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METASTABLE BEHAVIOUR OF SMALL NOISE LÉVY-DRIVEN DIFFUSIONS
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Abstract. We consider a dynamical system in R driven by a vector field −U ′, where U is a multi-well
potential satisfying some regularity conditions. We perturb this dynamical system by a Lévy noise of
small intensity and such that the heaviest tail of its Lévy measure is regularly varying. We show that
the perturbed dynamical system exhibits metastable behaviour i.e. on a proper time scale it reminds
of a Markov jump process taking values in the local minima of the potential U . Due to the heavy-tail
nature of the random perturbation, the results differ strongly from the well studied purely Gaussian
case.
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Introduction

This paper addresses the rigorous mathematical description of the phenomenon of metastability in systems
with big jumps. The picture we shall study may be outlined as follows. Let us consider a one-dimensional
deterministic dynamical system driven by a vector field −U ′(·), where U(·) is a multi-well potential with some
smoothness conditions and a certain increase rate at infinity. According to the initial conditions the deterministic
trajectories of the dynamical system converge to the local minima of the potential U or stay in its local maxima.
Obviously, no transition between different domains of attraction is possible.

The situation becomes different if the dynamical system is perturbed by (small) random noise whose presence
allows transitions between the potential wells. However depending on the system’s initial conditions and noise’s
properties, certain potential wells may be reached only on appropriately long time scales or stay unvisited. The
phenomenon of metastability means, roughly speaking, that for different time scales and initial conditions the
system may reach different local statistical equilibria.

The system’s behaviour is determined by the type of random perturbation. Unquestionably, dynamical
systems subject to small Gaussian perturbations have been studied most extensively. The main reference on
this subject is the book [10] where the large deviations theory for the perturbed trajectories is established. The
large deviations estimates allow to solve the first exit problem from the domain of attraction of a stable point.
It turns out that the mean exit time is exponentially large in the small noise parameter, and its logarithmic rate
is proportional to the height of the potential barrier the trajectories have to overcome. Thus for a multi-well
dynamical system we obtain a series of exponentially non-equivalent time scales given by the wells’ mean exit
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times. Moreover, one can prove that the normalised exit times are exponentially distributed (see [2,7,21]), and
thus have the property of lack of memory which is referred to as unpredictability in the physics literature.

In the simplest situation in which the potential U has only two wells of different depths, one can observe
two statistically different regimes. First, if the time horizon is shorter than the exit time from the shallow well,
the system cannot leave the well where it started, and therefore stays in the neighbourhood of the well’s local
minimum. Second, if the time horizon is longer than the exit time from the shallow well, the system has enough
time to reach the deepest well from any starting point, and stays in the vicinity of the global minimum. In [15]
the following metastability result is established. Namely, there is a time scale on which the dynamical system
converges to a Markov two-state process with one absorbing state corresponding to the deep well. It is easy to
notice that this particular time scale is given by the mean exit time from the shallow well. More general results
for multidimensional diffusions can be found in [17] and [11].

There is a very close connection between the metastability of a Markov process with small noise and the
spectral properties of its infinitesimal generator. It can be shown that exponentially small eigenvalues of
the infinitesimal generator are expressed in terms of mean life times in the domains of attraction, and the
corresponding eigenfunctions are close to constants on these domains [16]. On the other hand, the generator’s
eigenvalues can be calculated with the help of variational principles [3,4].

Recently, systems subject to non-Gaussian perturbations with big jumps attract more attention. Instanta-
neous transitions between remote states are referred to as extreme events and are observed in the dynamics
of asset prices, climate and telecommunication systems etc. In the physics literature, non-Gaussian symmetric
stable Lévy processes are used especially often, under the name of Lévy flights.

Our particular interest in this type of systems arose from the acquaintance with the papers [8,9] by Ditlevsen
devoted to a statistical analysis of real paleo-climatic ice-core data describing the evolution of the temperature
of the Northern hemisphere during the past 100 000 years, i.e. the last ice age. Numerous reconstructions
indicate about 25 abrupt catastrophic climate changes, the so-called Dansgaard-Oeschger events. The simplest
mathematical model describing these events is a one-dimensional Langevin equation for an overdamped particle
in a double-well potential, driven by some type of noise. The stable minima of the potential correspond to a
cold (stadial) and a warmer (excited) climate regimes. On the basis of statistical data analysis performed in [8],
Ditlevsen discovered a strong Lévy stable component of a stability index α ≈ 1.75 in the driving noise. The
corresponding Langevin equation was studied analytically on a physical level of rigour in [9].

With the aim of starting a rigorous mathematical underpinning of the heuristics these papers provide on
the level of their pathwise behaviour, in [13] we have tackled the study of random dynamical systems driven
by small heavy-tailed Lévy noise, in the simplest case of symmetric stable processes. We obtain results on the
law and the mean value of the first exit time of the resulting jump diffusions from a single potential well the
boundary of which does not contain saddle points (the boundary is non-characteristic) by purely probabilistic
methods. More precisely, we show that the mean value of the exit time increases like a power of the noise
amplitude and does not depend on the depth of the potential well but rather on the distance between the local
minimum and the domain’s boundary. Normalised by its mean value, the exit time has a standard exponential
law in the small noise limit. We refer the reader to related work by Godovanchuk [12] and Wentzell [20] on
large deviations of Markov processes with big jumps.

In the present paper we extend our research in two directions. Firstly, we take some effort to generalise the
methods of [13] to investigate in detail the behaviour of the jump-diffusions at saddle points of the potential not
accessible in [13]. This opens the way to also give a detailed description of the diffusions’ metastable dynamics
in multi-well potentials. Secondly, we consider the most general case of heavy-tailed Lévy processes, namely
Lévy processes with an arbitrary Gaussian variance and drift and a jump measure having regularly varying
tails. We note, that our research in progress shows that for lighter, e.g. subexponential but not polynomially
heavy tails, the pattern of metastable behaviour we discover here does not hold any longer.

The results of this paper may also be of interest for physicists. Indeed, in [6], a numerical analysis treatment
of transitions of Lévy flights between the domains of attraction of a double-well potential was given for stability
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indices α ∈ [1, 2). The conclusions are not fully consistent with our results. They could be improved using the
rigorous estimates of the present paper for calibration of physical simulations.

