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MINIMAX AND BAYES ESTIMATION
IN DECONVOLUTION PROBLEM ∗

Mikhail Ermakov1

Abstract. We consider a deconvolution problem of estimating a signal blurred with a random noise.
The noise is assumed to be a stationary Gaussian process multiplied by a weight function function εh
where h ∈ L2(R

1) and ε is a small parameter. The underlying solution is assumed to be infinitely
differentiable. For this model we find asymptotically minimax and Bayes estimators. In the case of
solutions having finite number of derivatives similar results were obtained in [5].
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1. Introduction and main results

1.1. Introduction

We study the deconvolution problem in the following setting. We wish to estimate x from the observed
random process

Y (t) =
∫ ∞

−∞
a(t − s)x(s)ds + εη(t), t ∈ R1. (1)

Here the kernel a is known and εη(t) is a random noise with a small parameter ε > 0. Such a setting arises in
many applications (see e.g. [17,20,21,29] and references therein).

The noise εη is usually considered as a stationary process. This allows to study the problem in terms of the
Fourier transform and to derive the estimators in a simple analytic form. For this setting the statistical prop-
erties of Tikhonov regularizing algorithm, the procedure of Kolmogorov-Wiener filtration, robust and minimax
estimators were analyzed in numerous publications and textbook (see, for example, [10,21,29,31] and references
therein). Recently interesting adaptive procedures (see [2,3,14,30]) and wavelet based estimators (see [7,23,25])
were proposed.

If the noise is a stationary process, the power of the noise ε2
∫ ∞
−∞ Eη2(t)dt on the whole real line is infinite.

Consistent estimator of solution x(t) exists only if the ratio of the power of the noise to the power of the solution
is finite. Thus, if we want to consider the estimation problem on real line, we need to suppose that the power of
the solution is also infinite or tends to infinity. The assumptions of such a type became standard in the study of
the Bayes and minimax estimators (see [10,21,31]). In practice the power of the solution is usually finite. Thus
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it seems reasonable to consider modifications of the models with the finite power of solution on the whole real
line. The study of such a modification is the goal of the paper.

The deconvolution problem is often considered in another setting as deconvolution problem on a circle (see
[8,18–20]). In this model the powers of the noise and the solution are finite. However this setting requires the
additional analysis of errors caused by such a model reduction.

In this paper we deal with the following noise model

εη(t) = εh(t)ζ(t) (2)

where ζ(t) is a stationary Gaussian process ζ(t), Eζ(t) = 0, E[ζ(t)ζ(0)] = r(t), t ∈ R1 and h is a weight function
h ∈ L2(R1). The assumption h ∈ L2(R1) implies that the noise power ε2

∫ ∞
−∞ Eη2(t)dt = ε2||h||2r(0) is finite.

Thus we can assume that the power of solution is also finite.
From viewpoint of asymptotic statistics the model (1), (2) is closely related with another setting called often

the problem of deconvolving a density (see [2,3,6,12,13,25]). In this setting we observe independent sample
Z1 = X1 + Y1, . . . , Zn = Xn + Yn. A density function a of i.i.d.r.v.’s Yi, 1 ≤ i ≤ n is known and a density
function x of i.i.d.r.v.’s X1, . . . , Xn is unknown. We wish to estimate the density x.

Thus the density x satisfies the convolution equation

f(t) = (a ∗ x)(t) =
∫ ∞

−∞
a(t − s)x(s) ds (3)

where f(t) is the density of Z1, . . . , Zn.
As it is well-known (see [24]) the problem of estimation of density f is locally asymptotically equivalent to

the estimation of function f in the following white noise model

dY (t) = f(t)dt + εf
1/2
0 (t)dw(t). (4)

Here dw(t) stands for the Gaussian white noise and it is supposed that f lies in the small vicinity of known
function f0 (see [24] for details).

We can rewrite (4) in the following form

dY (t) =
∫ ∞

−∞
a(t − s)x(s) ds + ε

(∫ ∞

−∞
a(t − s)x0(s)ds

)1/2

dw(t). (5)

Here we suppose that x lies in the small vicinity of known function x0(t), f0 = a ∗ x0. If we put h = (a ∗ x0)1/2,
we get the paper model. The local asymptotic equivalence of the model () and the model of deconvolving a
density has not been studied. However one can show that a wide class of linear estimators in the problem of
deconvolving a density have the same asymptotic behaviour as in the model (5).

The model of estimation in the weighted Gaussian white noise arises also in the problems of asymptotic
estimation of regression function (see [1]). As first publication on asymptotically minimax estimation in this
model one can mention [9].

The goal of our paper is to derive asymptotically minimax and asymptotically Bayes estimators for the model
(1, 2). We already considered this problem (see [11]) for the functions x with a finite number of derivatives. In
[11] we showed that asymptotically minimax and Bayes estimators have the same form as in the model with the
Gaussian stationary noise (see [10,31]). This paper extend these results to the case of supersmooth functions.
The models with supersmooth functions naturally arise in statistical applications (see [4,5,28,30]).

In [4,5,30] the spectrum of operator corresponding to the kernel a is discrete. In our model the operator
spectrum is continuous. The operator corresponding to the function h does not commute with the operators
corresponding to the kernel a and the correlation function r. These differences lead to implementation of serious
analytical technique in the proof of the results.
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The model of deconvolving a density with supersmooth density x is rather natural. The asymptotic behaviour
of kernel estimators having minimax rates of convergence was analyzed in [12]. The adaptive minimax rates of
convergence were studied in [3,4]. As the first publications on the estimation of supersmooth functions with the
sharp minimax asymptotic one should mention [10,15,16,27].

This paper can be considered as natural complement of [11]. The results of these papers cover the cases
of the both smooth and supersmooth behaviour of kernel and solution. It turns out that, if the kernel or
the solution is supersmooth, the asymptotically minimax and the asymptotically Bayes estimators are simple
projection estimators. Only if both the solution and the kernel have finite smoothness, we are forced to define the
estimators with the more complicated structure (see [11]). In this case the estimators based on the Kolmogorov-
Wiener filters are asymptotically Bayes (see [21,31]) and the standard minimax estimators are asymptotically
minimax (see [8,10,26]). The standard minimax estimators remain asymptotically minimax in the case of
supersmooth kernel or solution. However in these cases we can define essentially more simple estimators with
the same property.

For any function z ∈ L2(R1) denote by

Z(ω) =
∫

exp{2πiωt}z(t)dt

the Fourier transform of z and for any z ∈ L2(R1) denote by

||z|| =
(∫

z2(t)dt

)1/2

the L2-norm of z. Hereafter the limits of integration are omitted if the integration domain is the real line R1.
We suppose that the kernel a satisfies A0,A1-A3 if the kernel a has a finite number of derivatives and A0,

A3, A4 in the case of supersmooth kernel.

