed that the processes (JF, t >0) and (J;, t >0) are defined on the same probability
space. Since v — vy is a non-negative measure whose support is included in | — co, —k], then J; < th, vt > 0.
Consequently X; < th, Vt >0 a.s., and Tf <T,., Vx>0 where

TF:=inf{t >0/ X} > z}. (3.90)

As a result,
V>0  F(z) < F¥(2) :=P(TF < ). (3.91)
Note that the relation (3.88) implies that v satisfies (2.30) and (2.31). This proves the claim.
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Step 2. The aim is to prove that we can suppose that the support of v is included in [—k, —1] U [0, oco].
It is clear that the relation (2.30) implies that there is € > 0 so that

—c+e+ / ylyy>1yv(dy) <O. (3.92)
[_kvoo[

Let () be the Lévy measure: v(!)(dy) := 1y_1,0p(y)v(dy). Consider X the Lévy process whose function ¢!
is defined as follows:

oD (q) = eq + /

(e —1+ qy]l{|y|<1})1/(1)(dy) =eq+ / (e — 1+ qy)v(dy).
R

]7110[
Consequently E(Xl(l)) =—e<0.
Since M) (q) > —qe for any q €] — 00,0], then lim cp(l)(q) = 00. Note that the graph of ¢) corresponds
q——00
to Figure 1, case a). As a result, there exist v > 0 such that ¢® ( — 7(1)) = 0. According to [2] there exists
C™ > 0 such that o
P(TV < o0) <CWMe™ ' >0 (3.93)

where Tél) = inf{t > O,Xt(l) > ).
Next let v(?)(dy) := L1, —1)uj0,00[(¥)¥(dy), and X @ the Lévy process associated with

2
q _
#?q) = +(c—e)a+ /R (™% = 1+ qylyjy>1y) v (dy).

Consequently:
E(XI(Q)) = —(C — E) + /Ry]l{|y|21}l/(2)(dy) =—c+e+ /Ry]l{‘yEl}V(dy) < 0.

In addition suppose that X and X?) are independent. Since ¢ = ¢ + ) therefore X is distributed as
XM 4+ X®@) Let us note that:

{15 = 0o} {18 =00} c {XV + X <2}, 2>0,

Applying moreover (3.93) we get:

P(T, < 00) < P(T1)) < 00) + P(T'7, < 00) < CWe ™ #/3 L P(T17) < o0).
This inequality implies that the rate of decay of  — P(T,, < o00) is polynomial as soon as x +— ]P’(Tf) < 00)
enjoys the same asymptotic behavior.

In the sequel we can suppose that (2.30) and (2.31) hold and the support of v is included in [—k, —1]U[0, oo|,
for some k > 0.
Step 3. F belongs to L*(R4).

We will first prove that:

sup |F(q)| < oo, forsomeqy>0. (3.94)
0<g<qo

By taking the limit 0, i, p — 0 in (2.17), we may easily obtain:

Ay L (9,1 [T e~ _ v
Fo) = (445 [ = 1o atan + RF@) (3.95)
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Let us determine the asymptotic behavior of the numerator and the denominator as ¢ — 0. Let us begin with
the denominator:

©(q) ~ q¢'(0) = Q(C - /]R 11{|y|21}yV(dy)) as ¢ — 0. (3.96)

Next, we consider the numerator. We have:

1 oo o0
1, —/ (e™% — 14 qy)r(dy) ~ 4 [1 +/ yQV(dy)} as q— 0. (3.97)
2 qlJo 2 0

Since the support of v is included in [—k, —1] U [0, co[, then RF(¢) can be simplified:

RF(q) = / ) /O o (e — 1) F(p)ab. (3.98)

—k

But RF(0) = 0 and the derivative of RF(q) is bounded, then |RF(q)| < Cq, for any 0 < ¢ < qo. (3.94) follows
immediately.

It is now easy to check that F' is in L*(R4). The function F is non-negative, then the monotone convergence
theorem implies:

(o) (o)
/ F(z)dz = lim e F(x)dx < sup F(q) < . (3.99)
0 =0 .Jo 0<q<qo

As a result F'is integrable.
Step 4. Definition of F'.