1. Object of study and main result

Let (Ω,F , (F)t≥0,P) be a filtered probability space. We assume that the filtration satisfies the usual hy-
potheses in the sense of [18], i.e. F0 contains all the P-null sets of F , and is right continuous.

We consider solutions Xε = (Xε
t )t≥0 of the one-dimensional stochastic differential equation

Xε
t (x) = x −

∫ t

0

U ′(Xε
s−(x)) ds + εLt, x ∈ R, (1.1)

where L is a Lévy process and U is a potential function satisfying the following assumptions.

Assumptions on L:
L1 L has a generating triplet (d, ν, μ) with a Gaussian variance d ≥ 0, an arbitrary drift μ ∈ R and a Lévy

measure ν satisfying the usual condition
∫

R\{0} max{y2, 1} ν(dy) < ∞. For u ≥ 1 denote the tails of
the Lévy measure ν

H−(−u) =
∫

(−∞,−u)

ν(dy), H+(u) =
∫

(u,+∞)

ν(dy), (1.2)

and H(u) = H−(−u) + H+(u).
L2 Assume, H+(·) is regularly varying at infinity, i.e.

H+(u) = u−rl(u), u → +∞, (1.3)

for some r > 0 and a slowly varying function l. Recall that a positive Lebesgue measurable function l
is slowly varying at infinity if limu→+∞ l(λu)/l(u) = 1 for any λ > 0. For example, positive constants,
logarithms and iterated logarithms are slowly varying functions.

L3 Assume that

lim
u→+∞

H−(−u)
H+(u)

= κ ∈ (0, +∞) or lim sup
u→+∞

H−(−u)
H+(u)

= κ = 0. (1.4)

Assumptions on U :
U1 U ∈ C1(R) ∩ C3([−K, K]) for some K > 0 large enough.
U2 U has exactly n local minima mi, 1 ≤ i ≤ n, and n − 1 local maxima si, 1 ≤ i ≤ n − 1, enumerated in

increasing order

−∞ = s0 < m1 < s1 < m2 < · · · < sn−1 < mn < sn = +∞. (1.5)

All extrema of U are non-degenerate, i.e. U ′′(mi) > 0, 1 ≤ i ≤ n, and U ′′(si) < 0, 1 ≤ i ≤ n − 1.
U3 |U ′(x)| > c1|x|1+c2 as x → ±∞ for some c1, c2 > 0.

The class of Lévy processes L under consideration covers for example compound Poisson processes with heavy-
tail jumps or stable Lévy processes with Lévy measure

ν(dy) = (c1I{y < 0} + c2I{y > 0}) dy

|y|1+α
, α ∈ (0, 2), c1 ≥ 0, c2 > 0. (1.6)

We consider Xε for small values of ε, ε ↓ 0.
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Since the Lévy process L is a semimartingale, the stochastic differential equation (1.1) is well defined, see
also [18] for the general theory. However, since the drift term U ′ is not globally Lipschitz we need to show
the existence and uniqueness of the strong solution of (1.1) which can be done by a slight modification of the
argument in Section 2 of [19]. Essentially one shows that solutions of (1.1) do not explode since the drift U ′(·)
drives them to stay in some bounded set. Similar results for Gaussian diffusions can be found in [5].

Under assumptions on U , the underlying deterministic (ε = 0) equation

x0
t (x) = x −

∫ t

0

U ′(x0
s(x)) ds (1.7)

has a unique solution for any initial value x ∈ R and all t ≥ 0. The local minima of U are stable attractors
for the dynamical system x0, i.e. if x ∈ (si−1, si), 1 ≤ i ≤ n, then x0

t (x) → mi as t → ∞. It is clear that the
deterministic solution x0 does not leave the domain of attraction where it started.

Our goal is to describe the phenomenon of metastability which roughly speaking consists in the existence of
a time scale for which the system reminds of a jump process taking values in the set of stable attractors. We
prove the following main theorem.

Theorem 1.1. Let Xε(x) = (Xε
t (x))t≥0 be a solution of (1.1). If x ∈ (si−1, si), for some i = 1, . . . , n, then

for t > 0
Xε

t/H(1/ε)(x) → Yt(mi), ε ↓ 0, (1.8)

in the sense of finite-dimensional distributions, where Y = (Yt)t≥0 is a Markov process on a state space
{m1, . . . , mn} with the infinitesimal generator Q = (qij)n

i,j=1,

qij =
κI{j < i} + I{j > i}

1 + κ

∣∣|sj−1 − mi|−r − |sj − mi|−r
∣∣ , i 
= j,

−qii = qi =
∑
j �=i

qij =
κ

1 + κ
|si−1 − mi|−r +

1
1 + κ

|si − mi|−r.
(1.9)

Let us consider a particular example of equation (1.1), namely a symmetric α-stable process L (Lévy flight) in
a double-well potential. Let U satisfy the assumptions formulated above and let s1 = 0. The process L has a
generating triplet (0, ν, 0) with a Lévy measure ν(dy) = |y|−1−αdy, y 
= 0, α ∈ (0, 2).

Due to Theorem 1.1, the main features of the process Xε in the small noise limit are retained by a Markov
jump process, and on the time scale αε−α we obtain the following convergence in the sense of finite dimensional
distributions:

Xε
αt/εα(x) → Yt, t > 0, ε ↓ 0, (1.10)

where Y is a Markov process on the state space {m1, m2} with the following matrix as infinitesimal generator

Q =
(−|m1|−α |m1|−α

m−α
2 −m−α

2

)
and Y0 =

{
m1, if x < 0,

m2, if x > 0.
(1.11)

To compare the result obtained with its Gaussian counterpart we refer to [15], where this problem was first
studied. Let us consider a Gaussian diffusion X̂ε which solves the equation