A0. There holds A(ω) = A(−ω) > 0 for all ω ∈ R1.
A1. There holds

lim
t→∞

∫ t

0

A−2(ω)R(ω)dω = ∞. (6)

If the left-hand side of (6) is finite, the rate of convergence of estimators equals ε.

A2. There exists γ ≥ 0 such that for all C > 0

lim
ω→∞

A(Cω)
A(ω)

= C−γ .

A3. There exists C > 0 such that for all ω, ω1 ∈ R1

|A(ω) − A(ω1)| < C|ω − ω1|.

A4. There exists γ > 0 such that for all C > 0

lim
ω→∞

log A(Cω)
log A(ω)

= Cγ .

If A2 holds, the kernel a has a finite number of derivatives. If A4 holds, the kernel a is infinitely differentiable.
The correlation function r satisfies the following

R. There exists α > 0 such that for any C > 0

lim
ω→∞R(Cω)/R(ω) = C−α.
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If A2, R hold with γ = 0, α = 0 and A(ω) ≡ 1, R(ω) ≡ 1, we get the standard setting estimation of signal in
the weighted Gaussian white noise

dy(t) = x(t)dt + εh(t)dw(t). (7)

1.2. Main results. Minimax estimation

The assumption about the solution is rather standard (see [8,10,26]). We suppose that a priori information
is given

x ∈ Q =
{

x :
∫

B2(ω)|X(ω)|2dω < 1, x ∈ L2(R1)
}

(8)

with the function B satisfying the following.
B. The function B(ω) is even, positive and there exists β > 0 such that for all C > 0

lim
ω→∞

ln B(Cω)
ln B(ω)

= Cβ .

Thus we have a priori information that the solution x belongs to an ellipsoid in L2(R1) and B implies that the
solution x(t) is infinitely differentiable.

The risk of any estimator x∗(t) equals

ρε(x∗) = sup
x∈Q

∫
E(x∗(t) − x(t))2dt.

We search for asymptotically minimax estimator x∗∗
ε such that

ρε = ρε(x∗∗
ε ) = inf

x∗ ρε(x∗)(1 + o(1)), ε → 0.

Here the infimum over all estimators x∗.
We suppose that the function h is smoother than the realizations of random process ζ(t) (see H2 below).

Thus all information on the noise smoothness is contained in ζ(t).

H1. The function H(ω) is even, H(ω) ∈ L2(R1) ∩ L1(R1) and h(t) > 0 for all t ∈ R1.

H2. There exists δ > 0 such that
lim

ω→∞ R−1(ω)H2(ω)ω1+δ = 0.

H3.
∫ |th(t)|dt < ∞.

Define the functions

Ψε(µ) = ε2||h||2
∫

A−2(ω)(1 − µB(ω))+R(ω) dω

and

Ψ̄ε(θ) = ε2||h||2
∫ θ

−θ

A−2(ω)R(ω)dω.

Hereafter (u)+ = max{u, 0} for all u ∈ R1. We put ω1ε = sup{ω : Ψ̄ε(ω) ≤ B−2(ω)} and ωε = ω1ε(1 + δε)
where δε > 0 is such that B(ω1ε) = o(B(ωε)), A−1(ω1ε) = A−1(ωε)(1 + o(1)) and δε → 0 as ε → 0. Denote
µε = sup{µ : B(ωε) > µ}.

Define the kernels
Kµε(ω) = A−1(ω)(1 − µεB(ω))+ (9)

and
Kωε(ω) = A−1(ω)χ(|ω| < ωε). (10)
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Hereafter χ(U) denotes the indicator of event U . The kernel kµε is the kernel of standard asymptotically
minimax estimator x∗∗

µε
(t) = (kµε ∗ y)(t) (see [8–11,26]). The kernel kωε is the kernel of simple projection

estimator x∗∗
ωε

(t, y) = (kωε ∗ y)(t).
Define also the kernels kα of Tikhonov regularizing algorithm

Kα(ω) =
A(ω)

A2(ω) + αM(ω)
(11)

where the function M(ω) satisfies the following.

M1. The function M(ω) is even, nonnegative and increasing in R1
+.

M2. The function M(ω)|B−1(ω)A−2(ω)| is nondecreasing in R1
+.

M2 implies that the function M(ω) has the exponential growth. The exponential growth of function M(ω)
in Tikhonov regularizing algorithm is natural assumption in the case of a priori information on supersmooth
solution (see [20]).

Define the parameters of regularization αε = A2(ωε)M−1(ωε).
If the solution x is smoother than the kernel a (A2 or A4 with β > γ holds) the asymptotic of minimax

risks is attained for all estimators mentioned above: for the standard minimax estimator kµε (see (9)), for the
simple projection estimator kωε (see (10)) and the estimator of Tikhonov regularizing algorithm (see (11)). If
the kernel a is smoother then the solution x (A4, B holds with γ > β), then the lower bound of asymptotic of
minimax risks is attained only in the cases of simple projection estimator and estimator of Tikhonov regularizing
algorithm. These statements are given in Theorems 1 and 2 respectively. In both theorems we assume that h
is smoother than the realizations of random process ζ(t) (see H2 above).

Theorem 1.1. Assume A0–A3, B, H1–H3, R or A0, A3, A4, B, H1–H3, R with β > γ. Then the estimators
x∗∗

µε
(t) = (kµε ∗ y)(t) and x∗∗

ωε
(t, y) = (kωε ∗ y)(t) are asymptotically minimax. The asymptotically minimax risks

equal
ρε(x∗∗

µε
) = ρε(x∗∗

ωε
)(1 + o(1)) = Ψε(µε)(1 + o(1)) = Ψ̄ε(ωε)(1 + o(1)) = Ψ̄ε(ω1ε)(1 + o(1)). (12)

If M1,M2 hold also, the Tikhonov regularizing algorithm x∗∗
αε

= kαε ∗ y is asymptotically minimax.

The presence of ||h||2 in the asymptotic Ψε(µε) of asymptotically minimax risk ρε and in the definition (9) of
asymptotically minimax estimator x∗∗

µε
is the unique difference from the standard definitions of asymptotically

minimax risks and asymptotically minimax estimator (see [8–11,26]).

Remark 1. Denote Λ the set of functions h satisfying H1,H3 and such that the convergence in H2 is uniform
w.r.t. all h ∈ Λ. Suppose also that there exist functions h01, h0 ∈ Λ such that h01 ≥ h(t) ≥ h0(t) > 0, t ∈ R1

for all h ∈ Λ. Then the asymptotics of minimax risks ρεh(x∗∗
µε

) = ρεh(x∗∗
ωε

)(1 + o(1)) are uniform with respect
to h ∈ Λ. Moreover all information on h in the estimators x∗∗

ωε
, x∗∗

µε
is contained in ||h||. Thus we can consider

h as unknown in the model supposing only h ∈ Λ. Naturally, since ||h|| is unknown, the problems of the choice
of regularization parameters µε and ωε arise. However, since other parameters of models are usually unknown
as well (for example R(ω), B(ω)), these problems arise also on other reasons. Note that similar remark on the
uniform risks convergence hold for the other theorems of this paper and for theorems of [11] as well.

