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ON EM ALGORITHMS AND THEIR PROXIMAL GENERALIZATIONS
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Abstract. In this paper, we analyze the celebrated EM algorithm from the point of view of proximal
point algorithms. More precisely, we study a new type of generalization of the EM procedure introduced
in [Chretien and Hero (1998)] and called Kullback-proximal algorithms. The proximal framework allows
us to prove new results concerning the cluster points. An essential contribution is a detailed analysis
of the case where some cluster points lie on the boundary of the parameter space.
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1. Introduction

The problem of maximum likelihood (ML) estimation consists of finding a solution of the form

θML = argmaxθ∈Θ ly(θ), (1)

where y is an observed sample of a random variable Y defined on a sample space Y and ly(θ) is the log-likelihood
function defined by

ly(θ) = log g(y; θ), (2)
defined on the parameter space Θ ⊂ R

n, and g(y; θ) denotes the density of Y at y parametrized by the vector
parameter θ.

The Expectation Maximization (EM) algorithm is an iterative procedure which is widely used for solving ML
estimation problems. The EM algorithm was first proposed by Dempster, Laird and Rubin [7] and has seen the
number of its potential applications increase substantially since its appearance. The book of McLachlan and
Krishnan [12] gives a comprehensive overview of the theoretical properties of the method and its applicability.

The convergence of the sequence of EM iterates towards a maximizer of the likelihood function was claimed
in the original paper [7] but it was later noticed that the proof contained a flaw. A careful convergence analysis
was finally given by Wu [18] based on Zangwill’s general theory [20]; see also [12]. Zangwill’s theory applies
to general iterative schemes and the main task when using it is to verify that the assumptions of Zangwill’s
theorems are satisfied. Since the appearance of Wu’s paper, convergence of the EM algorithm is often taken for
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granted in many cases where the necessary assumptions were sometimes not carefully justified. As an example,
an often neglected issue is the behavior of EM iterates when they approach the boundary of the domain of
definition of the functions involved. A different example is the following. It is natural to try and establish that
EM iterates actually converge to a single point θ∗, which involves proving uniqueness of the cluster point. Wu’s
approach, reported in [12], Theorem 3.4, p. 89, is based on the assumption that the euclidean distance between
two successive iterates tends to zero. However such an assumption is in fact very hard to verify in most cases
and should not be deduced solely from experimental observations.

The goal of the present paper is to propose an analysis of EM iterates and their generalizations in the
framework of Kullback proximal point algorithms. We focus on the geometric conditions that are provable in
practice and the concrete difficulties concerning convergence towards boundaries and cluster point uniqueness.
The approach adopted here was first proposed in [4] in which it was shown that the EM algorithm could be recast
as a Proximal Point algorithm. A proximal scheme for maximizing the function ly(θ) using the distance-like
function Iy is an iterative procedure of the form

θk+1 ∈ argmaxθ∈Ωly(θ) − βkIy(θ, θk), (3)

where (βk)k∈N is a sequence of positive real numbers often called relaxation parameters. Proximal point methods
were introduced by Martinet [11] and Rockafellar [15] in the context of convex minimization. The proximal
point representation of the EM algorithm [4] is obtained by setting βk = 1 and Iy(θ, θk) to the Kullback
distance between some well specified conditional densities of a complete data vector. The general case of βk > 0
was called the Kullback Proximal Point algorithm (KPP). This approach was further developed in [5] where
convergence was studied in the twice differentiable case with the assumption that the limit point lies in the
interior of the domain. The main novelty of [5] was to prove that relaxation of the Kullback-type penalty
could ensure superlinear convergence which was confirmed by experiment for a Poisson linear inverse problem.
This paper is an extension of these previous works that addresses the problem of convergence under general
conditions.

The main results of this paper are the following. Firstly, we prove that all the cluster points of the Kullback
proximal sequence which lie in the interior of the domain are stationary points of the likelihood function ly under
very mild assumptions that are easily verified in practice. Secondly, taking into account finer properties of Iy ,
we prove that every cluster point on the boundary of the domain satisfies the Karush-Kuhn-Tucker necessary
conditions for optimality under nonnegativity constraints. To illustrate our results, we apply the Kullback-
proximal algorithm to an estimation problem in animal carcinogenicity introduced in [1] in which an interesting
nonconvex constraint is handled. In this case, the M-step cannot be obtained in closed form. However, the
Kullback-proximal algorithm can be analyzed and implemented. Numerical experiments are provided which
demonstrate the ability of the method to significantly accelerate the convergence of standard EM.

The paper is organized as follows. In Section 2, we review the Kullback proximal point interpretation of EM.
Then, in Section 3 we study the properties of interior cluster points. We prove that such cluster points are in
fact global maximizers of a certain penalized likelihood function. This allows us to justify using a relaxation
parameter β when β is sufficiently small to permit avoiding saddle points. Section 4 pursues the analysis in the
case where the cluster point lies on a boundary of the domain of Iy.

2. The Kullback proximal framework

In this section, we review the EM algorithm and the Kullback proximal interpretation discussed in [5].

2.1. The EM algorithm

The EM procedure is an iterative method which produces a sequence (θk)k∈N such that each θk+1 maximizes
a local approximation of the likelihood function in the neighborhood of θk. This point of view will become clear
in the proximal point framework of the next subsection.
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In the traditional approach, one assumes that some data are hidden from the observer. A frequent example
of hidden data is the class to which each sample belongs in the case of mixtures estimation. Another example is
when the observed data are projection of an unkown object as for image reconstruction problems in tomography.
One would prefer to consider the likelihood of the complete data instead of the ordinary likelihood. Since some
parts of the data are hidden, the so called complete likelihood cannot be computed and therefore must be
approximated. For this purpose, we will need some appropriate notations and assumptions which we now
describe. The observed data are assumed to be i.i.d. samples from a unique random vector Y taking values on a
data space Y. Imagine that we have at our disposal more informative data than just samples from Y . Suppose
that the more informative data are samples from a random variable X taking values on a space X with density
f(x; θ) also parametrized by θ. We will say that the data X is more informative than the actual data Y in the
sense that Y is a compression of X , i.e. there exists a non-invertible transformation h such that Y = h(X). If
one had access to the data X it would therefore be advantageous to replace the ML estimation problem (1) by

θ̂ML = argmaxθ∈Rplx(θ), (4)

with lx(θ) = log f(x; θ). Since y = h(x) the density g of Y is related to the density f of X through

g(y; θ) =
∫
h−1({y})

f(x; θ)dµ(x) (5)

for an appropriate measure µ on X . In this setting, the data y are called incomplete data whereas the data x
are called complete data.