X̂ε
t (x) = x −

∫ t

0

U ′(X̂ε
s (x)) ds + εWt, (1.12)

where W is a standard Brownian motion. Since it is well known that in the Gaussian case the height of the
potential barriers plays a crucial role, we assume that the left well is deeper, i.e. U(0)−U(m1) > U(0)−U(m2).
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This leads to the following meta-stable behaviour of X̂ε, see Theorem 2.1 in [15]. There exists a time scale λε

such that

lim
ε→0

ε2 ln λε = 2(U(0) − U(m2)) (1.13)

and

X̂ε
tλε(x) → Ŷt, ε ↓ 0, (1.14)

in the sense of finite dimensional distributions, where Ŷ is a Markov process on {m1, m2} with the infinitesimal
matrix (

0 0
1 −1

)
and Ŷ0 =

{
m1, if x < 0,

m2, if x > 0.
(1.15)

As we see, the main difference between Lévy and Gaussian dynamics consists not only in different intrinsic time
scales – polynomial vs. exponential, – but also in a qualitatively different limiting behaviour. In the heavy-tail
case, the states of the limiting process are recurrent, whereas in the Gaussian case, the minimum of the deepest
well is absorbing.

In general case, we can summarise the differences as follows. First, we see that the characteristic time scale
is algebraic in ε. Second, the properties of the limiting process Y depend on sizes of the potential wells and
not on their depths. Further, if κ > 0, the all states of Y are recurrent. The process Y has a unique absorbing
state mn (the local minimum of the right peripheral well) if and only if κ = 0, i.e. when the positive tail of L
dominates.

The material is organised as follows. In Section 2 we decompose the Lévy process L into a small jump part
and a compound Poisson part and study the small-jump dynamics of the process Xε. This section presents
some technical challenges. It consists of a pathwise analysis of a jump-diffusion with relatively small jumps in
ε-dependent neighbourhoods of the stable and unstable attractors. In Section 3 we determine the asymptotic
law of the first exit time from a single well and its mean value, in particular the asymptotic probabilities to
transit to different wells. In Section 4 we establish that the laws of transition times between neighbourhoods of
the wells’ minima are asymptotically exponential, and provide the corresponding transition probabilities. The
main Theorem 1.1 is proved in Section 5.

2. One-well dynamics of the small jump component

2.1. Exponential estimate for the small-jump component

For ρ > 0 and 0 < ε ≤ 1 consider the decomposition L = ξε + ηε, where the Lévy processes ξε and ηε have
generating triplets (d, νε

ξ , μ) and (0, νε
η, 0) respectively with

νε
ξ (·) = ν

(
· ∩
[
− 1

ερ
,

1
ερ

]
\{0}
)

, νε
η(·) = ν

(
· ∩ R\

[
− 1

ερ
,

1
ερ

])
· (2.1)

The absolute value of jumps of the process εξε does not exceed ε1−ρ.
Thus the process ξε has a Lévy measure with compact support, and the Lévy measure νε

η(·) of ηε is finite.
Denote

βε = νε
η(R) =

∫
R\[− 1

ερ , 1
ερ ]

ν(dy) = H

(
1
ερ

)
· (2.2)

Then, ηε is a compound Poisson process with intensity βε, and jumps distributed according to the law β−1
ε νε

η(·).
Denote τε

k , k ≥ 0, the jump times of ηε with τε
0 = 0. Let T ε

k = τε
k −τε

k−1 denote successive inter-jump periods,
and W ε

k = ηε
τε

k
− ηε

τε
k− the jump heights of ηε. Then, the three processes (T ε

k )k≥1, (W ε
k )k≥1, and (ξε)t≥0 are
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independent. Moreover,

P(T ε
k ≥ u) =

∫ ∞

u

βεe−βεs ds = e−βεu, u ≥ 0, and ET ε
k =

1
βε

, (2.3)

P(W ε
k < w) =

νε
η(−∞, w)
νε

η(R)
=

1
βε

∫
(−∞,w)

I

{
|y| >

1
ερ

}
ν(dy), w ∈ R. (2.4)

Between the arrival times of ηε the process Xε is driven by εξε. The next lemma shows that on long time intervals
εξε does not essentially deviate from zero. Hence the dynamics of the process Xε on the intervals between arrival
times of the process ηε can be seen as a small random perturbation of the underlying deterministic trajectory.

Lemma 2.1. For any ρ ∈ (0, 1), any γ ∈ (0, 1 − ρ) and q ∈ (0, 1 − ρ − γ) there is p0 > 0 and ε0 > 0 such that
the inequality

P

(
sup

t∈[0,1/εq ]

|εξε
t | ≥ εγ

)
≤ exp (−1/εp) (2.5)

holds for all 0 < ε ≤ ε0 and 0 < p ≤ p0.

Proof. Let ρ, γ and q be as in the statement of lemma. The Lévy measure of εξε has compact support, hence
the process εξε has exponential moments. Moreover, εξε

t − E(εξε
t ) is a zero-mean martingale, so that

|E(εξε
t )| ≤ εt

∣∣∣∣∣μ +
∫

1≤|y|≤ε−ρ

yν(dy)

∣∣∣∣∣ = εtm(ε). (2.6)

Then Doob’s inequality for exponential functions of martingales yields for u > 0:

P

(
sup

t∈[0,1/εq ]

εξε
t ≥ εγ

)
≤ e−u(εγ−2ε1−qm(ε)) sup

t∈[0,1/εq ]

Eeuεξε
t , (2.7)

where the latter exponent is known from the Lévy–Hinchin representation. Let u = u(ε) = 1/εc for c =
(1 − ρ + γ)/2. Then with help of some algebra we obtain for all 0 < p ≤ p0 = (c − γ)/2 that

sup
t∈[0,1/εq ]

ϕ(u(ε), ε, t) = sup
t∈[0,1/εq ]

[
lnE exp (u(ε)εξε

t ) + 2u(ε)mε1−q − εγu(ε)
] ≤ − 1

εp
, ε ↓ 0. (2.8)

The inequality for the infimum is proved analogously. �

2.2. Dynamics on a compact interval a > −∞
Our goal is to study the one-well dynamics of the small-jump process xε and its unperturbed counterpart x0,

xε
t (x) = x −

∫ t

0

U ′(xε
s−(x)) ds + εξε

t . (2.9)

For definiteness we assume that the well’s minimum is located at the origin and thus the corresponding domain
of attraction for x0 is (a, b), −∞ < a < 0 < b < +∞, if the well is inner, and (−∞, b) if it is peripheral. In
the first case, we also assume that a and b are non-degenerate local maxima of U . In the second case, b is a
non-degenerate local maximum and U ′(x) increases to infinity faster than linearly as x → −∞. Denote the
critical point curvatures as U ′′(0) = M0 > 0, U ′′(b) = Mb > 0 and U ′′(a) = Ma < 0 (when defined). For γ > 0



418 P. IMKELLER AND I. PAVLYUKEVICH

and t ≥ 0 we introduce an event

Et =

{
ω : sup

s∈[0,t]

|εξε
s | ≤ ε4γ

}
. (2.10)

We prove the following estimate.