If the kernel a is smoother than the solution x and γ > β (see A3, B), the projection estimator x∗∗
ωε

= kωε ∗ y
and the Tikhonov regularizing algorithm x∗∗

αε
= kαε ∗ y remain asymptotically minimax. However the formula

for asymptotic of minimax risks is defined in another form.
Let ω1ε satisfy the equation

B−2(ω1ε) = ε2||h||2
∫ ω1ε

−ω1ε

A−2(ω)R(ω)dω. (13)

Define δε > 0 such that δε = o(ω−β
1ε ) and ω−γ

1ε = o(δε). Denote ωε = (1 − δε)ω1ε and αε = A2(ωε)M−1(ωε).



332 M. ERMAKOV

Theorem 1.2. Assume A0, A4, B, H1, H2 and R. Let γ > β. Then the family of projection estimators
x∗∗

ωε
(t, y) = (kωε ∗ y)(t) is asymptotically minimax. There holds

ρε(x∗∗
ωε

) = B−2(ωε)(1 + o(1)) = B−2(ω1ε)(1 + o(1)). (14)

If M1 holds, the Tikhonov regularizing algorithm x∗∗
αε

= kαε ∗ y is also asymptotically minimax.

Example 1. Let

A(ω) = A1(ω)|ω|−γ , (15)

B(ω) = B2 exp{B1(ω)|ω|β}, (16)
R(ω) = R1(ω)|ω|−α (17)

and let the assumptions of Theorem 1.1 hold.
Let ω1ε be defined the equation

B1(ω1ε)ω
β
1ε = | ln ε|. (18)

Then one can put ωε = ω1ε(1 + δε) where δε > 0, δε| ln ε|1−κ → ∞, δε → 0 as ε → 0 with 1 > κ > 0 and

ρε =
2||h||2

2γ − α + 1
ε2ω2γ−α+1

1ε A−2
1 (ω1ε)R1(ω1ε)(1 + o(1)). (19)

If A1(ω) = A1, B1(ω) = B1, R1(ω) = R1 are constants, we get

ρε = A−2
1 R1B

α−2γ−1
β

1

2||h||2
2γ − α + 1

ε2| ln ε| 2γ−α+1
β (1 + o(1)). (20)

In the case of standard setting signal detection in the Gaussian white noise (A(ω) ≡ 1, R(ω) ≡ 1)

ρε = 2B
− 1

β

1 ||h||2ε2| ln ε| 1
β (1 + o(1)).

Example 2. Let
A(ω) = A2 exp{−A1(ω)|ω|γ} (21)

and (16), (17) hold with β > 2γ. Then we can put ωε = ω1ε(1 + δε) where ω1ε is defined (18) and δε >
0, δε| ln ε|1−γ/β−κ → ∞, δε → 0 as ε → 0 with 1 − γ/β > κ > 0. The asymptotically minimax risk equals and

ρε =
2
γ

A−2
2 ||h||2ε2ω1−γ−α

1ε R1(ω1ε) exp{2A1(ω1ε)|ω1ε|γ}(1 + o(1)). (22)

If A1(ω) = A1, B1(ω) = B1, R1(ω) = R1 are constants, we get

ρε =
2
γ

A−2
2 B

α+γ−1
β

1 R1||h||2ε2| ln ε| 1−γ−α
β exp{2A1B

− γ
β

1 | ln ε)| γ
β }(1 + o(1)). (23)

Example 3. Let (16), (17), (21) hold with 2γ ≥ β > 3
2γ and let A1(ω) = A1, B1(ω) = B1, R1(ω) = R1 be

constants. Then

ω1ε = B
−1/β
1 | ln ε|1/β

(
1 − 1

β
A1B

−γ/β
1 | ln ε| γ

β −1

)

and

ρε = γ−1A−1
1 A−2

2 B
α+γ−1

β

1 R1||h||2ε2| ln ε| 1−γ−α
β

× exp
{

2A1B
− γ

β

1 | ln ε| γ
β

(
1 − γ

β
A1B

− γ
β

1 | ln ε| γ
β −1

)}
(1 + o(1)). (24)
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Example 4. Let (16), (17), (21) hold with γ > 2β. Define ω1ε the equation

A1(ω1ε)ω
γ
1ε = | ln ε|

and put ωε = ω1ε(1 − δε) where δε > 0, δε → 0, δε| ln ε|1−β/γ−κ → ∞ as ε → 0 with 0 < κ < 1 − β/γ. Then

ρε = B2
2 exp

{
−2B1(ω1ε)ω

β
1ε

}
(1 + o(1)). (25)

If A1(ω) = A1, B1(ω) = B1 are constants, we get

ρε = B2
2 exp

{
−2B1A

− β
γ

1 | ln ε| β
γ

}
(1 + o(1)). (26)

Example 5. Let (16), (17), (21) hold with 2β ≥ γ > 3/2β and let A1(ω) = A1, B1(ω) = B1, R1(ω) = R1 be
constants. Then

ω1ε = A
−1/γ
1 | ln ε|1/γ

(
1 − 1

γ
B1A

−β/γ
1 | ln ε| β

γ −1

)
(27)

and

ρε = B2
2 exp

{
−2A

−β
γ

1 B1| ln ε| β
γ

(
1 − β

γ
A

− β
γ

1 B1| ln ε| β
γ −1

)}
(1 + o(1)). (28)

1.3. Main results. Bayes approach

In the Bayes setting we suppose that the solution x is a realization of the random process

x(t) = h1(t)ξ(t)

where h1(t) ∈ L2(R1) and ξ is Gaussian stationary random process, Eξ(t) = 0, E[ξ(t)ξ(0)] = v(t), t ∈ R1.
As follows from assumption V given bellow we suppose that the realizations of random process ξ(t) are

infinitely differentiable.

V. There exists β > 0 such that for all C > 0 there holds

lim
ω→∞

ln V (Cω)
ln V (ω)

= Cβ .

The function h1(t) satisfies the following assumptions.

H4. The function h1(t) is even, bounded and h1(t) > ch(t) > 0 for all t ∈ R1 with constant c > 0.
H5. There holds

lim
ω→∞

ln H1(ω)
ln V (ω)

= ∞.

H5 implies that the main information on the smoothness of x is contained in the random process ξ(t).
For any estimator x∗ define the Bayes risk

ρ̂ε(x∗) = EξEζ ||x∗ − h1ξ||2.

We say that the estimator x̄∗
ε is asymptotically Bayes if

ρ̂ε = ρ̂ε(x̄∗
ε ) = inf

x∗ ρ̂ε(x∗)(1 + o(1)), ε → 0.