The function F' can be extended to the whole line, setting F'(z) = 0, for any = < 0. However F may have a
jump at 0. Let F be the following continuous extension of F"

F(z) = F(2)Ljguo(z) + (1 + 2)1_1.(x), V& €R. (3.100)

Let ¢ — F(iq) be the Fourier transform of F:

~ (o) (o)

F(iq) = / e T F(z)da = / e " [ (x)dx Vg € R. (3.101)
—0o0 -1

Step 5. ¢ — F(iq) is in L'(R).

Since F € L'(R,), then F' € L'(R) and ¢ — F(iq) is continuous.
So, if we establish:

F(iq) (3.102)

< =
“1+f’

then F will be an element of L! (R). It is proved in Proposition 2.7, that ¢(ig) =0, ¢ € R iff ¢ = 0. Therefore
we are allowed to replace ¢ by ig in (3.95). By using the identity:

0 _ iq _1_;
t/¥K1+ﬂﬂeiwde::—79——?F——£g, (3.103)

and (3.94) we may deduce:
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(1) (3.102) holds for any |q| < go (for some ¢o > 0);

~

(2) F(iq) may be written as follows:

= 1-ed 1
Fliq) = ——

p ) [c - /100 yv(dy) + é [; (e7'% —1)v(dy) + RF(iq)| . (3.104)

o(iq

The inequality (3.102) will be a direct consequence of following estimates:

olio) ~ =5 ( [ 1gcnr@n) (d - o) (3.105)
| [ e = )| < kv ((k 1) (3.106)
|RF(iq)| < 2kv([—k,—1]). (3.107)

Step 6. The n first derivatives of F' belong to L!(R).

Obviously any k derivative of ¢ — 1;3” is continuous, bounded by q%, lg] > 1, and therefore belongs to L!(R).

The second term in the right hand-side of (3.104) may be written this way: g(gg)).
By proceeding likewise step 5 and using (2.31) it can be proved that the n first derivatives of N are bounded.

N(q) C
As a result ‘W < = lg] > 1.

As for the asymptotic behavior of

g((i‘;)) in a neighborhood of 0, it can be proved through a similar reasoning

that this ratio is bounded, for any |¢| < 1.
Step 7. Proof of (2.32).

Since the n derivatives of ¢ — F(iq) belong to L' (R), then

~ in I N
"F(x) = — T —— | F(i dq. 3.108
e"F(z) = o~ /]R S ( (lq)) q ( )
This identity directly implies (2.32). O

4. APPENDIX

4.1. Rate of convergence in Theorem 2.1

We would like to point out that the asymptotic development of F'(6, ui, p, 2:) which is given by (2.25) provides
the rate of convergence of (ﬁ (Tm + m)) to the Gaussian distribution. Let us suppose that E[X;] > 0.

Let A, be the distribution function of (L (Tm + m)) and let A\x be its characteristic function:

vz
Ag(t) = P(L(T +#)<t) teR
’ Va it (=0(0) T )7
A (0) = E{e%(Tﬁw'(—:mo)))]’ 0 cR.

Thanks to (2.25), it is not difficult to check that, if = is large enough we obtain:

~ ~ k6
sup |Az(0) — A(9)] < NG (4.1)
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Here k is a positive constant and A is the characteristic function of A (O; —%).

Berry-Essen’s inequalities (see for instance [15], p. 285) imply the existence of two positives constants k; and

ko such that:
“ kO dO ke
sup |Az(t) — A(t)| <k ——+ —, forany a>0, 4.2
up |4, (1) ~ AD)] <k | 2G4 y (12)
where A is the distribution function of the previous Gaussian distribution.
Choosing a = z'/4, we get:
k-
sup A, (1) — A(t)] € 77, 2 > 1, (4.3)
teR T
for some k3 > 0.