Proposition 2.2. For any γ > 0, any d > 0 there is ε0 > 0 such that for 0 < ε ≤ ε0 the inequality

sup
s∈[0,t]

|xε
s(x) − x0

s(x)| ≤ dε2γ (2.11)

holds a.s. on the event Et uniformly for t ≥ 0 and x ∈ [a + εγ , b − εγ ].

The proof will follow directly from the estimates of Sections 2.2.1 and 2.2.2 below. It is based on the study
of the representation of the process xε in powers of ε

xε
t (x) = x0

t (x) + εZε
t (x) + Rε

t (x), t ≥ 0, (2.12)

where Zε is the first approximation of xε satisfying the stochastic differential equation

Zε
t (x) = −

∫ t

0

U ′′(x0
s(x))Zε

s−(x) ds + ξε
t , (2.13)

and the remainder Rε(x) is the absolutely continuous function starting at 0 and satisfying the integral equation

Rε
t (x) =

∫ t

0

[−U ′(x0
s(x) + εZε

s−(x) + Rε
s(x)) + U ′(x0

s(x)) + U ′′(x0
s(x))εZε

s−(x)
]

ds. (2.14)

The dynamics if the summanden in (2.12) in the limit of small ε mainly depends on the geometry of the potential
and is quite different in the neighbourhoods of the stable point 0 and unstable interval boundaries (it suffices
to consider only one unstable point, say x = a). The following properties of the potential U will be extensively
used:

(1) The deterministic trajectories x0
t (x), x ∈ [a + εγ , b − εγ ] converge to 0 as t → ∞ due to the property

xU ′(x) > 0 for x 
= a, b, 0.
(2) The curvature of the potential at x = a, b is negative. In a small neighbourhood of a we have U(x) =

U(a) − Ma
(x−a)2

2 + o((x − a)2). Consequently x0 behaves there like a + eMat, and the dynamics of xε

reminds of the dynamics of an inverted process of Ornstein-Uhlenbeck type.
(3) The curvature of the potential at x = 0 is positive. In small neighbourhoods of 0 we have U(x) =

U(0) + M0
x2

2 + o(x2). Consequently x0 decays there like e−M0t, and the dynamics of xε reminds of the
dynamics of a process of Ornstein-Uhlenbeck type.

From now on, let γ > 0 be fixed. Using assumptions on U , for technical reasons we fix some small δ, 0 < δ <
min{|a|, b}, and consider δ-neighbourhoods of the critical points a, 0 and b with the following properties:

(1) there are some 0 < ma
1 ≤ Ma ≤ ma

2 ,
ma

2
ma

1
< 3

2 , such that if a ≤ x ≤ a + δ then ma
1(x − a) ≤

−U ′(x) ≤ ma
2(x − a) and −U ′(·) is monotone increasing in x ∈ [a, a + δ] (analogous estimates hold in

δ-neighbourhood of b);
(2) there are some 0 < m0

1 < m0
2 such that the inequality m0

1 < inf |x|<δ U ′′(x) ≤ sup|x|<δ U ′′(x) < m0
2

holds.
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For ε such that 0 < εγ < δ and for x ∈ [a + εγ, b− εγ], consider the first entrance time of x0(x) into the interval
[a + δ, b − δ]

tε(x) =

⎧⎪⎨
⎪⎩
∫ a+δ

x
dy

−U ′(y) , if x ∈ [a + εγ , a + δ],∫ x

b−δ
dy

U ′(y) , if x ∈ [b − δ, b − εγ ],

0, if x ∈ [a + δ, b − δ].

(2.15)

Also define the time period

T̂ = max

{∫ −δ

a+δ

dy

−U ′(y)
,

∫ b−δ

δ

dy

U ′(y)

}
· (2.16)

T̂ has the property that for all x ∈ [a + δ, b − δ] and t ≥ T̂ , |x0
t (x)| ≤ δ, i.e. after T̂ the trajectory of x0(x) is

within a δ-neighbourhood of the stable point 0.

2.2.1. Estimates on Zε

The solution to equation (2.13) is explicitly given by

Zε
t (x) = ξε

t −
∫ t

0

ξε
s−U ′′(x0

s(x))e−
∫

t
s

U ′′(x0
u(x)) du ds, (2.17)

and hence for t ≥ 0 and x ∈ [a + εγ , b − εγ ] we have

sup
s∈[0,t]

|Zε
s(x)| ≤

(
1 +
∫ t

0

|U ′′(x0
s(x))|e−

∫
t
s

U ′′(x0
u(x)) du ds

)
sup

s∈[0,t]

|ξε
s |. (2.18)

We distinguish three cases: x ∈ [a + δ, b− δ], x ∈ [a + εγ, a + δ] and x ∈ [b− δ, b− εγ]. The case x ∈ [a + δ, b− δ]
was considered in [13], Lemma 5, where for some C1 > 2 we established the estimate sups∈[0,t] |Zε

s(x)| ≤
C1 sups∈[0,t] |ξε

s |.
Let now x ∈ [a + εγ , a + δ] and t ≤ tε(x). Then using the fact that U ′′(x0

t (x)) < 0 we obtain:

1 +
∫ t

0

|U ′′(x0
s(x))|e−

∫
t
s

U ′′(x0
u(x)) du ds =

U ′(x0
t (x))

U ′(x)
· (2.19)