Here the infimum is over all estimator x∗.
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In this setting we could not prove that the Wiener filters

Kε(ω) = ||h1||2A(ω)V (ω)(||h1||2A2(ω)V (ω) + ε2||h||2R(ω))−1

are asymptotically Bayes. At the same time we show that the simple projection estimator x∗∗
ωε

are asymptotically
Bayes. The value of ωε is defined by the equation ωε = ω1ε(1 + δε) where ω1ε satisfies the equation

A2(ω1ε)||h1||2V (ω1ε) = ε2||h||2R(ω1ε), (29)

and δε > 0, δε → 0 as ε → 0, is such that

V (ωε) = o(V (ω1ε)), H2
1

(
1
2
δεω1ε

)
= o(ε2A−2(ωε)R(ωε)). (30)

Theorem 1.3. Assume A0, A1, A2, H1, H2, H4, H5, R, V. Then the family of estimators x∗∗
ωε

= (kωε ∗ y)(t)
is asymptotically Bayes. There holds

ρ̂ε(x∗∗
ωε

) = ε2||h||2
∫ ω1ε

−ω1ε

A−2(ω)R(ω)dω(1 + o(1)). (31)

Note that ω1ε in (31) can be replaced by ωε.
Example 6. Let

V (ω) = exp{−V1|ω|β}
and (15), (17) hold. Then

ω1ε = V
1/β
1 | ln ε|1/β

and ωε = ω1ε(1 + δε) where δε > 0, δε → 0, δε| ln ε|1−κ → ∞ as ε → 0 with 0 < κ < 1.
We have

ρ̂ε =
2||h||2

2γ − α + 1
V

2γ−α+1
β

1 ε2| ln ε| 2γ−α+1
β A−2

1 (ωε)R1(ωε)(1 + o(1)).

For the model of signal detection in Gaussian white noise A(ω) ≡ 1, R(ω) ≡ 1 we get

ρ̂ε = 2||h||2V
1
β

1 ε2| ln ε| 1
β (1 + o(1)).

Remark 2. In applications the kernel a is often unknown and the information about the kernel can be obtained
only from statistical experiment (see [21,29]). As a consequence, the arising estimator â of kernel a is known
with a random error. Usually it is supposed that the error admits the Gaussian approximation. If we study the
quality of estimation of solution x one needs to find the influence of this random error on the risk function.

We consider the following model of kernel estimator

â(t) = a(t)dt + κεh̄(t)dw(t)

with the function h̄ ∈ L2(R1) satisfying the following
∫

t2h̄2(t)dt < ∞, (32)

lim
ω→∞ H̄2(ω)|ω|1+δ = 0 (33)

where δ > 0.
The Fourier transform of â can be written in the following form

Â(ω) = A(ω) + κετ̂(ω)
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where
τ̂(ω) =

∫
H̄(ω − ω1)dw(ω1)

is Gaussian stationary process.
Straightforward calculations show that, if Mε

.= sup{|τ̂(ω), |ω| ≤ ωε} = oP (A(ωε)/κε), the random error
κετ̂(ω) does not influence on the asymptotic of minimax and Bayes risks and the estimators x∗∗

ωε
remains

asymptotically minimax and asymptotically Bayes. The reasoning is the following.
If (32),(33) holds, by Theorem 12.3.5 in [22],

lim
ε→0

P
(
||h||−1(2 ln(2ωε))−1/2|Mε − ||h||(2 ln(2ωε))1/2| > u

)
= exp{−C exp{−u}}.

Hence, if κε = o
(
A(ωε)| ln ωε|1/2

)
, the influence of noise κεh̄(t)dw(t) on the kernel a is negligible and the

asymptotic of risks for the estimator x∗∗
ωε

are the same both in the minimax setting of Theorems 1.1, 1.2 and
the Bayes setting of Theorem 1.3. A similar statements hold also for the asymptotically minimax settings
Theorems 1.1 and 1.2 in [11]. Note that ε = o

(
A(ωε)(ln ωε)1/2

)
. Thus we can estimate the solution x in the

case of random kernel with the same risk asymptotic even if the kernel estimator â have a larger error than ε.

2. Proofs of theorems

2.1. Proof of lower bound in Theorem 1.1

The proof of lower bounds in minimax setting is based traditionally on the fact that the Bayes risk does
not exceed the minimax one. We define such Bayes a priori distributions that the powers of realizations∫ ω+∆ω

ω X2(u)du on each interval (ω, ω + ∆ω) ⊂ Ωε = (−ω1ε(1 − δε), ω1ε(1 − δε)) have the large order then
corresponding power of noise ε2||h||2 ∫ ω+∆ω

ω A−2(u)R(u)du. Hence the bias of Bayes estimator does not influence
on the asymptotic of Bayes risks. Thus we get that the asymptotic of Bayes risks is defined the random noise
and the contribution of each interval (ω, ω+∆ω) ⊂ Ωε in the Bayes risk equals ε2||h||2 ∫ ω+∆ω

ω A−2(u)R(u)du(1+
o(1)). This allows to choose A−1(ω)Y (ω) as asymptotically Bayes estimators X(ω) in Ωε and to get the lower
bound (12).

We put ω2ε = (1 − δε)ω1ε where δε > 0 is such that A(ω2ε) = A(ωε)(1 + o(1)),

B−1(ω1ε) = o(B−1(ω2ε)), ε2A−2(ωε)(ω1+γ+β
ε R−1(ωε) + ω3

ε ) = o(B−2(ω2ε)) (34)

and δε → 0 as ε → 0.
Define the values Dε and ∆ε such that

Dε = o(B−1(ω2ε)ω(1−β)/2
ε ), ε2A−2(ωε)(ω1+γ+β

ε R−1(ωε) + ω3
ε ) = o(D2

ε ) (35)

and
∆ = ∆ε = o(ε2D−2

ε R(ωε)ω−γ
ε + ω−3/2−γ

ε R(ωε) + ω1−β
ε ). (36)

The Bayes a priori measures λε = λε∆ε are defined as the conditional probability measures of Gaussian random
processes ξε = ξε∆ε under the condition ξε ∈ Q where Q is the set of all solution x (see (8)). The random
process ξε = ξε∆ε is defined via the Fourier transform

ξ̂ε(ω) = ξε∆ε = Dε

l∑
i=−l

ηiχ(ω ∈ Ii) (37)

where l = lε = [ω2ε/∆ε] , Ii = ((i − 1/2)∆ε, (i + 1/2)∆ε) and ηi are independent Gaussian random variables,
Eηi = 0, Eη2

i = 1,−l ≤ i ≤ l. Hereafter [t] denotes the integer part of t ∈ R1.
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On the base of the partition on intervals Ii,−l ≤ i ≤ l, we reduce the problem to the discrete version and
show that the discrete version of the problem has a simple solution. The choice of Dε satisfying (35) allows to
get ε2E

∫
Ii

η̂2(u)du = o(E
∫

Ii
ξ̂2
ε (u)du) on all intervals Ii, |i| > δl, 0 < δ < 1. The variation of function R(ω) on

interval Ii is neglected, that is R(ω) = R(i∆ε)(1 + o(1)) if ∆ satisfies (36). At the same time

∫
Ii

h2(ω − u) du = ||h||2(1 + o(1))

if |ω| < (1 − δ1)∆, 0 < δ1 < 1. This allows to show that asymptotically minimax risks ρε and asymptotically
minimax estimators x∗∗

µε
, x∗∗

ωε
depend only on ||h||2.