Of course the complete data x corresponding to a given observed sample y are unknown. Therefore, the
complete data likelihood function lx(θ) can only be estimated. Given the observed data y and a previous
estimate of θ denoted θ̄, the following minimum mean square error estimator (MMSE) of the quantity lx(θ) is
natural

Q(θ, θ̄) = E[log f(x; θ)|y; θ̄],
where, for any integrable function F (x) on X , we have defined the conditional expectation

E[F (x)|y; θ̄] =
∫
h−1({y})

F (x)k(x|y; θ̄)dµ(x)

and k(x|y; θ̄) is the conditional density function given y

k(x|y; θ̄) =
f(x; θ̄)
g(y; θ̄)

· (6)

Having described the notions of complete data and complete likelihood and its local estimation we now turn
to the EM algorithm. The idea is relatively simple: a legitimate way to proceed is to require that iterate θk+1

be a maximizer of the local estimator of the complete likelihood conditionally on y and θk. Hence, the EM
algorithm generates a sequence of approximations to the solution (4) starting from an initial guess θ0 of θML

and is defined by
Compute Q(θ, θk) = E[log f(x; θ)|y; θk] E Step
θk+1 = argmaxθ∈RpQ(θ, θk) M Step

2.2. Kullback proximal interpretation of the EM algorithm

Consider the general problem of maximizing a concave function Φ(θ). The original proximal point algorithm
introduced by Martinet [11] is an iterative procedure which can be written

θk+1 = argmaxθ∈DΦ

{
Φ(θ) − βk

2
‖θ − θk‖2

}
. (7)
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The quadratic penalty 1
2‖θ − θk‖2 is relaxed using a sequence of positive parameters {βk}. In [15], Rockafellar

showed that superlinear convergence of this method is obtained when the sequence {βk} converges towards zero.
It was proved in [5] that the EM algorithm is a particular example in the class of proximal point algorithms

using Kullback Leibler types of penalties. One proceeds as follows. Assume that the family of conditional
densities {k(x|y; θ)}θ∈Rp is regular in the sense of Ibragimov and Khasminskii [8], in particular k(x|y; θ)µ(x)
and k(x|y; θ̄)µ(x) are mutually absolutely continuous for any θ and θ̄ in R

p. Then the Radon-Nikodym derivative
k(x|y,θ̄)
k(x|y;θ) exists for all θ, θ̄ and we can define the following Kullback Leibler divergence:

Iy(θ, θ̄) = E

[
log

k(x|y, θ̄)
k(x|y; θ)

|y; θ̄
]

. (8)

We are now able to define the Kullback-proximal algorithm. For this purpose, let us define Dl as the domain
of ly, DI,θ the domain of Iy(·, θ) and DI the domain of Iy(·, ·).
Definition 2.2.1. Let (βk)k∈N be a sequence of positive real numbers. Then, the Kullback-proximal algorithm
is defined by

θk+1 = argmaxθ∈Dl∩DI,θk
ly(θ) − βkIy(θ, θk). (9)

The main result on which the present paper relies is that EM algorithm is a special case of (9), i.e. it is a
penalized ML estimator with proximal penalty Iy(θ, θk).

Proposition 2.2.2 [5], Proposition 1. The EM algorithm is a special instance of the Kullback-proximal
algorithm with βk = 1, for all k ∈ N.

The previous definition of the Kullback proximal algorithm may appear overly general to the reader familiar
with the usual practical interpretation of the EM algorithm. However, we found that such a framework has at
least the three following benefits [5]:

• to our opinion, the convergence proof of our EM is more natural;
• the Kullback proximal framework may easily incorporate additional constraints, a feature that may be

of crucial importance as demonstrated in the example of Section 5.1 below;
• the relaxation sequence (βk)k∈N allows one to weight the penalization term and its convergence to zero

implies quadratic convergence in certain examples.

The first of these three arguments is also supported by our simplified treatment of the componentwise EM
procedure proposed in [3] and the remarkable recent results of [17] based on a special proximal entropic repre-
sentation of EM for getting precise estimates on the convergence speed of EM algorithms, however, with much
more restrictive assumptions than the ones of the present paper.

Although our results are obtained under mild assumptions concerning the relaxation sequence (βk)k∈N in-
cluding the case βk = 0, several precautions should be taken when implementing the method. However, one of
the key features of EM-like procedures is to allow easy handling of positivity or more complex constraints, such
as the ones discussed in the example of Section 5.1. In such cases the function Iy behaves like a barrier whose
value increases to infinity as the iterates approach the boundary of the constraint set. Hence, the sequence
(βk)k∈N ought to be positive in order to exploit this important computational feature. On the other hand, as
proved under twice differentiability assumptions in [5] when the cluster set reduces to a unique nondegenerate
maximizer in the interior of the domain of the log-likelihood and βk converges to zero, quadratic convergence is
obtained. This nice behavior is not satisfied in the plain EM case where βk = 1 for all k ∈ N. As a drawback,
one problem in decreasing the βk’s too quickly is possible numerical ill conditioning. The problem of choosing
the relaxation sequence is still largely open. We have found however that for most “reasonable” sequences, our
method was at least as fast as the standard EM.

Finally, we would like to end our presentation of KPP-EM by noting that closed form iterations may not be
available in the case βk �= 1. If this is the case, solving (9) becomes a subproblem which will require iterative
algorithms. In some interesting examples, e.g. the case presented in Section 5.1. In this case, the standard
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EM iterations are not available in closed form in the first place and KPP-EM provides faster convergence while
preserving monotonicity and constraint satisfaction.

2.3. Notations and assumptions

The notation ‖ · ‖ will be used to denote the norm on any previously defined space without more precision.
The space on which it is the norm should be obvious from the context. For any bivariate function Φ, ∇1Φ will
denote the gradient with respect to the first variable. In the remainder of this paper we will make the following
assumptions.

Assumptions 2.3.1. (i) ly is differentiable on Dl and ly(θ) tends to −∞ whenever ‖θ‖ tends to +∞;
(ii) the projection of DI onto the first coordinate is a subset of Dl;
(iii) (βk)k∈N is a convergent nonnegative sequence of real numbers whose limit is denoted by β∗.

We will also impose the following assumptions on the distance-like function Iy.

Assumptions 2.3.2. (i) There exists a finite dimensional euclidean space S, a differentiable mapping t : Dl �→ S
and a functional Ψ : DΨ ⊂ S × S �→ R such that

Iy(θ, θ̄) = Ψ(t(θ), t(θ̄)),

where Dψ denotes the domain of Ψ.
(ii) For any {tk, t)k∈N} ⊂ DΨ there exists ρt > 0 such that lim‖tk−t‖→∞ Iy(tk, t) ≥ ρt. Moreover, we assume
that inft∈M ρt > 0 for any bounded set M ⊂ S.
For all (t′, t) in DΨ, we will also require that
(iii) (Positivity) Ψ(t′, t) ≥ 0,
(iv) (Identifiability) Ψ(t′, t) = 0 ⇔ t = t′,
(v) (Continuity) Ψ is continuous at (t′, t)
and for all t belonging to the projection of DΨ onto its second coordinate,
(vi) (Differentiability) the function Ψ(·, t) is differentiable at t.