For any t ≥ 0 we use (2.18) and (2.19) to obtain

1 +
∫ t

0

|U ′′(x0
s(x))|e−

∫ t
s

U ′′(x0
u(x)) du ds ≤ 1 − U ′(x0

t (x))
U ′(x0

tε(x)∧t(x))
+

U ′(x0
t (x))

U ′(x)
+ C1. (2.20)

Note that for 0 < ε ≤ ε0 for some ε0 small enough and depending on U , a, b, γ and δ we have

1 − U ′(x0
t (x))

U ′(x0
tε(x)∧t(x))

+
U ′(x0

t (x))
U ′(x)

≤
⎧⎨
⎩

U ′(x0
t (x))

U ′(x) ≤ ma
2 |a+δ|

ma
1(a−x) ≤ C2

εγ , 0 ≤ t ≤ tε(x),

1 + maxy∈[a,b] |U ′(y)|
(

1
|U ′(a+δ)| + 1

|U ′(x)|
)
≤ C3

εγ , t ≥ tε(x),
(2.21)

and hence for some C4 > 0 we get the final estimate:

sup
s∈[0,t]

|Zε
s(x)| ≤ C4

εγ
sup

s∈[0,t]

|ξε
s |. (2.22)

The case x ∈ [b− δ, b− εγ ] is treated analogously, and thus for some CZ > 0 we obtain that sups∈[0,t] |Zε
s(x)| ≤

CZε3γ on Et. �
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2.2.2. Estimates on Rε

To estimate the remainder term Rε we need finer smoothness properties of the potential U . However, it
was shown in Lemma 6 in [13] that this restriction only has to hold locally. Namely, we assume in this section
that there is C > 0 such that the inequality sups∈[0,t] |Rε

s(x)| ≤ C holds on the event Et uniformly for t ≥ 0
and x ∈ [a + εγ , b − εγ ]. In other words, the small jump process xε

s(x), s ∈ [0, t], with initial state confined to
[a + εγ , b− εγ ], stays bounded by a deterministic constant K on the set Et, t ≥ 0. Therefore, in the small noise
limit, only local properties of U are relevant to our analysis.

As in the case of estimates of Zε, the behaviour of Rε(x) for x ∈ [a + δ, b − δ] was studied in detail in our
paper [13]. Let us consider the asymptotics of Rε(x) for x being close to the saddle points.

For definiteness, we consider the case x ∈ [a + εγ , a + δ]. Assume also that the final estimate on Zε from the
previous section holds for 0 < ε ≤ ε1 with constant CZ . We show that on the event Et the inequality

sup
s∈[0,t∧tε(x)]

|Rε
s(x)| ≤ C1ε

3γ (2.23)

holds uniformly over x.
Consider the integral equation (2.14), and let f denote the integrand

f(R, x0, εZ) = −U ′(x0 + εZ + R) + U ′(x0) + U ′′(x0)(εZ). (2.24)

Let the constant K from Assumption U1 be bigger than C. We write the Taylor expansion for the integrand
f with some |q| ≤ K:

f(R, x0, εZ) = −U ′′(x0)R − U (3)(q)
2

(R + εZ)2. (2.25)

Since U ∈ C3, |U (3)| is bounded, say by L, on [−K, K]. Using the inequality (R + εZ)2 ≤ 2(R2 + ε2Z2) we
obtain that for t ≥ 0,

−U ′′(x0
t (x))Rε

t − L(Rε
t )

2 − A2ε6γ < f(Rε
t (x), x0

t (x), εZε
t−(x)) < −U ′′(x0

t (x))Rε
t + L(Rε

t )
2 + A2ε6γ , (2.26)

on the event Et, with A2 = 2C2
ZL.

Together with (2.14) consider the Riccati equation

pε
t (x) =

∫ t

0

(ma
2p

ε
s + L(pε

s)
2 + A2ε6γ) ds, 0 ≤ t ≤ tε(x), (2.27)

whose solution can be found explicitly:

pε
t = A2ε6γ etλε − e−tλε

(ma
2 + λε)e−tλε − (ma

2 − λε)etλε with λε =
√

(ma
2)2 − 4LA2ε6γ . (2.28)

The function pε
t is non-negative monotonically increasing function, which starts at 0 and has a singularity at

t∗(ε) =
1

2λε
ln
(

ma
2 + λε

ma
2 − λε

)
· (2.29)

However, one easily sees, that for ε ↓ 0

tε(x) ≤ tε =
1

ma
1

∫ a+δ

a+εγ

dy

|a − y| =
γ| ln ε|

ma
1

(1 + O(| ln ε|−1)) <
3γ| ln ε|

ma
2

(1 + O(| ln ε|−1)) ≤ t∗(ε), (2.30)

and pε
t is well defined on the time interval under consideration.
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The estimate (2.23) will follow from two statements:
a) Rε

t (x) ≤ pε
t for 0 ≤ t ≤ tε(x),

b) pε
t ≤ C1ε

3γ for 0 ≤ t ≤ tε(x).
To show a) we note that at the starting point t = 0,

D+Rε
t (x)
∣∣∣
t=0

= lim
h↓0

Rε
h(x) − 0

h
= 0 < A2ε6γ = ṗε

t (x)
∣∣∣
t=0

, (2.31)

consequently it follows from the continuity of Rε and pε that pε
t > Rε

t for at least positive and small t. Assume
there exists τ = inf{t > 0 : Rε

τ (x) = pε
τ} such that τ ≤ tε(x). At the point τ the left derivative of Rε(x) is

necessarily not less than the derivative of pε which leads to the following contradiction:

D−Rε
t (x)
∣∣∣
t=τ

= lim
h↓0

Rε
τ (x) − Rε

τ−h(x)
h

= f(Rε
τ (x), x0

τ (x), Zε
τ−(x)) ≥ ṗε

t

∣∣∣
t=τ

= ma
2p

ε
τ + L(pε

τ )2 + A2ε6γ ,

f(Rε
τ (x), x0

τ (x), Zε
τ−(x)) = f(pε

τ , x0
τ (x), Zε

τ−(x)) < ma
2p

ε
τ + L(pε

τ )2 + A2ε6γ .