Denote νε the probability measure of ξε.

Lemma 2.1. There holds

lim
ε→0

P (ξε ∈ Q) = 1. (38)

Proof. By straightforward calculations, we get

E

[∫
B2(ω)ξ̂2

ε (ω)dω

]
= O

(
D2

ε

∫ ω2ε

−ω2ε

B2(ω)dω

)
= O(D2

ε B2(ω2ε)ωβ−1
ε ) = o(1),

Var
[∫

B2(ω)ξ̂2
ε (ω)dω

]
= O

(
D4

ε

∫ ω2ε

−ω2ε

B4(ω)dω

)
= O(D4

ε B4(ω2ε)ω1−β
ε ) = o(D4

ε B4(ω2ε)ω2−2β
ε )

as ε → 0. Hence, by Chebyshev inequality, using (35), we get (38). This completes the proof of Lemma 2.1.
For any estimator x∗

ε define the Bayes risks

ρ̂ελ(x∗
ε ) =

∫
Q

dλε(x)E||x∗
ε − x||2,

ρ̂εν(x∗
ε ) =

∫
Q

dνε(x)E||x∗
ε − x||2.

Denote x̄∗
ε and x̄ε the Bayes estimators corresponding to a priori measures λε and νε respectively.

Lemma 2.2. There holds

ρ̂ελ(x̄∗
ε ) ≥ ρ̂εν(x̄ε)(1 + o(1)), ε → 0.

The proof of Lemma 2.2 is akin to that of Lemma 2.3 in [11] and is omitted.
By Lemmas 2.1 and 2.2, the proof of lower bound is reduced to the problem of obtaining asymptotic of Bayes

risks ρ̂εν(x̄ε). Since a priori measures νε are Gaussian the analytic formula for the Bayes risks ρ̂εν(x̄ε) can be
written straightforwardly (see (47) below). However this formula is rather cumbersome and the proof that the
asymptotic of ρ̂εν(x̄ε) coincides with Ψ̄ε(ωε) requires special analytic technique.

Since the random process ξε is Gaussian the Bayes estimator is linear

x̄ε =
∫

kε(t, s)y(s)ds

with the kernel kε satisfying the equation (see (2.16) in [11])

Eτ [x̄ε(t)f(s)] − Eτ

[∫
kε(t, u)f(u)duf(s)

]
− ε2

∫
kε(t, u)h(s)h(u)r(u − s)du = 0 (39)



MINIMAX AND BAYES ESTIMATION IN DECONVOLUTION PROBLEM 337

for all t, s ∈ R1. Hereafter f = a ∗ x. Note that (39) is obtained as the Gateaux derivative of the risk function

EξεEζ

∥∥∥∥
∫

k(t, u)y(u)du − ξε

∥∥∥∥
2

.

In terms of Fourier transform (39) can be written as follows

V∆(ω, ω0)A(ω0) =
∫

Kε(ω, ω1)A(ω1)V∆(ω1, ω0)dω1A(ω0)

+ε2
∫

Kε(ω, ω2)
∫

H(ω2 − ω1)R(ω1)H(ω1 − ω0)dω1dω2, ω, ω0 ∈ R1. (40)

Hereafter V∆ = V∆ε(ω1, ω0) = E[ξε(ω1)ξε(ω0)] = D2
ε

∑i=l
i=−l χ(ω1 ∈ Ii, ω0 ∈ Ii) with ω0, ω1 ∈ R1.

In what follows, we shall make use of operator symbolic in the problem of risk minimization. Denote A, R the
multiplication operators with the kernels A(ω), R(ω). Denote Kε, V∆, H the integral operators L2(R1) → L2(R1)
with the kernels Kε(ω, ω0), V∆(ω, ω0), H(ω − ω0) respectively and denote I the unit operator. In this notation
the Bayes estimator minimizes the Bayes risk

ρε(K) = Sp
[
(KT A − I)V∆(AK − I) + ε2KT HRHK

]
(41)

among all estimators x∗
ε = k ∗ y. Here Sp[U ] denotes the trace of operator U and KT denotes the conjugate

operator of K.
Denote Rε(ω) = R(ω)χ(|ω| < ω2ε) and

R̄ε(ω, ω0) =
∫

H(ω − ω1)Rε(ω1)H(ω1 − ω0)dω1χ(ω ∈ (−ω2ε, ω2ε), ω0 ∈ (−ω2ε, ω2ε)).

Since Rε ≤ R, we get

ρ̄ε(K) = Sp[(KT A − I)V∆(AK − I) + ε2KT R̄εK]

≤ Sp[(KT A − I)V∆(AK − I) + ε2KT HRεHK] ≤ ρε(K). (42)

Therefore the problem of obtaining lower bound is reduced to that of minimization of ρ̄ε(K). Define the operator
K̄ε such that ρ̄ε(K̄ε) = inf ρ̄ε(K) where the infimum is over all operators K such that ρ̄ε(K) < ∞.

If we write a version of equation (40) for the operator K̄ε, we get easily

K̄ε = V∆A(AV∆A + ε2R̄ε)−1. (43)

It follows from the definition of ρ̄ε(K) that in the problem of minimization of ρ̄ε(K) it suffices to consider the
operators A, V∆, R̄ε as operators L2((−ω2ε, ω2ε)) → L2((−ω2ε, ω2ε)). Thus, in what follows, we suppose that
such a contraction of operators takes place.

For any linear operator G : L2(−ω2ε, ω2ε) → L2(−ω2ε, ω2ε) denote

||G|| = sup{x′Gx : ||x|| = 1, x ∈ L2(−ω2ε, ω2ε)}

where x′y stands for the inner product of x, y ∈ L2(−ω2ε, ω2ε).
In this notation there holds

||K̄ε|| ≤ ||A−1|| ||AKε|| ≤ ||A−1|| ≤ A−1(ωε). (44)
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We shall use also the following inequality. For any operator G and positive operator M it holds

Sp[GM ] ≤ ||G|| Sp[M ] (45)

if Sp[M ] < ∞ and ||G|| < ∞.
It is known also that, if G(s, t) is the kernel of linear operator G, then

||G||2 ≤
∫ ω2ε

−ω2ε

∫ ω2ε

−ω2ε

G2(s, t) dsdt. (46)

Substituting (43) in the left-hand side of (42), we get

ρ̄ε(K̄ε) = ε4Sp[(AV∆A + ε2R̄ε)−1R̄εV∆R̄ε(AV∆A + ε2R̄ε)−1]
+ε2Sp[(AV∆A + ε2R̄ε)−1AV∆R̄εV∆A(AV∆A + ε2R̄ε)−1]. (47)

Now we define some discrete version ρ̄ε∆(K̄ε) of ρ̄ε(K̄ε) and show that |ρ̄ε∆(K̄ε) − ρ̄ε(Kε)| = o(ρ̄ε∆(K̄ε)) is
negligible. After that we show that Ψ̄ε(ωε) is the lower bound of ρ̄ε∆(K̄ε). The proofs of these statements have
technical character and are based on inequalities (44)–(46).