Assumptions 2.3.1(i) and (ii) on ly are standard and are easily checked in practical examples, e.g. they are
satisfied for the Poisson and additive mixture models. Notice that the domain DI is now implicitly defined
by the knowledge of Dl and DΨ. Moreover Iy is continuous on DI . The importance of requiring that Iy has
the prescribed shape comes from the fact that Iy might not satisfy assumption 2.3.2(iv) in general. Therefore
assumption 2.3.2(iv) reflects the requirement that Iy should at least satisfy the identifiability property up to a
possibly injective transformation. In both examples discussed above, this property is an easy consequence of
the well known fact that a log(a/b) = 0 implies a = b for positive real numbers a and b. The growth, continuity
and differentiability properties 2.3.2(ii), (v) and (vi) are, in any case, nonrestrictive.

For the sake of notational convenience, the regularized objective function with relaxation parameter β will
be denoted

Fβ(θ, θ̄) = ly(θ) − βIy(θ, θ̄). (10)
Finally we make the following general assumption.

Assumptions 2.3.3. The Kullback proximal iteration (9) is well defined, i.e. there exists at least one maximizer
of Fβk(θ, θk) at each iteration k.

In the EM case, i.e. β = 1, this last assumption is equivalent to the computability of M-steps. A sufficient
condition for this assumption to hold would be, for instance, that Fβ(θ, θ̄) be sup-compact, i.e. the level sets
{θ | Fβ(θ, θ̄) ≥ α} be compact for all α, β > 0 and θ̄ ∈ Dl. However, this assumption is not usually satisfied
since the distance-like function is not defined on the boundary of its domain. In practice it suffices to solve
the equation ∇Fβk(θ, θk) = 0, to prove that the solution is unique. Then assumption 2.3.1(i) is sufficient to
conclude that we actually have a maximizer.
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2.4. General properties: monotonicity and boundedness

Using assumptions 2.3.1, we easily deduce monotonicity of the likelihood values and boundedness of the
proximal sequence. The first two lemmas are proved, for instance, in [5].

We start with the following monotonicity result.

Lemma 2.4.1 [5], Proposition 2. For any iteration k ∈ N, the sequence (θk)k∈N satisfies

ly(θk+1) − ly(θk) ≥ βkIy(θk, θk+1) ≥ 0. (11)

From the previous lemma, we easily obtain the boundedness of the sequence.

Lemma 2.4.2 [5], Lemma 2. The sequence (θk)k∈N is bounded.

The next lemma will also be useful.

Lemma 2.4.3. Assume that there exists a subsequence (θσ(k))k∈N belonging to a compact set C included in Dl.
Then,

lim
k→∞

βkIy(θk+1, θk) = 0.

Proof. Since ly is continuous over C, supθ∈C ly(θ) < +∞ and (ly(θσ(k)))k∈N is therefore bounded from above.
Moreover, Lemma 2.4.1 implies that the sequence (ly(θk))k∈N is monotone nondecreasing. Therefore, the whole
sequence (ly(θk))k∈N is bounded from above and convergent. This implies that limk→∞ ly(θk+1) − ly(θk) = 0.
Applying Lemma 2.4.1 again, we obtain the desired result. �

3. Analysis of interior cluster points

The convergence analysis of Kullback proximal algorithms is split into two parts, the first part being the
subject of this section. We prove that if the accumulation points θ∗ of the Kullback proximal sequence satisfy
(θ∗, θ∗) ∈ DIy they are stationary points of the log-likelihood function ly. It is also straightforward to show
that the same analysis applies to the case of penalized likelihood estimation.

3.1. Nondegeneracy of the Kullback penalization

We start with the following useful lemma.

Lemma 3.1.1. Let (αk1)k∈N and (αk2)k∈N be two bounded sequences in DΨ satisfying

lim
k→∞

Ψ(αk1 , αk2) = 0.

Assume that every couple (α∗
1, α

∗
2) of accumulation points of these two sequences lies in DΨ. Then,

lim
k→∞

‖αk1 − αk2‖ = 0.

Proof. First, one easily obtains that (αk2)k∈N is bounded (use a contradiction argument and assumption 2.3.2(ii)).
Assume that there exits a subsequence (ασ(k)

1 )k∈N such that ‖ασ(k)
1 − α

σ(k)
2 ‖ ≥ 3ε for some ε > 0 and for

all large k. Since (ασ(k)
1 )k∈N is bounded, one can extract a convergent subsequence. Thus we may assume

without any loss of generality that (ασ(k)
1 )k∈N is convergent with limit α∗. Using the triangle inequality, we

have ‖ασ(k)
1 − α∗

1‖ + ‖α∗
1 − α

σ(k)
2 ‖ ≥ 3ε. Since (ασ(k)

1 )k∈N converges to α∗
1, there exists a integer K such that

k ≥ K implies ‖ασ(k)
1 − α∗

1‖ ≤ ε. Thus for k ≥ K we have ‖α∗
1 − α

σ(k)
2 ‖ ≥ 2ε. Now recall that (αk2)k∈N is

bounded and extract a convergent subsequence (ασ(γ(k))
2 )k≥K with limit denoted by α∗

2. Then, using the same
arguments as above, we obtain ‖α∗

1 − α∗
2‖ ≥ ε. Finally, recall that limk→∞ Ψ(αk1 , αk2) = 0. We thus have
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limk→∞ Ψ(ασ(γ(k))
1 , α

σ(γ(k))
2 ) = 0, and, due to the fact that the sequences are bounded and Ψ(·, ·) is continuous

in both variables, we have Iy(α∗
1, α

∗
2) = 0. Thus assumption 2.3.2(iv) implies that ‖α∗

1 −α∗
2‖ = 0 and we obtain

a contradiction. Hence, limk→∞ ‖αk1 − αk2‖ = 0 as claimed. �

3.2. Cluster points

The main results of this section are the following. First, we prove that under the assumptions 2.3.1, 2.3.2
and 2.3.3, any cluster point θ∗ is a global maximizer of Fβ∗(θ∗, θ∗). We then use this general result to prove
that such cluster points are stationary points of the log-likelihood function. This result motivates a natural
assumption under which θ∗ is in fact a local maximizer of ly. In addition we show that if the sequence (βk)k∈N

converges to zero, i.e. β∗ = 0, then θ∗ is a global maximizer of log-likelihood. Finally, we discuss some simple
conditions under which the algorithm converges, i.e. has only one cluster point.

The following theorem states a result which describes the stationary points of the proximal point algorithm
as global maximizers of the asymptotic penalized function.

Theorem 3.2.1. Assume that β∗ > 0. Let θ∗ be any accumulation point of (θk)k∈N. Assume that (θ∗, θ∗) ∈ DI .
Then, θ∗ is a global maximizer of the penalized function Fβ∗(·, θ∗) over the projection of DI onto its first
coordinate, i.e.