4.2. Stochastic interpretation of w~ and w*

We would like to give a stochastic interpretation of the probability measure w™ defined by (2.2). Let (K, L)
be a two-dimensional r.v. with probability distribution w™. Obviously the event { K" = 0} (= {L = 0} a.s.) occurs

with probability ;EV(O)E?% Conditionally on {L > 0}, the distribution of (K,L) is of type

@ (e’m(o)l — 1) Likso0y>01v1(dk)dl where vy is the positive measure defined in Theorem 2.1.
This leads us to consider the positive measure:

w(dk,dl) = a(e” — 1)1 0.5 0301 (dk)dL, (4.4)

in which v > 0, v is the image of v by y — y — [. In addition, v is a positive measure on |0; oo[ which satisfies:

/Oo(ew —1—vk)v(dk) < oo, (4.5)

0

/oo(e”’k —1—~k)v(dk)
0

Proposition 4.1. Let (K*,L*) be a two dimensional r.v. with distribution w?) defined by (4.4). Then L* has
a density function given by a(e? —1)v([l,00[)1=0y. Conditionally on L* = I, the distribution of S* = L* + K*
18 ml{s>l}ll(ds).

here «v is the normalization factor: o =

It is obvious that choosing v = ~9(0) (resp. v = 77(0)) allows to recover the probability measure w™
(resp. wT) introduced in (2.2) (resp. (2.5)). Consequently, Proposition 4.1 gives a stochastic interpretation of
the limit law of (K, L,) as & — oo, in the case where v (] — co;0[) = 0.

4.3. Study of Ay

To investigate uniqueness in (2.10), we will prove that Ay is a contraction on the Banach space:

By :={f:Ry =R; sup ¢*|f(z)| <0} 7>0. (4.6)

ceER

B., is equipped with the norm:
£l = sup e7*|f(x)]. (4.7)

TERL
Theorem 4.2.  Let us suppose that v(R) < co.

(i) For any 0 > 0, the operator Ay defined by (2.14) is a linear and non-negative operator, whose norm is

A 5 in L*(Ry).

It
equa 0>\
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(ii) Lety € [0,7,[ and 0 >0 or @ =0 and E(X1) < 0 (recall that r, has been defined by (1.13)). Then:
a) Mg is a bounded operator from B, to B,. More precisely:

[Aoflly <conlflly VIeEDB,, (4.8)

with

_ V(=)
) () )

and U the Laplace transform of v (cf (3.47)).
b) There exists v €]0,7,[ such that p(—v) < 0. Therefore Ag is a B.-contraction since:
0<con<L. (4.10)

Proof of Theorem 4.2.
(7) Relation (3.31) implies that Ay is a non-negative operator.
It is easy to check that the function ¢:

(x) = Liaty<az;a<aye 7 (efo“’lal — e*(h*“)a") (4.11)

is increasing, then:
U(x) < L(c0) = e~ %~ lal  vpeR. (4.12)

A straightforward calculation shows that Agh(z)| < A%FG [I7|oc, for any = > 0.
A

If we take h: 2 — 1, we have [[Aghllc = x35. Therefore, |[|Ag||| Lo, ) = )\__/i\_g-
(i7) Let f be an element of B, then |f(z)| <| f]ly e 7%, Y& > 0. It follows that:

1 00 (x—y)Azx
(Ao f(x)] < — [Iflly e / u(dy)/ e~ (e—aelal — e‘<2x_a)a9> @t dq, (4.13)
Qg —o0 —o0

for any v € [0,7,].
By using (4.12), we get:

1 00 0 0o
Ao f(@)] < — [|f]ly e / v(dy)e” [ / e (comas—agq | / e<co+aw>ada]
&%) 0

Computing the integral with respect to da, leads directly to (4.8). a

Proposition 4.3.  Let us assume v(R) < oo, 7, >0, > 0,6 >0, or § =0 if E(X1) < 0. Let vy be in [0,7,],
such that o(—v) < 0. Then the function F (0, i, p,.) belongs to B., and the equation (2.10) has a unique solution
in By.

To prove Proposition 4.3, we need the following preliminary.