(2.32)

To prove b), we use the inequality supt∈[0,tε(x)] p
ε
t ≤ pε

tε(x) ≤ pε
tε

, the formula (2.28), and the asymptotics (2.30)
for tε to obtain the estimate

pε
tε

≤ A2ε6γ c1ε
−γ

ma
2

ma
1

c2ε
γ

ma
2

ma
1 − c3ε

γ(6−ma
2

ma
1

)
≤ C1ε

3γ , (2.33)

on the event Et for some positive c1, c2, c3 and C1.
The proof of the lower bound in (2.23) is analogous. The estimate sups∈[0,t] |Rε

s(x)| ≤ CRε3γ for all t ≥ 0,
x ∈ [a + εγ , b − εγ ] and some CR > 0 follows from (2.23) and slightly modified estimates from Lemmas 7 and 8
in [13].

2.3. Dynamics on unbounded interval, a = −∞. Return from infinity

In this section we show that with high probability the process xε(x) reaches some fixed compact neighbour-
hood of the origin in finite time.

For M > 0 large enough and x ≤ −M define a stopping time τx = inf{t ≥ 0 : xε
t (x) ≥ −M} and a return

time TM =
∫ −M+1

−∞
dv

c1|v|1+c2 .

Lemma 2.3. There is M > 0 such that τx ≤ TM a.s. on the event ETM for all x ≤ −M .

Proof. Recall that due to Assumption U3 there is N > 0 such that −U ′(x) > c1|x|1+c2 , for some c1, c2 > 0
and x ≤ −N . Additionally, we assume that N is sufficiently large, so that for any x < −N

− |x|1+c2 + |x + 1
2 |1+c2 + 1

4 (1 + c2)|x|c2 = − 1
4 (1 + c2)|x|c2 + o(|x|c2) < 0. (2.34)

We compare xε(x) with the solution of the SDE

vε
t (v) = v + c1

∫ t

0

|vε
s−|1+c2 ds + εξε

t , t ≥ 0. (2.35)

Let M > N and x ≤ −M . Then a comparison argument similar to those in Section 2.2.2 a) yields, that for
v < x < −M , vε

t (v) < xε
t (x) a.s. on t ∈ [0, τx), i.e. the random trajectory xε does not deviate to −∞ faster

than vε.
Let now TM =

∫ −M+1

−∞
dv

c1|v|1+c2 be such that v0
TM

(−M) ≤ −N . The statement of the lemma will follow if we
show that on the event ETM the inequality supt∈[0,TM ] |vε

t (v) − v0
t (v)| ≤ 1 holds a.s. uniformly over v ≤ −M .
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To prove the latter inequality, similarly to Section 2.2 consider the representation vε
t (v) = v0

t (v)+εwε
t (v)+rε

t (v)
with

v0
t (v) = v + c1

∫ t

0

|v0
s |1+c2 ds,

wε
t (v) = ξε

t − c1(1 + c2)|v0
t (v)|1+c2

∫ t

0

ξε
s−

ds

|v0
s(v)| ,

rε
t (v) = c1

∫ t

0

(|v0
s(v) + εwε

s−(v) + rε
s(v)|1+c2 − |v0

s(v)|1+c2 + (1 + c2)|v0
s(v)|c2εwε

s−(v)
)

ds.

(2.36)

To estimate wε we recall equations (2.18) and (2.19) and immediately get that sup[0,TM ] |wε
t (v)| ≤ 2 sup[0,TM ] |ξε

t | ≤
2ε4γ for v ≤ −M .

The estimate supt∈[0,TM ] |rε
t | < 3/4 is obtained by a comparison argument used in Section 2.2.2 a). �

2.4. Final estimate for |xε
t − x0

t |
Lemma 2.4. Let xε(x) and x0(x) satisfy (2.9), and let T (ε) be a non-negative random variable. Then for any
γ > 0, d > 0, q > 0 and any integer k ≥ 1 the following inclusion holds for ε small enough:

{
sup

t∈[0,T (ε)]

|xε
t (x) − x0

t (x)| ≥ dε2γ

}
, if a > −∞,

{
sup

t∈[0,τx∧T (ε)]

xε
t (x) ≥ −M + 1

}

∪
{

sup
t∈[τx∧T (ε),T (ε)]

|xε
t (x) − x0

t−τx∧T (ε)(x
ε
τx

(x))| ≥ dε2γ

}
,

if a = −∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⊆ {T (ε) ≥ k/εq}∪
k−1⋃
j=0

{
sup

t∈[ j
εq , j+1

εq ]

|εξε
t − εξε

j
εq
| ≥ ε4γ

}

(2.37)

Proof. Let a > −∞. For any x ∈ [a + εγ , b − εγ ] we have the obvious inclusion

{
sup

t∈[0,T (ε)]

|xε
t (x) − x0

t (x)| ≥ dε2γ

}
⊆
{

T (ε) ≥ k/εq

}
∪
{

sup
t∈[0,k/εq ]

|xε
t (x) − x0

t (x)| ≥ dε2γ

}
. (2.38)

Further we note that for ε small enough and x ∈ [a + εγ , b− εγ ], the estimate tε(x) + T̂ 
 1/εq holds, and thus
due to the inequality |x0

t (x)| ≤ |x|e−m1t which holds in a δ-neighbourhood of 0, we obtain that |x0
1/εq (x)| ≤ d

3ε2γ

for all x ∈ [a + εγ , b − εγ ]. Consequently, |xε
1/εq (x)| ≤ 2d

3 ε2γ under the condition that |xε
t (x) − x0

t (x)| ≤ d
3ε2γ

for all t ∈ [0, 1/εq]. Then with help of Proposition 2.2 we obtain the following chain of inclusions and prove the
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statement of the lemma in case of finite interval:{
sup

t∈[0,k/εq ]

|xε
t (x) − x0

t (x)| ≥ dε2γ

}

⊆
k−1⋃
j=0

[
j−1⋂
i=1

{
sup

t∈[ i−1
εq , i

εq ]

|xε
t (x) − x0

t− i−1
εq

(xε
i−1
εq

)| <
d

3
ε2γ

}
∩
{

sup
t∈[ j

εq , j+1
εq ]

|xε
t (x) − x0

t− j
εq

(xε
j

εq
(x))| ≥ dε2γ

}]

⊆
{

sup
t∈[0, 1

εq ]

|xε
t (x) − x0

t (x)| ≥ dε2γ

}
∪

k−1⋃
j=1

{
sup

t∈[ j
εq , j+1

εq ]

|xε
t (y) − x0

t− j
εq

(y)| ≥ dε2γ for all |y| ≤ 2d

3
ε2γ

}

⊆
k−1⋃
j=0

{
sup

t∈[ j
εq , j+1

εq ]

|εξε
t − εξε

j/εq | ≥ ε4γ

}
.