Fβ∗(θ∗, θ∗) ≥ F (θ, θ∗)
for all θ such that (θ, θ∗) ∈ DI.

An informal argument is as follows. Assume that Θ = R
n. From the definition of the proximal iterations, we

have
Fβσ(k)(θ

σ(k)+1, θσ(k)) ≥ Fβσ(k)(θ, θ
σ(k))

for all subsequence (θσ(k))k∈N converging to θ∗ and for all θ ∈ Θ. Now, assume we can prove that θσ(k) also
converges to θ∗, we obtain by taking the limit and using continuity, that

Fβ∗(θ
∗, θ∗) ≥ Fβ∗(θ, θ

∗)

which is the required result. There are two major difficulties when one tries to transform this sketch into a
rigorous argument. The first one is related to the fact that ly and Iy are only defined on domains which may
not to be closed. Secondly, proving that θσ(k) converges to θ∗ is not an easy task. This issue will be discussed
in more detail in the next section. The following proof overcomes both difficulties.

Proof. Without loss of generality, we may reduce the analysis to the case where βk ≥ β > 0 for a certain β. The
fact that θ∗ is a cluster point implies that there is a subsequence of (θk)k∈N converging to θ∗. For k sufficiently
large, we may assume that the terms (θσ(k), θσ(k)−1) belong to a compact neighborhood C∗ of (θ∗, θ∗) included
in DI . Recall that

Fβσ(k)−1 (θ
σ(k), θσ(k)−1) ≥ Fβσ(k)−1 (θ, θσ(k)−1)

for all θ such that (θ, θσ(k)−1) ∈ DI and a fortiori for (θ, θσ(k)−1) ∈ C∗. Therefore,

Fβ∗(θσ(k), θσ(k)−1) −(βk − β∗)Iy(θσ(k), θσ(k)−1) ≥
Fβ∗(θ, θσ(k)−1) − (βσ(k)−1 − β∗)Iy(θ, θσ(k)−1).

(12)

Let us have a precise look at the “long term” behavior of Iy. First, since βk > β∗ for all k sufficiently large,
Lemma 2.4.3 says that

lim
k→∞

Iy(θσ(k), θσ(k)−1) = 0.

Thus, for any ε > 0, there exits an integer K1 such that Iy(θσ(k), θσ(k)+1) ≤ ε for all k ≥ K1. Moreover,
Lemma 3.1.1 and continuity of t allows to conclude that

lim
k→∞

t(θσ(k)−1) = t(θ∗).
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Since Ψ is continuous, for all ε > 0 and for all k sufficienlty large we have

Iy(θ∗, θ∗) = Ψ(t(θ∗), t(θ∗))
≥ Ψ(t(θσ(k)), t(θσ(k)−1)) − ε

= Iy(θσ(k), θσ(k)−1) − ε.
(13)

On the other hand, Fβ∗ is continuous in both variables on C∗, due to assumptions 2.3.1(i) and 2.3.2(i). By
continuity in the first and second arguments of Fβ∗(·, ·), for any ε > 0 there exists K2 ∈ N such that for all
k ≥ K2

Fβ∗(θ, θ∗) ≤ Fβ∗(θ, θσ(k)) + ε. (14)
Using (13), since ly is continuous, we obtain existence of K3 such that for all k ≥ K3

Fβ∗(θ∗, θ∗) ≥ Fβ∗(θσ(k), θσ(k)−1) − 2ε. (15)

Combining equations (14) and (15) with (12), we obtain

Fβ∗(θ∗, θ∗) ≥ Fβ∗(θ, θ∗) − (βk − β∗)Iy(θ, θσ(k))
+(βk − β∗)Iy(θσ(k), θσ(k)−1)) − 3ε.

(16)

Now, since β∗ = limk→∞ βk, there exists an integer K4 such that βk − β∗ ≤ ε for all k ≥ K4. Therefore for all
k ≥ max{K1, K2, K3, K4}, we obtain

Fβ∗(θ∗, θ∗) ≥ Fβ∗(θ, θ∗) − εIy(θ, θσ(k)) − ε2 − 3ε.

Since Iy is continuous and (θσ(k))k∈N is bounded, there exists a real constant K such that Iy(θσ(k), θ) ≤ K, for
all n ∈ N. Thus, for all k sufficiently large

Fβ∗(θ∗, θ∗) ≥ Fβ∗(θ, θ∗) − (4εK + ε2). (17)

Finally, recall that no assumption was made on θ, and that C∗ is any compact neighborhood of θ∗. Thus, using
the assumption 2.3.1(i), which asserts that ly(θ) tends to −∞ as ‖θ‖ tends to +∞, we may deduce that (17)
holds for any θ such that (θ, θ∗) ∈ DI and, letting ε tend to zero, we see that θ∗ maximizes Fβ∗(θ, θ∗) for over
all θ such that (θ, θ∗) belongs to DI as claimed. �

Using this theorem, we may now deduce that certain accumulation points on the strict interior of the pa-
rameter’s space are stationary points of the log-likelihood function.

Corollary 3.2.2. Assume that β∗ > 0. Let θ∗ be any accumulation point of (θk)k∈N. Assume that (θ∗, θ∗) ∈
intDI . Then, if ly is differentiable on Dl, θ∗ is a stationary point of ly(θ). Moreover, if ly is concave, then θ∗

is a global maximizer of ly.

Proof. Since under the required assumptions ly is differentiable and Iy(·, θ∗) is differentiable at θ∗, Theorem 3.2.1
states that

0 ∈
{
∇ly(θ∗) + β∗∇1Iy(θ∗, θ∗)

}
.

Since Iy(·, θ∗) is minimum at θ∗, ∇1Iy(θ∗, θ∗) = 0 and we thus obtain that θ∗ is a stationary point of ly. This
implies that θ∗ is a global maximizer in the case where ly is concave. �

Theorem 3.2.1 seems to be much stronger than the previous corollary. The fact that accumulation points of
the proximal sequence may not be global maximizers of the likelihood is now easily seen to be a consequence
of fact that the Kullback distance-like function Iy perturbs the shape of the likelihood function when θ is far
from θ∗. This perturbation does not have serious consequence in the concave case. On the other hand, one may
wonder whether θ∗ cannot be proved to be at least a local maximizer instead of a mere stationary point. The
answer is given in the following corollary.
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Corollary 3.2.3. Let θ∗ be an accumulation point of (θk)k∈N such that (θ∗, θ∗) ∈ intDI . In addition, assume
that ly and Iy(·, θ∗) are twice differentiable in a neighborhood of θ∗ and that the Hessian matrix ∇2ly(θ∗) at θ∗

is not the null matrix. Then, if β∗ is sufficiently small, θ∗ is a local maximizer of ly over Dl.

Proof. Assume that θ∗ is not a local maximizer. Since ∇2ly is not the null matrix, for β∗ sufficiently small,
there is a direction δ in the tangent space to Dl for which the function f(t) = Fβ∗(θ∗ + tδ, θ∗) has positive
second derivative for t sufficiently small. This contradicts the fact that θ∗ is a global maximizer of Fβ∗(·, θ∗)
and the proof is completed. �

The next theorem establishes global optimality of accumulation points in the case where the relaxation
sequence converges to zero.