Lemma 4.4.  Suppose either 6 >0, or § =0 if E(X;) <0, then for any x > 0,

lim AGF(0, p,p,.)(x) =0. (4.14)

n—00
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Proof of Lemma 4.4.
1) Suppose € > 0. Since F' is bounded by 1, and the norm of Ay is 3

A
= (cf. Th. 4.2): [AFF(0,,p, )l <

A n
—— | . Thi 4.14).
(}\ n 9) is proves (4.14)

2) Let us now turn to the case § = 0 and E(X) < 0. By iterating the functional equation (2.10), we come to:

n—1

F(8,p.p.0) = Y NG [(Fo + F1) (0. 1, p,)] () + AGF(O, 1, p, ) (). (4.15)
p=0

The B,-norm of Ag is strictly less than 1, then the series in (4.15) converges. The remaining term A} F(6, i, p, .)(z)
converges in B, to some function G(8, i, p, z). It is easy to check what follows:

a) G(0,p,p,.) is a bounded and non negative function;
b) G(0, p, p,.) is a continuous function on [0, 0ol;
c) lim G(0,p,p,x )—0;
Using (i) in Theorem 4.2 leads to:

G0, 1, p.2) = AoG(0, 1, p, ) (@) < GO, 1, oo @ > 0. (4.16)

As (4.12) is a strict inequality then (4.16) is a strict one too if ||G(0, , p, .)||co # 0.
According to b) and c¢), there exists 29 > 0 such that: G(0,p,p,x¢) = ||G(0, u, p,.)|lcc- This implies
1G(0, u, p;)|loe = 0. o

Proof of Proposition 4.3. Using the explicit expression of Fjy and Fy (¢f. (2.12) and (2.13)), by a straightforward
calculation, enables us to infer that both Fy(6, i, p,.) and Fi(0, u, p,.) belong to B, (for a detailed proof, cf.
120)).

Due to Lemma 4.4 and (4.15)we may obtain:

o0

F(0, s, p, Z (Fo+ F1)(0, 1, p,.)) (). (4.17)

Because Fy + F1 € By and Ay is a contraction in B, the serie converges in B, which directly implies the
result. O

Remark 4.5.
1. Under the conditions stated in Proposition 4.3, we have actually proved that F'(0, i, p, x) can be approximated

P
by Z AG [(Fo + F1)(0, u, p,.)] (). More precisely:
n=0

P
F(O,p,p,x Z [(Fo + F1) (0, . p, )] (2)| < K 77, (4.18)

o0

Z F0+F1 (Gauapa')]

where K = < oo and c¢g - is defined by (4.9).

~
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2. Let us consider the case when the support of v is included in | — 00,0]. ¢ is well defined on | — 0o, 0] and
r, = 00. Moreover K, = L, = 0 and Fy (0, u, p,z) = 0 for any > 0. As a result, (2.10) is reduced to:

F(0, 1, poz) = ¢+ £ AgF(6, 1, p, ) (). (4.19)

If either 6 > 0, or # = 0 and E(X;) < 0, from both (1.25) and (1.26) we can infer the existence of a unique real
number 7 (6) such that:

() <0 and  @(—70(0)) = 6. (4.20)

0)x

A direct (but fastidious !) calculation shows that z — =707 is a solution of (2.10). For more details see [20].

Hence F (0, u, p,x) = F(6,0,0,z) = e~ 00)z,
4.4. Few examples of v satisfying (2.23)

We give three classes of measures v which satisfy (H) and (2.23):

a) Let us suppose that v has finite exponential moments:

Vg € R / le™% — 1+ qylyy<1y| v(dy) < 0. (4.21)
In that case, m and ¢ are holomorphic functions in the whole plane C, then B, = co. Moreover, for
any B > O:
(oo} [ee]
sup / e_qyu(dy)‘ S/ eBYu(dy) < oo. (4.22)
Req>—B |J1 1

Then (2.23) holds. The condition (4.21) is fulfilled if, for instance, v has a compact support.
b) Let v be a linear combination of gamma distributions:

n
v(dy) =Y pie Py s 0ydy, (4.23)
i=1
where p; > 0, 5; > 0 and m; € N, for any i € {1,2,--- ,n}.
Since the Laplace transform of v is explicit, we obtain immediately its meromorphic extension to the
whole plane (B, = c0) and (2.23). Moreover:

00 n n 00
v(q) = / e I Z pie PiTgmidy = Z pi/ aMie~(@tAYT g (4.24)
0 i=1 i=1 0

If we set y = (¢ + i)z, we have:

n 0o n
ymie Vdy =y — P 4.25
; (¢+6:) ”“*1/ ;(Hﬁi)ml“ .
This implies that 7 resp. ¢ is holomorphic in C — {—3,- -+, —0,} resp. meromorphic in C.