For each i, |i| ≤ l we fix ωi ∈ Ii and define the functions

A∆(ω) =
l∑

i=−l

A(ωi)χ(ω ∈ Ii),

H∆(ω, ω1) =
l∑

i=−l

H(ωi − ω1)χ(ω ∈ Ii).

R∆(ω0, ω1) = (HT
∆RεH∆)(ω0, ω1).

Denote
ρ̄ε∆(K̄ε) = Sp

[
(K̄T

ε A∆ − I)V∆(A∆K̄ε − I) + ε2K̄T
ε R∆K̄ε

]
. (48)

We have

ρ̄ε(K̄ε) − ρ̄ε∆(K̄ε) = Sp[K̄T
ε (A − A∆)V∆(AK̄ε − I)]

+Sp[K̄T
ε A∆V∆(A − A∆)K̄ε] + ε2Sp[K̄T

ε (R̄ε − R∆)K̄ε]
.= J1 + J2 + ε2J3. (49)

Since ||AK̄ε − I|| ≤ 1 and ||K̄εA|| ≤ 1, by A4, (44), we get

|J1| ≤ A−1(ωε) ||AK̄ε|| ||A − A∆|| Sp[V∆] ||AK̄ε − I|| ≤ CA−1(ωε)∆Sp[V∆]. (50)

Hereafter C stands for positive constants.
Arguing similarly, we get

|J2| ≤ A−1(ωε) ||AK̄ε|| ||A∆||Sp[V∆] ||A − A∆||A−1(ωε) ||AK̄ε|| ≤ C∆A−2(ωε)Sp[V∆]. (51)

We have
J3 = Sp[K̄εK̄

T
ε (H − H∆)RεH ] + Sp[K̄εK̄

T
ε H∆Rε(H − H∆)] .= J31 + J32. (52)

By H3, the function H(ω) satisfies the Lipschitz conditions. Hence, using (46), we get

||H − H∆|| ≤
⎛
⎝∫ ωε

−ωε

dω0

∫ ωε

−ωε

dω

∣∣∣∣∣H(ω0 − ω)
l∑

i=−l

H(ωi − ω)χ(ω0 ∈ Ii)

∣∣∣∣∣
2
⎞
⎠

1/2

≤ C∆ωε (53)



MINIMAX AND BAYES ESTIMATION IN DECONVOLUTION PROBLEM 339

and

||H∆|| ≤
⎛
⎝∫ ωε

−ωε

dω0

∫ ωε

−ωε

dω

∣∣∣∣∣
l∑

i=−l

H(ωi − ω)χ(ω0 ∈ Ii)

∣∣∣∣∣
2
⎞
⎠

1/2

=
(∫ ωε

−ωε

dω0

∫
H2(ω0 − ω)dω

)1/2

(1 + o(1)) ≤ Cω1/2
ε ||H ||. (54)

Hence, using (44), (45), we get

J31 ≤ ||Kε||2||H − H∆||Sp[Rε]||H || ≤ C∆ωεA
−2(ω2ε)Sp[Rε], (55)

I32 ≤ ||Kε||2||H∆||Sp[Rε]||H − H∆|| ≤ C∆ω3/2
ε A−2(ω2ε)Sp[Rε]. (56)

By definition (37) of ξ̂ε(ω), we get
Sp[V∆] = o(D2

εωε) (57)
and, by R, we get

Sp[Rε] = O(ωε) (58)
By (49)–(52), (56)–(58), we get

|ρ̄ε(K̄ε) − ρ̄ε∆(K̄ε)| ≤ C∆A−2(ωε)Sp[V∆] + Cε2∆ω3/2
ε A−2(ωε)Sp[Rε]

≤ C∆A−2(ωε)D2
ε ωε + Cε2∆ω5/2

ε A−2(ωε). (59)

By (36), (59), using Ψ̄ε(ωε) = O(ε2A−2(ωε)R(ωε)ωε), we get

ρ̄ε(K̄ε) − ρε∆(K̄ε) = o(Ψ̄(ωε)). (60)

It remains to study the problem of minimization of ρ̄ε∆(K). In discrete setting, V∆ = D2
ε I. This simplifies

essentially estimates.
The next two estimates are auxiliary. By (54), we get

||R∆|| ≤ ||H∆||2||Rε|| ≤ Cωε. (61)

Since ||A−1
∆ || ≤ A−1(ωε), we have also

||A−1
∆ R∆A−1

∆ || ≤ A−2(ωε)||R∆|| ≤ CA−2(ωε)ωε. (62)

Now we utilize (61), (62), to estimate

ρ̂ε∆ = inf
K

ρ̄ε∆(K) = ε4Sp[(A∆V∆A∆ + ε2R∆)−1R∆V∆R∆(A∆V∆A∆ + ε2R∆)−1]

+ε2Sp[(A∆V∆A∆ + ε2R∆)−1A∆V∆R∆V∆A∆(A∆V∆A∆ + ε2R∆)−1] .= U1 + U2. (63)

We have

U1 ≤ ε4D−4
ε A−4(ω2ε) Sp[(I + ε2D−1

ε A−1
∆ R∆A−1

∆ )−1

×R∆V∆R∆(I + ε2D−1
ε A−1

∆ R∆A−1
∆ )−1]

≤ Cε4D−4
ε A−4(ω2ε)||R∆||2Sp[V∆] ≤ Cε4D−2

ε A−4(ωε)||R∆||2ωε

≤ Cε4D−2
ε A−4(ω2ε)ω3

ε = o(ε2Sp[A−2R]) (64)

where the last equality follows from (34), (35).
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We have
U2 = U21 − U22 − U23 (65)

where

U21 = ε2Sp[A−1
∆ R∆A−1

∆ ],

U22 = ε4Sp[(A∆V∆A∆ + ε2R∆)−1R∆A−1
∆ R∆A−1

∆ A∆V∆A∆(A∆V∆A∆ + ε2R∆)−1],

U23 = ε4Sp[A−1R∆A−1R∆(A∆V∆A∆ + ε2R∆)−1].