Theorem 3.2.4. Let θ∗ be any accumulation point of (θk)k∈N. Assume that (θ∗, θ∗) ∈ DI . Then, without
assuming differentiability of either ly or of Iy, if (βk)k∈N converges to zero, θ∗ is a global maximizer of ly over
the projection of DI along the first coordinate.

Proof. Let (θσ(k))k∈N be a convergent subsequence of (θk)k∈N with limit denoted θ∗. We may assume that for
k sufficiently large, (θσ(k), θσ(k−1)) belongs to a compact neighborhood C∗ of θ∗. By continuity of ly, for any
ε > 0, there exists K ∈ N such that for all k ≥ K,

ly(θ∗) ≥ ly(θσ(k)) − ε.

On the other hand, the proximal iteration (3) implies that

ly(θσ(k)) − βσ(k)−1Iy(θσ(k), θσ(k)−1) ≥ ly(θ) − βσ(k)−1Iy(θ, θσ(k)−1),

for all θ ∈ Dl. Fix θ ∈ Dl. Thus, for all k ≥ K,

ly(θ∗) ≥ ly(θ) + βσ(k)−1Iy(θσ(k), θσ(k)−1) − βσ(k)−1Iy(θσ(k)−1, θ) − ε.

Since Iy is a nonnegative function and (βk)k∈N is a nonnegative sequence, we obtain

ly(θ∗) ≥ ly(θ) − βσ(k)−1Iy(θ, θσ(k)−1) − ε.

Recall that (θk)k∈N is bounded due to Lemma 2.4.2. Thus, since Iy is continuous, there exists a constant C

such that Iy(θ, θσ(k)−1) ≤ C for all k. Therefore, for k greater than K,

ly(θ∗) ≥ ly(θ) − βσ(k)−1C − ε.

Passing to the limit, and recalling that (βk)k∈N tends to zero, we obtain that

ly(θ∗) ≤ ly(θ) − ε.

Using the same argument as at the end of the proof of Theorem 3.2.1, this latter equation holds for any θ such
that (θ, θ∗) belongs to DI , which concludes the proof upon letting ε tend to zero. �

3.3. Convergence of the Kullback proximal sequence

One question remains open in the analysis of the previous section: does the sequence generated by the
Kullback proximal point converge? In other words: are there multiple cluster points? In Wu’s paper [18], the
answer takes the following form. If the euclidean distance between two successive iterates tends to zero, a well
known result states that the set of accumulation points is a continuum (see for instance [14], Th. 28.1) and
therefore, it is connected. Therefore, if the set of stationary points of ly is a countable set, the iterates must
converge.
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Theorem 3.3.1. Let S∗ denote the set of accumulation points of the sequence (θk)k∈N. Assume that limk→∞ ‖
θk+1 − θk‖ = 0 and that ly(θ) is strictly concave in an open neighborhood N of an accumulation point θ∗ of
(θk)k∈N and that (θ∗, θ∗) is in intDI . Then, for any relaxation sequence (βk)k∈N, the sequence (θk)k∈N converges
to a local maximizer of ly(θ).

Proof. We obtained in Corollary 3.2.2 that every accumulation point θ∗ of (θk)k∈N in intDly and such that
(θ∗, θ∗) ∈ intDIy is a stationary point of ly(θ). Since ly(θ) is strictly concave over N , the set of stationary
points of ly belonging to N reduces to singleton. Thus θ∗ is the unique stationary point in N of ly, and a
fortiori, the unique accumulation point of (θk)k∈N belonging to N . To complete the proof, it remains to show
that there is no accumulation point in the exterior of N . For that purpose, consider an open ball B of center θ∗

and radius ε included in N . Then, x∗ is the unique accumulation point in B. Moreover, any accumulation point
θ′, lying in the exterior of N must satisfy ‖θ∗ − θ′‖ ≥ ε, and we obtain a contradiction with the fact that S∗ is
connected. Thus every accumulation point lies in N , from which we conclude that θ∗ is the only accumulation
point of (θk)k∈N or, in other words, that (θk)k∈N converges towards θ∗. Finally, notice that the strict concavity
of ly(θ) over N implies that θ∗ is a local maximizer. �

Before concluding this section, let us make two general remarks.

• Proving a priori that the set of stationary points of ly is discrete may be a hard task in specific examples.
• In general, it is not known whether limk→∞ ‖θk+1−θk‖ = 0 holds. In fact, Lemma 3.1.1 could be a first

step in this direction. Indeed if we could prove in any application that the mapping t is injective, the
desired result would follow immediately. However, injectivity of t does not hold in many of the standard
examples; in the case of Gaussian mixtures, see [3], Section 2.2, for instance. Thus we are now able to
clearly understand why the assumption that limk→∞ ‖θk+1−θk‖ = 0 is not easily deduced from general
arguments. This problem has been overcome in [3] where it is shown that t is componentwise injective
and thus performing a componentwise EM algorithm is a good alternative to the standard EM.

4. Analysis of cluster points on the boundary

The goal of this section is to extend the previous results to the case where some cluster points lie on the
boundary of the region where computation of proximal steps is well defined. Such cluster points have rarely been
analyzed in the statistical literature and the strategy developed for the interior case cannot be applied without
further study of the Kullback distance-like function. Notice further that entropic-type penalization terms in
proximal algorithms have been the subject of an intensive research effort in the mathematical programming
community with the goal of handling positivity constraints; see [16] and the references therein for instance. The
analysis proposed here applies to the more general Kullback distance-like functions Iy that occur in EM. Our
goal is to show that such cluster points satisfy the well known Karush-Kuhn-Tucker conditions of nonlinear
programming which extend the stationarity condition ∇ly(θ) = 0 to the case where θ is subject to constraints.
As before, it is straightforward to extend the proposed analysis to the case of penalized likelihood estimation.

In the sequel, the distance-like function will be assumed to have the following additional properties.

Assumptions 4.0.2. The Kullback distance-like function Iy is of the form

Iy(θ, θ̄) =
∑

1≤i≤n,1≤j≤m
αij(yj)tij(θ)φ

( tij(θ̄)
tij(θ)

)
,

where for all i and j, tij is continuously differentiable on its domain of definition, αij is a function from Y
to R+, the set of positive real numbers, and the function φ is a non negative convex continuously differentiable
function defined for positive real numbers only and such that φ(τ) = 0 if and only if τ = 1.
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If tij(θ) = θi and αij = 1 for all i and all j, the function Iy is the well known φ divergence defined by Csiszàr
in [6]. Assumption 4.0.2 is satisfied in most standard examples (for instance Gaussian mixtures and Poisson
inverse problems) with the choice φ(τ) = τ log(τ).