(2.39)
Let a = −∞. Since τx = 0 for x ∈ [−M, b − εγ ], we only have to consider the case x ≤ −M . Then using the
estimate TM < 1/εq and Lemma 2.3 we obtain

{
sup

t∈[0,τx∧T (ε)]

xε
t (x) ≥ −M + 1

}
∪
{

sup
t∈[τx∧T (ε),T (ε)]

|xε
t (x) − x0

t−τx∧T (ε)(x
ε
τx

(x))| ≥ dε2γ

}

⊆ Ec
1/εq ∪ {T (ε) ≥ k/εq} ∪

{
sup

t∈[0,τx∧ k
εq ]

xε
t (x) ≥ −M + 1, E1/εq

}
(= ∅)

∪
{

sup
t∈[0,τx∧ k

εq ]

xε
t (x) < −M + 1, sup

t∈[τx∧ k
εq , k

εq ]

|xε
t (x) − x0

t−τx
(xε

τx
(x))| ≥ dε2γ , E1/εq

}

⊆ Ec
1/εq ∪ {T (ε) ≥ k/εq} ∪

{
sup

t∈[ 1
εq , k

εq ]

|xε
t (y) − x0

t− 1
εq

(y)| ≥ dε2γ for all |y| ≤ 2dε2γ/3

}
.

(2.40)

We finish the proof applying the finite interval argument to the last event in the previous formula. �

3. Exit from a single well

For i = 1, . . . , n, consider the wells of the potential U with local minima at mi. For ε > 0 and γ > 0 consider
the following ε-dependent inner neighbourhoods of the wells:

Ωi = (si−1, si),

Ωi
ε = [si−1 + 2εγ , si − 2εγ ],

(3.1)

where by convention Ω1 = (−∞, s1), Ω1
ε = (−∞, s1 − 2εγ], Ωn = (sn−1, +∞), and Ωn

ε = [sn−1 + 2εγ , +∞).
Consider the following life times of the process Xε in the potential wells:

σi(ε) = inf{t ≥ 0 : Xε
t (·) /∈ [si−1 + εγ , si − εγ ]}, i = 1, . . . , n. (3.2)

Let

λi(ε) := H−

(
si−1 − mi

ε

)
+ H+

(
si − mi

ε

)
, i = 1, . . . , n. (3.3)
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Proposition 3.1. There exists γ0 > 0 such that for any 0 < γ ≤ γ0, x ∈ Ωi
ε, i = 1, . . . , n, any θ > −1 the

following limit holds:

lim
ε→0

Exe−θλ(ε)σ(ε) =
1

θ + 1
, (3.4)

and hence λ(ε)σ(ε) d→ exp(1), and

lim
ε↓0

Ex[λi(ε)σi(ε)]p =
∫ ∞

0

ype−y dy, p ≥ 0. (3.5)

Moreover, for j 
= i,
lim
ε↓0

Px(Xε
σi(ε) ∈ Ωj

ε) =
qij

qi
· (3.6)

All limits hold uniformly over x ∈ Ωi
ε.

Proposition 3.1 will easily follow from Lemmas 3.5 and 3.4 formulated below. The proof is rather technical
and consists in applying the strong Markov property and accurate estimations of certain probabilities.

3.1. Useful technicalities

3.1.1. Dynamics between big jumps

Due to the strong Markov property, for any stopping time τ the process ξε
t+τ − ξε

τ , t ≥ 0, is also a Lévy
process with the same law as ξε. For k ≥ 1 consider processes

ξk,ε
t = ξε

t+τk−1
− ξε

τk−1
,

xk,ε
t (x) = x −

∫ t

0

U ′(xk,ε
s− ) ds + εξk,ε

t , t ∈ [0, T ε
k ].

(3.7)

In our notation, for x ∈ R,

Xε
t+τε

k−1
= xk,ε

t (xk−1,ε
τε

k−1
+ εW ε

k−1) + εW ε
k I{t = T ε

k}, t ∈ [0, T ε
k ], k ≥ 1. (3.8)

Denote W ε
0 = T ε

0 = 0, x1(0) = x, and write I{A} for the indicator function of a measurable set A.

3.1.2. Constants ρ, γ, p0, and c

We assume that the threshold power ρ > 0 and γ satisfy

1
2

< ρ < 1, 0 < γ ≤ γ0 :=
1 − ρ

5
· (3.9)

Throughout this section we use a constant c such that the following holds for ε ∈ (0, ε0] for some ε0 > 0:

sup
y∈[si−1+εγ ,si−εγ ]

|X0
t (y) − mi| ≤ ε2γ

2 for t ≥ c|ln ε|, i = 1, . . . , n,

sup
|y−si|≥εγ

|X0
t (y) − si| ≥ εγ + 2ε2γ for t ≥ cεγ , i = 1, . . . , n − 1.