The estimates U22, U23 are akin to (50) and (64)

U22 ≤ ε4D−2
ε A−2(ω2ε)||R∆||Sp[A−1

∆ R∆A−1
∆ ]||A∆V∆A∆(A∆V∆A∆ + ε2R∆)−1||

≤ Cε4D−2
ε A−2(ω2ε)ωεSp[A−2

∆ Rε](1 + o(1)) = o(ε2Sp[A−2
∆ Rε]), (66)

U23 ≤ ε4||R∆(A∆V∆A∆ + ε2R∆)−1|| Sp[A−2
∆ R∆]

≤ Cε4||R∆||A−2(ω2ε)D−2
ε Sp[A−2

∆ R∆]

≤ Cε4ωεA
−2(ω2ε)D−2

ε Sp[A−2
∆ R∆] = o(ε2Sp[A−2

∆ R∆]) (67)

where the last equalities in (66), (67) follows from (34), (35).
Now (63)–(67) together imply

ρ̂ε∆ = ε2Sp[A−2
∆ R∆](1 + o(1)).

This completes the proof of lower bound in (12).

2.2. Proof of Theorem 1.2

We begin with the proof of lower bound. The arguments are akin to the proof of Theorem 1.2 in [11] and
are based on the method proposed in [8]. Define the parametric family of functions

Gθ(ω) =
1√
2
δ̃−1/2
ε θχ(ωε < |ω| < (1 + δ̃ε)ωε) = θH̃ε

where δ̃ε � ω1−β−κ
ε , 0 < κ < γ − β.

Consider the problem of estimation of parameter θ if θ has the Binomial distribution

P (θ = ±θε) =
1
2
, θε = B−1(ωε).

Since the noise is Gaussian it is easy to find the sufficient statistics in this problem. As a result the problem is
reduced to the estimation of θ on observation

yε = θ + ε||H̃ε||−1

∫
H̃ε(ω)A−1(ω)

∫
H(ω − ω1)R1/2(ω1)dw(ω1)

that can be written in a more simple form
yε = θ + dεζ

where ζ is Gaussian random variable, Eζ = 0, Eζ2 = 1 and

d2
ε = ε2||H̃ε||−2

∫
R(ω1)

(∫
H(ω1 − ω)A−1(ω)H̃ε(ω)dω

)2

≥ C||H ||2δ̃εR(ωε)A−2(ωε).
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Since θε = o(dε), the Bayes risks equals

θ2
ε (1 + o(1)) = B−2(ωε)(1 + o(1))

and this is the lower bound of minimax risks.
The proof of upper bounds is also akin to that of Theorem 1.2 in [11] and is omitted.

2.3. Proof of Theorem 1.3. lower bound

We consider the auxiliary problem of Bayes estimation with spectral density V̄ε(ω) ≤ V (ω), ω ∈ R1 such that
the reasoning the proof of Theorem 1.3 in [11] can be applied. As a result we get the required lower bound in
Theorem 1.3.

We put V̄ε(ω) = 0 if |ω| > (1 − δ̄ε)ω1ε
.= ω̄ε and V̄ε(ω) = V (ω̄ε) if |ω| < ω̄ε where ω̄ε is such that

ε2A−2(ωε)R(ωε) = o(V (ω̄ε)) (68)

and δε → 0 as ε → 0.
Since

ρε(K) = Sp[(KT A − I)HV H(AK − I) + ε2KT HRHK]

≥ Sp[(KT A − I)HV̄εH(AKI) + ε2KT HRHK] .= ρ̂ε(K)

it suffices to find lower bound for the asymptotic of ρ̂ε(K). Such a lower bound can be found if we repeat all
estimates in the proof of lower bound for the asymptotic of Bayes risks in Theorem 1.3 in [11]. This lower bound
equals

ε2||h||2||h1||2
∫

R(ω)V̄ε(ω)
||h1||2A2(ω)V̄ε(ω) + ε2||h||2R(ω)

dω(1 + o(1)) = ε2||h||2
∫ ωε

−ωε

A−2(ω)R(ω)dω(1 + o(1))

where the last relation follows from (68). This completes the proof of lower bound in Theorem 1.3.

2.4. Proof of Theorem 1.1. Upper bound

The proofs of upper bounds differ from the standard reasoning (see [8,10,26]) only by the presence of the function
h in the noise. Thus the main difference in the reasoning is the following. One needs to show that the Fourier
transform of correlation function of εh(t)ζ(t) given by the convolution

ε2
∫

H2(ω − ω1)R(ω1)dω1 (69)

can be replaced the simple asymptotic ε2||h||2R(ω)(1 + o(1)) for the large values of ω. By H2, R, the function
H(ω) decreases faster then R(ω) and the function R(ω) is regularly varying. This allows to utilize the required
asymptotic in our estimates.

We have

ρε(x∗∗
ωε

) = sup
x∈Q

∫
X2(ω)χ(|ω| > ωε)dω + ε2

∫ ωε

−ωε

A−2(ω)
∫

H2(ω − ω1)R(ω1)dω1dω

= o(B−2(ωε)) + Ψ̄ε(ωε)(1 + o(1)) = Ψ̄ε(ωε)(1 + o(1)).

This implies the upper bound for the estimator x∗∗
ωε

.
By the definition of µε, it is easy to see that Ψε(µε) = Ψ̄ε(ωε)(1 + o(1)).
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The minimax risk of Tikhonov regularizing procedure equals

ρε(x∗∗
αε

) = α2
ε max

ω
M2(ω)B−2(ω)(A2(ω) + αεM(ω))−2

+ε2
∫

A2(ω)(A2(ω) + αεM(ω))−2

∫
H2(ω − ω1)R(ω1)dω1dω

.= I1 + I2. (70)

By H2, R, we get

I2 = 2ε2||h||2
∫ ∞

δωε

A2(ω)R(ω)(A2(ω) + αεM(ω))−2dω + O(ε2δωεA
−2(δωε)R(δωε)) (71)

for any 0 < δ < 1.
Define δε such that A2(ωε) = A2(ωε(1 − δε))(1 + o(1)) and M(ωε(1 − δε)) = o(M(ωε)). Then

I2 = I21 + I22 + I23 + O(ε2δωεA
−2(δωε)R(δωε)) (72)

where

I21 = 2ε2||h||2
∫ (1−δε)ωε

δωε

A2(ω)R(ω)(A2(ω) + αεM(ω))−2dω

= 2ε2||h||2
∫ (1−δε)ωε

δωε

A−2(ω)R(ω)dω(1 + o(1)) = Ψ̄ε(ωε)(1 + o(1)),

I22 = 2ε2||h||2
∫ (1+δε)ωε

(1−δε)ωε

A2(ω)R(ω)(A2(ω) + αεM(ω))−2dω,

I23 = 2ε2||h||2
∫ ∞

(1+δε)ωε

A2(ω)R(ω)(A2(ω) + αεM(ω))−2dω. (73)

By M2 and the definitions of δε, ωε, we get

I22 = o(I21), I23 = o(I21). (74)

By (72)–(74), we get

I2 = I21(1 + o(1)) = Ψ̄ε(ωε)(1 + o(1)). (75)

By M2 and the definition of αε, we get

I1 < CB−2(ωε) = o(Ψ̄ε(ωε)). (76)

Now (70), (75), (76) together imply the asymptotic minimaxity of Tikhonov regularizing procedure.