4.1. More properties of the Kullback distance-like function

The main property that will be needed in the sequel is that under assumption 4.0.2, the function Iy satisfies
the same property as the one given in Lemma 3.1.1 above, even on the boundary of its domain DI . This is the
result of Proposition 4.1.2 below. We begin with one elementary lemma.

Lemma 4.1.1. Under assumptions 4.0.2, the function φ is decreasing on (0, 1), is increasing on (1, +∞) and
φ(τ) converges to +∞ when τ converges to +∞. We have limk→+∞ φ(τk) = 0 if and only if limk→+∞ τk = 1.

Proof. The first statement is obvious. For the second statement, the “if” part is trivial, so we only prove the
“only if” part. First notice that the sequence (τk)k∈N must be bounded. Indeed, the level set {τ | φ(τ) ≤ γ} is
bounded for all γ ≥ 0 and contains the sequence (τk)k≥K for K sufficiently large. Thus, the Bolzano-Weierstass
theorem applies. Let τ∗ be an accumulation point of (τk)k∈N. Since φ is continuous, we get that φ(τ∗) = 0 and
thus we obtain τ∗ = 1. From this, we deduce that the sequence has only one cluster point, which is equal to 1.
Therefore, limk→+∞ τk = 1. �

Using these lemmas, we are now in position to state and prove the main property of Iy.

Proposition 4.1.2. The following statements hold.
(i) For any sequence (θk)k∈N in R+ and any bounded sequence (ηk)k∈N in R+, the fact that

limk→+∞ Iy(ηk, θk) = 0 implies limk→+∞ |tij(ηk) − tij(θk)| = 0 for all i, j such that αij �= 0.
(ii) If one coordinate of one of the two sequences (θk)k∈N and (ηk)k∈N tends to infinity, so does the other’s

same coordinate.

Proof. Fix i in {1, . . . , n} and j in {1, . . . , m} and assume that αij �= 0.
(i) We first assume that (tij(ηki ))k∈N is bounded away from zero.
Since limk→+∞ Iy(θk, ηk) = 0, then limk→+∞ φ(tij(θk)/tij(ηk)) = 0 and Lemma 4.1.1 implies that limk→+∞

tij(θk)/tij(ηk) = 1. Thus, limk→+∞(tij(θk)− tij(ηk))/tij(ηk) = 0 and since t is continuous, tij(ηk) is bounded.
This implies that limk→+∞ |tij(θk) − tij(ηk)| = 0.

Next, consider the case of a subsequence (tij(ησ(k)))k∈N which tends towards zero. For contradiction, assume
the existence of a subsequence (tij(θσ(γ(k)))k∈N which remains bounded away from zero, i.e. there exists a > 0
such that tij(θσ(γ(k)))k∈N ≥ a for k sufficiently large. Thus, for k sufficiently large we get

tij(θσ(γ(k)))
tij(ησ(γ(k)))

≥ a

tij(ησ(γ(k)))
> 1,

and due to the fact that φ is increasing on (1, +∞), we obtain

tij(ησ(γ(k)))φ
(

tij(θσ(γ(k)))
tij(ησ(γ(k)))

)
≥ tij(ησ(γ(k)))φ

(
a

tij(ησ(γ(k)))

)
· (18)

On the other hand, Lemma 4.1.1 says that for any b > 1, φ′(b) > 0. Since φ is convex, we get

φ(τ) ≥ φ(b) + φ′(b)(τ − b).

Take τ = a/tij(ηk) in this last expression and combine with (18) to obtain

tij(ησ(γ(k)))φ
(

tij(θσ(γ(k)))
tij(ησ(γ(k)))

)
≥ tij(ησ(γ(k)))(φ(b) + φ′(b)

(
a

tij(ησ(γ(k)))
− b

)
.
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Passing to the limit, we obtain

0 = lim
k→+∞

tij(ησ(γ(k)))φ
(

tij(θσ(γ(k)))
tij(ησ(γ(k)))

)
≥ aφ′(b) > 0,

which gives the required contradiction.
(ii) If (tij(θk))k∈N → +∞ then (tij(ηk))k∈N → +∞ is a direct consequence of part (i). Indeed, if tij(ηk)

remains bounded, part (i) says that limk→+∞ |tij(ηk)−tij(θk)| = 0, which contradicts divergence of (tij(θk))k∈N.
Now, consider the case where (tij(ηk))k∈N → +∞. Then, a contradiction is easily obtained if we assume that

at least a subsequence (tij(θσ(k))k∈N stays bounded from above. Indeed, in such a case, we have

lim
k→+∞

tij(θσ(k))
tij(ησ(k))

= 0,

and thus, φ(tij(θk)/tij(ηk)) ≥ γ for some γ > 0 since we know that φ is decreasing on (0, 1) and φ(1) = 0. This
implies that

lim
k→+∞

tij(ησ(k))φ
( tij(θσ(k))

tij(ησ(k))

)
= +∞,

which is the required contradiction. �

4.2. Cluster points are KKT points

The main result of this section is the property that any cluster point θ∗ such that (θ∗, θ∗) lies on the boundary
of DI satisfies the Karush-Kuhn-Tucker necessary conditions for optimality on the domain of the log-likelihood
function. In the context of assumptions 4.0.2, DI is the set

DI = {θ ∈ R
n | tij(θ) > 0 ∀i ∈ {1, . . . , n} and j ∈ {1, . . . , m}}.

We have the following theorem.

Theorem 4.2.1. Let θ∗ be a cluster point of the Kullback-proximal sequence. Assume that all the functions tij
are differentiable at θ∗. Let I∗ be the set of all couples of indices (i, j) such that the constraint tij(θ) ≥ 0 is
active at θ∗, i.e. tij(θ∗) = 0. If θ∗ lies in the interior of Dl, then θ∗ satisfies the Karush-Kuhn-Tucker necessary
conditions for optimality, i.e. there exists a family of reals λij , (i, j) ∈ I∗ such that

∇ly(θ∗) +
∑

(i,j)∈I∗
λij∇tij(θ∗) = 0.

Proof. Let Φij(θ, θ̄) denote the bivariate function defined by

Φij(θ, θ̄) = φ

(
tij(θ̄)
tij(θ)

)
.

Let {θσ(k)}k∈N be a convergent subsequence of the proximal sequence with limit equal to θ∗. The first order
optimality condition at iteration k is given by

∇ly(θσ(k)) +βσ(k)

( ∑
ij αij(yj)∇tij(θσ(k))φ

(
tij(θσ(k)−1)

tij(θσ(k))

)
+

∑
ij αij(yj)tij(θσ(k))∇1Φ(θσ(k), θσ(k)−1)

)
= 0.

(19)
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We have

tij(θσ(k))∇1Φ(θσ(k), θσ(k)−1) = − tij(θσ(k)−1)
tij(θσ(k))

φ′
( tij(θσ(k)−1)

tij(θσ(k))

)
∇tij(θσ(k))

for all i and j.
Claim A. For all (i, j) such that αij(yj) �= 0, we have

lim
k→+∞

tij(θσ(k))∇1Φ(θσ(k), θσ(k)−1) = 0.