¢) The example above may be generalized as follows:

v(dy) = ¢(y) Ly>0ydy, (4.26)

where ¢ > 0, bounded on [0, yo], and forevery y > yo:
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d(y) 1= poePovymo=l 4 Z(pie*ﬁiy + mefﬁy)ymrl +O(ePriry), (4.27)
i=1
with yo > 0,00 > 0,80 > 0,Re 8; >0, p; € C*, m; € N* et 8,41 > sup Re S;.
1<i<n
Then 7 and ¢ are meromorphic functions in {¢q; Re ¢ > f,+1}, By = Bny1 and (2.23) holds.
d) If vy and vy satisfy (2.23), then v = 14 + vy satisfies (2.23) too.

4.5. Calculation of the C; coefficients

Let us suppose in this section that (H) holds.
a) We claim that C;(60, i, p,.) is a polynomial function. We may assume that —v;(0) is a zero of @y with
multiplicity n;, and F(0, u, p, z) has the following asymptotic expansion in a neighborhood of —;(#):

= Kin,(0,1,0) | Kin,—1(0,1,p) Ki1(0,1,p)
F(b,n,p,2) = ool Rinw UL I0P) L DA Gl 428
Ot = @ G @) =+ 00) e
Since 0))2
o =00 (1 oo+ EERO2 ), (4.29)

then relations (3.80) and (3.81) imply that:

Ki,m(ewap) ni—1 + Ki,m—l(e’/%ﬂ)xnifz

+o+ Kia(0,p,p) - (4.30)

b) We suppose in this item that —v;(6) is a single zero of g = ¢ — 0. Then C;(0, i, p, ) does not depend
on z. Furthermore C;(0, u, p, x) is given by the following:

Ci(0, 11, p) = Res (ﬁ(97u,p,2); —%-(9)) : (4.31)

Note, that in this case, according to (2.17), —v;(0) is a single pole of ﬁ(@, ey Py )
i) When the real part of —v; () is bigger than —r,, C;(0, i, p) can be determined as follows:

1 —i(0) — 5 (0)
Cs 9; ; =
(6:46.0) ¢'(—i(0)) [ 2
0 Fa(ri(@)=p)y _ =1y o= (O)+P)Y _ o=y
/ : - — v(dy)
o L =@ +p—n %(0) +p—n
FRED.11,p.)(-5(0)) = RF(6. 1.7, 0560 (4.32
. e —1 .
where it is supposed that =yifa=0.

It has to be observed that if the support of v is included in ]0, oo[, then the formula above reduces to the two
first lines, since RF'(6, i, p,-) = 0. What is more, if 6 = = p = 0 then

!
0
% it E(X;) <0
Ci(0,0,0) = 1 if i=0 and E(X;)>0 (4.33)
0 if i>1 and E(X;) > 0.

Considering ¢ = 0 in (4.33) allows to recover the result given in [5].
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ii) As for the case Re (—v;(0)) < —r,, the previous v-integrals and ¢, have to be replaced by their meromorphic
extensions.

¢) In this item we can focus on Cy(, i, p), which is the dominent term in (2.25).

i) When 6 > 0 or # = 0 and E(X;) # 0, then —v0(0) is a single zero of ¢y and —~y(6) > —r,. Therefore
Co(0, i, p) is given by (4.32) with ¢ = 0. Let us recall that when # = 0 and E(X;) < 0 (resp. E(X;) > 0),
then v3(0) =0 (resp. v0(0) = 0).

ii) In the case E(X1) = 0, then 70(0) = v (0) = 0 is a double zero of ¢, but a simple pole of F(6, 1, p, .).
Thus, a direct calculation shows:

Co(0, 1, p) = @,,1(0) <1 0 —2u)2 /Ooo e (1 — PV 4 (p — u)y) v(dy)
-2 /_OOO v(dy) /O_y(y +0)F(0, i, p, b)db) . (4.34)

In particular:

C(0,0,0) = ¢,,1( 0 (1 4 /0 T2 u(dy) — 2 /_ OOO v(dy) /O y+ b)F(0,0,b)db)

0 -y
/ v(dy) / (y + B)F(0,0,0,b)db (4.35)
0

iii) The constant Cy(6, s, p) is positive because p — F(6, ui, ¢ —70(6)) is decreasing and

1 .
@ if 9=0and E(X;)=0

A Col0 ) = 30(8) +75(0)
2¢' (—0(0))

> (0 otherwise.