2.5. Proof of Theorem 1.3. Upper bound

The Bayes risk equals

2
∫ ∞

ωε

∫
H2

1 (ω − ω1)V (ω1)dωdω1 + ε2
∫ ωε

−ωε

A−2(ω)
∫

H2(ω − ω1)R(ω1)dω1
.= 2I1 + I2. (77)
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By straightforward calculations, we get

I2 = ε2||H ||2
∫ ωε

−ωε

A−2(ω)R(ω)dω(1 + o(1)). (78)

Denote ω2ε = 1
2ω1ε + 1

2ωε.
We have

I1 = I11 + I12 (79)

where

I11 =
∫ ∞

ωε

∫ ∞

ω2ε

H2
1 (ω − ω1)V (ω1)dωdω1, (80)

I12 =
∫ ∞

ωε

∫ ω2ε

−∞
H2

1 (ω − ω1)V (ω1)dωdω1. (81)

By (50), (30), we get

I11 ≤
∫ ∞

ωε

∫ ∞

ω2ε

H2
1 (ω − ω1)V (ω1)dωdω1

≤ ||H1||2
∫ ∞

ω2ε

V (ω1)dω1 = o(I2), (82)

I12 ≤
∫ ∞

ω2ε−ωε

H2
1 (ω)dω

∫
V (ω)dω = o(I1). (83)

Now the upper bound follows from (77)–(83).

Acknowledgements. The author thanks referees and associate editor for helpful comments and remarks.

References

[1] L.D. Brown, T. Cai, M.G. Low and C. Zang, Asymptotic equivalence theory for nonparametric regression with random design.
Ann. Stat. 24 (2002) 2399–2430.

[2] C. Butucea, Deconvolution of supersmooth densities with smooth noise. Canad. J. Statist. 32 (2004) 181–192.
[3] C. Butucea and A.B. Tsybakov, Sharp optimality for density deconvolution with dominating bias. (2004),

arXiv:math.ST/0409471.
[4] L. Cavalier, G.K. Golubev, O.V. Lepski and A.B. Tsybakov, Block thresholding and sharp adaptive estimation in severely

ill-posed problems. Theory Probab. Appl. 48 (2003) 534–556.
[5] G.K. Golubev and R.Z. Khasminskii, Statistical approach to Cauchy problem for Laplace equation. State of the Art in

Probability and Statistics, Festschrift for W.R. van, Zwet M. de Gunst, C. Klaassen and van der Vaart Eds., IMS Lecture
Notes Monograph Series 36 (2001) 419–433.

[6] R.J. Carrol and P. Hall, Optimal rates of convergence for deconvolving a density J. Amer. Statist. Assoc. 83 (1988) 1184–1186.
[7] D.L. Donoho, Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition. Appl. Comput. Harmon.

Anal. 2 (1992) 101–126.
[8] S. Efroimovich, Nonparametric Curve Estimation: Methods, Theory and Applications. New York, Springer (1999).
[9] S. Efromovich and M. Pinsker, Sharp optimal and adaptive estimation for heteroscedastic nonparametric regression. Statistica

Cinica 6 (1996) 925–942.
[10] M.S. Ermakov, Minimax estimation in a deconvolution problem. J. Phys. A: Math. Gen. 25 (1992) 1273–1282.
[11] M.S. Ermakov, Asymptotically minimax and Bayes estimation in a deconvolution problem. Inverse Problems 19 (2003) 1339–

1359.
[12] J. Fan, Asymptotic normality for deconvolution kernel estimators. Sankhia Ser. A 53 (1991) 97–110.
[13] J. Fan, On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 (1991) 1257–1272.
[14] A. Goldenshluger, On pointwise adaptive nonparametric deconvolution. Bernoulli 5 (1999) 907–25.



344 M. ERMAKOV

[15] Yu K. Golubev, B.Y. Levit and A.B. Tsybakov, Asymptotically efficient estimation of Analitic functions in Gaussian noise.
Bernoulli 2 (1996) 167–181.

[16] I.A. Ibragimov and R.Z. Hasminskii, Estimation of distribution density belonging to a class of entire functions. Theory Probab.
Appl. 27 (1982) 551–562.

[17] P.A. Jansson, Deconvolution, with application to Spectroscopy. New York, Academic (1984).
[18] I.M. Johnstone, G. Kerkyacharian, D. Picard and M.Raimondo, Wavelet deconvolution in a periodic setting. J. Roy. Stat. Soc.

Ser B. 66 (2004) 547–573.
[19] I.M. Johnstone and M. Raimondo, Periodic boxcar deconvolution and Diophantine approximation. Ann. Statist. 32 (2004)

1781–1805.
[20] J. Kalifa and S. Mallat, Threshholding estimators for linear inverse problems and deconvolutions. Ann. Stat. 31 (2003) 58–109.
[21] S. Kassam and H. Poor, Robust techniques for signal processing. A survey. Proc. IEEE 73 (1985) 433–481.
[22] M.R. Leadbetter, G. Lindgren and H. Rootzen, Extremes and Related Properties of Random sequences and Processes. Springer-

Verlag NY (1986).
[23] R. Neelamani, H. Choi, R.G. Baraniuk, ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems. IEEE

Trans. Signal Process. 52 (2004) 418–433.
[24] M. Nussbaum, Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Stat. 24 (1996) 2399–2430.
[25] M. Pensky and B. Vidakovic, Adaptive wavelet estimator for nonparametric density deconvolution. Ann. Statist. 27 (1999)

2033–2053.
[26] M.S. Pinsker, Optimal filtration of square-integral signal in Gaussian noise. Problems Inform. Transm. 16 (1980) 52–68.
[27] M. Schipper, Optimal rates and constants in L2-minimax estimation of probability density functions. Math. Methods Stat. 5

(1996) 253–274.
[28] A.J. Smola, B. Scholkopf and K. Miller, The connection between regularization operators and support vector kernels. Newral

Networks 11 (1998) 637–649.
[29] A. Tikhonov and V. Arsenin, Solution of Ill-Posed Problems. New-York, Wiley (1977).
[30] A.B. Tsybakov, On the best rate of adaptive estimation in some inverse problems. C.R. Acad. Sci. Paris, Serie 1 330 (2000)

835–840.
[31] N. Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time Series. New York, Wiley (1950).


	Introduction and main results
	Introduction
	Main results. Minimax estimation
	Main results. Bayes approach

	Proofs of theorems
	Proof of lower bound in Theorem 1.1
	Proof of Theorem 1.2
	Proof of Theorem 1.3. lower bound
	Proof of Theorem 1.1. Upper bound
	Proof of Theorem 1.3. Upper bound

	References