Proof of Claim A. Two cases may occur. In the first case, we have tij(θ∗) = 0. Since the sequence {θk}k∈N

is bounded due to Lemma 2.4.2, continuous differentiability of φ and the tij proves that ∇1Φ(θσ(k), θσ(k)−1)
is bounded from above. Thus, the desired conclusion follows. In the second case, tij(θ∗) �= 0 and applying
Lemma 2.4.3, we deduce that Iy(θσ(k), θσ(k)−1) tends to zero. Hence, limk→+∞ Φ(θσ(k), θσ(k)−1) = 0, which
implies that limk→+∞ θσ(k)/θσ(k)−1 = 1. From this and assumptions 4.0.2, we deduce that limk→+∞ φ′(tij
(θσ(k)−1)/tij(θσ(k))) = 0. Since {θσ(k)}k∈N converges to θ∗ and that tij(θ∗) �= 0, we obtain that the subsequence
{tij(θσ(k)−1)/tij(θσ(k))}k∈N is bounded from above. Moreover, {∇tij(θσ(k))}k∈N is also bounded by continuous
differentiability of tij . Therefore, the fact that limk→+∞ φ′(tij(θσ(k)−1)/tij(θσ(k))) = 0 establishes Claim A. �

Using this claim, we just have to study the remaining right hand side terms in (19), namely the expres-

sion
∑

ij αij(yj)∇tij(θσ(k))φ
(
tij(θ

σ(k)−1)

tij(θσ(k))

)
. Let I∗∗ be a subset of the active indices I such that the family

{∇tij(θ∗)}ij is linearly independent. This linear independence is preserved under small perturbations, we may

assume without loss of generality that the family
{
∇tij(θσ(k))

}
(i,j)∈I∗∗

is linearly independent for k sufficiently

large. For such k, we may rewrite equation (19) as

∇ly(θσ(k)) +βσ(k)

( ∑
(i,j)∈I∗∗ λ

σ(k)
ij (yj)∇tij(θσ(k))

+
∑
ij αij(yj)tij(θσ(k))∇1Φ(θσ(k), θσ(k)−1)

)
= 0.

(20)

Claim B. The sequence {λσ(k)
ij (yj)}k∈N is bounded.

Proof of claim B. Using the previous claim and the continuous differentiability of ly and tij , equation (20) ex-
presses that {λσ(k)

ij (yj)}ij are proportional to the coordinates of the projection on the span of the {∇tij(θσ(k))}ij
of a vector converging towards ∇ly(θ∗). Since {∇tij(θσ(k))}ij , for (i, j) ∈ I∗∗, form a linearly independent family
for k sufficiently large, none of the coordinates can tend towards infinity. �

We are now in position to finish the proof of the theorem. Take any cluster point τij of tij(θσ(k)−1)/tij(θσ(k)).
Using Claim B, we know that (λσ(k)

ij (yj))(i,j)∈I∗∗ lies in a compact set. Let (λ∗
ij)(i,j)∈I∗∗ be a cluster point of

this sequence. Passing to the limit, we obtain from equation (19) that

∇ly(θσ(k)) + β∗
( ∑

(i,j)∈I∗∗
λ∗
ij∇tij(θ∗)

)
= 0

for every cluster point β∗ of {βσ(k)}k∈N. For all (i, j) ∈ I∗∗, set λij = β∗λ∗
ij . This equation is exactly the

Karuch-Kuhn-Tucker necessary condition for optimality. �

Remark 4.2.2. If the family (∇tij(θσ(k)))(i,j)∈I∗ is linearly independent for k sufficiently large, Theorem 4.2.1
holds and in addition the {λij}ij are nonnegative, which proves that θ∗ satisfies the Karush-Kuhn-Tucker
conditions when it lies in the closure of DI .
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5. Application

The goal of this section is to illustrate the utility of the previous theory for a nonparametric survival analysis
with competing risks proposed by Ahn, Kodell and Moon in [1].

5.1. The problem and the Kullback proximal method

This problem can be described as follows. Consider a group of N animals in an animal carcinogenecity
experiment. Sacrifices are performed at certain prescribed times denoted by t1, t2, . . . , tm in order to study the
presence of the tumor of interest. Let T1 be the time to onset of tumor, TD the time to death from this tumor
and XC be the time to death from a cause other than this tumor. Notice that T1, TD and XC are unobservable.
The quantities to be estimated are S(t), P (t) and Q(t), the survival function of T1, TD and XC respectively. It
is assumed that T1 and TD are statistically independent of XC .

A nonparametric approach to estimation of S, P and Q is proposed in [1]: observed data y1, . . . , yn are the
number of deaths on every interval (tj , tj+1] which can be classified into the following four categories,

• death with tumor (without knowing cause of death);
• death without tumor;
• sacrifice with tumor;
• sacrifice without tumor.

This gives rise to a multinomial model whose probability mass is parametrized by the values of S, P and Q at
times t1, . . . , tm. More precisely, for each time interval (tj , tj+1] denote by cj the number of deaths with tumor
present, b1j the number of deaths with tumor absent, a2j the number of sacrifices with tumor present and b2j

the number of sacrifices with tumor absent. Let Nj ≤ N be the number of live animals in the population at tj ,
it is shown in [1] that the corresponding log-likelihood is given by

log g(y; θ) =
m∑
j=1

(Nj−1 − Nj)
j−1∑
k=1

log(pkqk) + (a2j + b2j) log(pjqj)

+ cj log
(
(1 − pj) + (1 − πjpj)(1 − qj)

)
+ b1j log((1 − qj)πj−1) + a2j log(1 − πj) + b2j log πj + Cst, (21)

where Cst is a constant πj = S(tj)/P (tj), pj = P (tj)/P (tj−1) and qj = Q(tj)/Q(tj−1), j = 1, . . . , m, θ =
(π1, . . . , pJ , p1, . . . , pJ , q1, . . . , qJ) and the parameter space is specified by the constraints

Θ =
{
θ = (π1, . . . , pJ , p1, . . . , pJ , q1, . . . , qJ) | 0 ≤ πj ≤ 1,

0 ≤ pj ≤ 1, 0 ≤ qj ≤ 1, j = 1, . . . , m and πjpj ≤ πj−1 j = 2, . . . , m
}
,

(22)

where the last nonconvex constraint serves to impose monotonicity of S. Note that monotonicity of P and Q is
a direct consequence of the constraints on the pj ’s and the qj ’s, respectively.

Define the complete data x1, . . . , xn as a measurement that indicates the cause of death in addition to the
presence of absence of a tumor in the dead animals. Specifically, x1, . . . , xn should fall into one of the following
categories

• death caused by tumor;
• death with incidental tumor;
• death without tumor;
• sacrifice with tumor ;
• sacrifice without tumor.