4.6. Girsanov transformation
Let (X¢, t>0) be a Lévy process. It is well known that there is a family of probability measures (P()‘) ,0< A< 7)
so that, under PO, (Xt, t>0) is still a Lévy process and:
PV (X; € dz) = eMe W (VP(X, € dx). (4.36)

Consequently o™ (q) = (g — A) — ¢(=A), where ¢V is associated with (X;, ¢>0) under P, Under (H),
there exists A such that ¢(—\) = @ and ¢/'(0)¢'(—)) < 0. Since E(X;) = —¢/(0), and e (X1) = —p'M(0) =
—¢'(—= ), then E(X;)e™ (X;) < 0. This trick allows to only consider the case E(X1) > 0 (or E(X;) < 0), and
then simplify the proofs of Theorems 2.1 and 2.3 and the result given in subsection 4.1.

4.7. Wiener-Hopf factorization

Let us recall the Wiener-Hopf decomposition (¢f. [1], p. 165): for any 6 > 0, we have:

0

Tl v (@) (9), (4.37)

where . .
;‘(q) =K (e’qSTe) , y (q) =K (eW(STe _Xfe)) ) (4.38)
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and 7y is an exponential r. v. with parameter 6, independent from process (X¢, t >0) and S; := sup,<, X.
Since:

P(S,, > a) =P(T, < 15) = E(e~"=) = F(6,0,0,0), (4.39)
it is easy to deduce the following identity:

Vi (q) = 1+igF(8,0,0,iq) . (4.40)
Equation (2.17) implies that the Wiener-Hopf factor 1/); verifies a functional equation. In particular, if v(] —
00,0]) = 0, combining equations (2.18) and (4.40) an explicit form of w; (¢) may be obtained. Due to (4.37),

¥y, (q) is also explicit.

4.8. Proof of Proposition 2.7

1. Tt is clear that ¢y is holomorphic in {¢ € C; Re ¢ > —r,} and the only real zeros of ¢y in this domain are
—70(0) and 5 (6).

2. We claim that the complex zeros of gy in {g € C; —v(0) < Req < ;(0)} are —yo(0) and ~;(0).
a) Suppose first that —0(8) < Re ¢ < v§(6). We have:
|ew(q)| — |]E(e_qX1—‘9)| <E (e—Rele—O) — evo(Req) 1,

since g < 0 on | —40(0),~5 (). Then ¢o(q) # 0.

b) Let ¢ = —vo(6) + ib, b € R. We compute ¢y (q):

0(a) =6(—0(6)) — % + /_oo e (cos(by) — 1)w(dy)
+1 (—b%(e) +cb— /_OO (e’mw)y sin(by) — by]1{|y|<1}) u(dy)) . (4.41)

But wo(—70(0)) = 0, then Re (¢9(q)) < 7%' Consequently ¢g(q) = 0 iff b = 0.

¢) The same reasoning applies to the case ¢ = —(6) + ib.

3. Let us prove that ¢y has a finite number of zeros in the strip {¢ € C; —B < Req < [y}, for some [y in
10,~75(0)[. Proposition 2.7 is a consequence of both items 1. and 2. as described above and of the following
properties:

(i) According to (2.23) there is R > Ry > 0, k > 0 so that:

loa(q)| > k|g®| for any g such that — B <Req <0, [Img| > R. (4.42)
As a result, ¢g(q) # 0.

(ii) The function ¢y is meromorphic in {q € C; Re ¢ > —B} and therefore admits at most a finite number of
poles in the compact domain {q € C;—B < Req <0, [Imgq| < R}.
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