To each time interval (tj , tj+1] among those animals dying of natural causes, there correspond the numbers dj
of deaths caused by tumor and the number a1j of deaths with incidental tumor, neither of which are observable.
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The associated complete log-likelihood function is given by

log f(x; θ) =
∑m

j=1(Nj−1 − Nj)
∑j−1
k=1 log(pkqk) + (a2j + b2j) log(pjqj)

+dj log(1 − pj) + a1j log
(
(1 − πjpj)(1 − qj)

)
+b1j log((1 − qj)πj−1) + a2j log(1 − πj) + b2j log πj + Cst.

(23)

Now, we have to compute the expectation Q(θ, θ̄) of the log-likelihood function of the complete data conditionally
to the parameter θ̄. The random variables dj and a1j are binomial with parameter λj and 1 − λj where λj is
the probability that the death was caused by the tumor conditioned on the presence of the tumor. Conditioned
on θ̄, we have

λj =
1 − p̄j

1 − p̄j + (1 − π̄j p̄j)(1 − q̄j)
(24)

(see [1], Sect. 3, for details). From this, we obtain that the conditional mean values of dj and a1j are given by

E[dj | y; θ̄] = λjcj and E[a1j | y; θ̄] = (1 − λj)cj . (25)

Therefore
Q(θ, θ̄) =

∑m
j=1(Nj−1 − Nj)

∑j−1
k=1 log(pkqk) + (a2j + b2j) log(pjqj)

+λjcj log(1 − pj) + (1 − λj)cj log
(
(1 − πjpj)(1 − qj)

)
+b1j log((1 − qj)πj−1) + a2j log(1 − πj) + b2j log πj + Cst.

(26)

From this, we can easily compute the associated Kullback distance-like function:

Iy(θ, θ̄) =
m∑
j=1

cj

(
t′j(θ)φ

( t′j(θ̄)
t′j(θ)

)
+ t′′j (θ)φ

( t′′j (θ̄)
t′′j (θ)

))
, (27)

with

t′j(θ) =
1 − pj

1 − pj + (1 − πjpj)(1 − qj)
and t′′j (θ) =

(1 − πjpj)(1 − qj)
1 − pj + (1 − πjpj)(1 − qj)

(28)

and φ is defined by φ(τ) = τ log(τ). It is straightforward to verify that assumptions 2.3.1, 2.3.2, 2.3.3 and 4.0.2
are satisfied.

The main computational problem in this example is to handle the difficult nonconvex constraints entering
the definition of the parameter space Θ. The authors of [13] and [1] use the Complex Method proposed by Box
in [2] to address this problem. However, the theoretical convergence properties of Box’s method are not known
as reported in article MR0184734 in the Math. Reviews. Using our proximal point framework, we are able
to easily incorporate the nonconvex constraints into the Kullback distance-like function and obtain an efficient
algorithm with satisfactory convergence properties. For this purpose, let I ′y be defined by

I ′y(θ, θ̄) = Iy(θ, θ̄) +
m∑
j=2

t′′′j (θ)φ
( t′′′j (θ̄)

t′′′j (θ)

)
(29)

where

t′′′j (θ) =
πj−1 − πjpj∑m
i=2 πi−1 − πipi

· (30)

Using this new function, the nonconvex constraints πjpj ≤ πj−1 are satisfied for all proximal iterations and
assumptions 4.0.2 still hold.
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Figure 1. Evolution of the log-likelihood versus iteration number: MCL Female CR case.

5.2. Experimental results

We implemented the Kullback proximal algorithm with different choices of relaxation sequence (βk)k∈N,
βk = β. The M-step of the EM algorithm does not have a closed form solution, so that nothing is lost by setting
βk to a constant not equal to one.

We attempted to supplement the KPP-EM algorithm with the Newton method and other built-in methods
available in Scilab but they were not even able to find local maximizers due to the explosive nature of the
logarithms near zero, leading these routines to repetitive crashes. To overcome this difficulty, we found it
convenient to use the extremely simple simulated annealing random search procedure; see [19] for instance.
This random search approach avoids numerical difficulties encountered using standard optimization packages
and easily handles nonconvex constraints. The a.s. convergence of this procedure is well established and recent
studies such as [10] confirm the good computational efficiency for convex functions optimization.

Some of our results for the data of Table 1 of [13] are given in Figures 1 to 4. In the reported experiments, we
chose three constant sequences with respective values βn = 100, 1, 0.01. We observed the following phenomena

1. after one hundred iterations the increase in the likelihood function is less than 10−5 except for the case
βn = 100 (Fig. 4) where the algorithm had not converged;

2. for βn = 100 we often obtained the best initial growth of the likelihood;
3. for βn = .01 we always obtained the highest likelihood when the number of iterations was limited to 50

(see Fig. 3 for the case MCL Male AL). It was shown in [5] that penalizing with a parameter sequence (βn)n∈N

converging towards zero implies superlinear convergence in the case where the maximum likelihood estimator
lies in the interior of the constraint set. Thus, our simulations results seem to confirm observation 3. The second
observation was surprising to us but this phenomenon occured repeatedly in our experiments. This behavior
did not occur in our simulations for the Poisson inverse problem in [5] for instance.

In conclusion, this competing risks estimation problem is an interesting test for our Kullback-proximal method
which shows that the proposed framework can provide provably convergent methods for difficult constrained
nonconvex estimation problems for which standard optimization algorithms can be hard to tune. The relaxation
parameter sequence (βn)n∈N also appeared crucial for this problem although the choice βn = 1 could not really
be considered unsatisfactory in practice.
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Figure 2. Evolution of the log-likelihood versus iteration number: MCL Male AL case.
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Figure 3. Evolution of the log-likelihood versus iteration number: Detail of MCL Male AL case.

6. Conclusions

The goal of this paper was the study of the asymptotic behavior of the EM algorithm and its proximal
generalizations. We clarified the analysis by making use of the Kullback-proximal theoretical framework. Two
of our main contributions are the following. Firstly we showed that interior cluster points are stationary points
of the likelihood function and are local maximizers for sufficiently small values of β. Secondly, we showed that
cluster points lying on the boundary satisfy the Karush-Kuhn-Tucker conditions. Such cases were very seldom
studied in the literature although constrained estimation is a topic of growing importance; see for instance
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Figure 4. Evolution of the log-likelihood versus iteration number: MCL Female AL case.

the special issue of the Journal of Statistical Planning and Inference [9] which is devoted to the problem of
estimation under constraints. On the negative side, the analysis from the Kullback-proximal viewpoint allowed
us to understand why uniqueness of the cluster point is hard to establish theoretically. On the positive side, we
were able to implement a new and efficient proximal point method for estimation in the difficult tumor lethality
problem involving nonlinear inequality constraints.

Acknowledgements. The authors would like to thank the editors and the referees for their useful reading of the paper and
their constructive remarks which greatly helped improving the presentation.
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