(3.10)

Let us show that these inequalities hold for some c > 0. Let T (x, y) = inf{t ≥ 0 : X0
t (x) = y}. Then for any

i = 1, . . . , n, and due to the properties of U we need to show that

T (si−1 + εγ , mi − ε2γ/2), T (si − εγ , mi + ε2γ/2) ≤ c|ln ε|, i = 1, . . . , n,

T (si − εγ , si − εγ − 2ε2γ), T (si + εγ , si + εγ + 2ε2γ) ≤ cεγ , i = 1, . . . , n − 1,
(3.11)

what easily follows from nondegeneracy properties of potential’s extrema (Assumption U2).
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3.1.3. Technical lemmas

For definiteness, we assume as in Section 2 that the well’s minimum is located at the origin, and denote well’s
boundaries as −∞ ≤ a < 0 < b < +∞. Denote λ(ε) := H−

(
a
ε

)
+ H+

(
b
ε

)
and

I := [a, b], I := (−∞, b],

Iε,1 := [a + εγ , b − εγ ], or Iε,1 := (−∞, b − εγ ],

Iε,2 := [a + εγ + ε2γ , b − εγ − ε2γ ] Iε,2 := (−∞, b − εγ − ε2γ ],

(3.12)

if a > −∞ or a = −∞ respectively.
For y ∈ Iε,1, j ≥ 1, we introduce the following events:

Aj
y = Aj(y) = {xj

s(y) ∈ Iε,1, s ∈ [0, Tj), x
j
Tj

(y) + εWj ∈ Iε,1},
Aj,−

y = Aj,−(y) = {xj
s(y) ∈ Iε,1, s ∈ [0, Tj), x

j
Tj

(y) + εWj ∈ Iε,2},
Bj

y = Bj(y) = {xj
s(y) ∈ Iε,1, s ∈ [0, Tj), x

j
Tj

(y) + εWj /∈ Iε,1},

Ej
y =

{
ω : sup

t∈[0,Tj ]

|xj
t (y) − x0

t (y)| ≤ ε2γ

2

}
, a > −∞,

Ej
y =

{
ω : sup

t∈[0,τy∧Tj ]

xj
t (y) ≤ −M + 1 and sup

t∈[τy∧Tj ,Tj ]

|xj
t (y) − x0

t−τy∧Tj
(xj

τy
(y))| ≤ ε2γ

2

}
, a = −∞,

(3.13)
with M > 0 and τy defined in Section 2.3. Let also Ay = A1

y , A−
y = A1,−

y , By = B1
y , Ey = E1

y .
Let us recall Lemma 2.4 with d = 1/2 and choose 0 < q < (1 − ρ − γ) ∧ rρ and k = kε := [εq/2/βε], where

[x] denotes the integer part of a real number x. Let

(Ej)c := {Tj ≥ kε/εq} ∪
kε−1⋃
m=0

{
sup

t∈[ m
εq , m+1

εq ]

|εξj,ε
t − εξj,ε

m
εq
| ≥ ε4γ

}
, and E := E1. (3.14)

Then Lemma 2.4 implies that (Ej
y)c ⊆ (Ej)c. Moreover, we obtain the following estimates.

Lemma 3.2. For any θ > −1 there are p > 0, C > 0 and ε0 > 0 such that the following estimates hold for
0 < ε ≤ ε0:

E[e−θλ(ε)T1I{Ec}] ≤ βε

θλ(ε) + βε
exp(−ε−p), (3.15)

E[e−θλ(ε)T1I{T1 ≤ c| ln ε|}] ≤ Cβ2
ε | ln ε|

θλ(ε) + βε
, (3.16)

E[e−θλ(ε)T1I{T1 ≤ cεγ}] ≤ Cβ2
εεγ

θλ(ε) + βε
· (3.17)

Proof. Let θ > −1 and ε0 be small enough such that θλ(ε) + βε > 0 and Lemma 2.1 holds for 0 < ε ≤ ε0 with
some p′ > 0. Note also that kε increases to infinity slower than some power of 1/ε. Then the Markov property
and a straightforward calculation yield for some p > 0:

E[e−θλ(ε)T1I{Ec}] ≤
∫ ∞

kε/εq

e−(θλ(ε)+βε)tβε dt +
kε−1∑
m=0

E

[
e−θλ(ε)T1I

{
sup

t∈[ m
εq , m+1

εq ]

|εξj,ε
t − εξj,ε

m
εq
| ≥ ε4γ

}]

≤ βε

θλ(ε) + βε
(exp(−(θλ(ε) + βε)kεε

−q) + kε exp(−ε−p′
)) ≤ βε

θλ(ε) + βε
exp(−ε−p).

(3.18)
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Inequalities (3.16) and (3.17) are obtained by a straightforward calculation taking into account that (θλ(ε) +
βε)c| ln ε|) ≤ c′βε| ln ε| and (θλ(ε) + βε)cεγ) ≤ c′βεε

γ in the limit of small ε for some c′ > 0. �

We will also use an important result on the uniform convergence for slowly varying functions.

Proposition 3.3 ([1], Th. 1.2.1). If l is slowly varying at +∞ then

lim
u→+∞

l(λu)
l(u)

= 1, (3.19)

uniformly for λ from a compact set in (0, +∞).

3.2. Proof of Proposition 3.1. Lower estimate

In this section we obtain an estimate for the Laplace transform of λ(ε)σ(ε) from below in the small noise
limit ε → 0.

Lemma 3.4. For any θ ≥ −1, any C > 0 there exists ε0 > 0 such that for all 0 < ε ≤ ε0

Exe−θλ(ε)σ(ε) ≥ 1 − C

1 + θ + C
(3.20)

uniformly over x ∈ Iε,2.

Proof. For x ∈ Iε,2, we use the total probability formula to obtain an estimate

Exe−θλ(ε)σ(ε) ≥
∞∑

k=1

Ex[e−θλ(ε)τkI{σ = τk}]. (3.21)

Then applying the independence and law properties of the processes xj , j ∈ N, the following chain of inequalities
is deduced which results in a factorisation formula for the expectation under estimation:

Ex

[
e−θλ(ε)τkI{σ = τk}

]
= Ex

[
e−θλ(ε)τkI{Xε

s ∈ Iε,1, s ∈ [0, τk), Xε
τk

/∈ Iε,1}
]

= Ex

⎡
⎣e−θλ(ε)τk

k−1∏
j=1

I{Aj(Xε
τj−1

)} · I{Bk(Xε
τk−1

)}
⎤
⎦

≥ Ex

⎡
⎣e−θλ(ε)τk

k−1∏
j=1

I{Aj,−(Xε
τj−1

)} · I{Bk(Xε
τk−1

)}
⎤
⎦

= E

⎡
⎣k−1∏

j=1

e−θλ(ε)Tj inf
y∈Iε,2

I{Aj,−
y } · e−θλTk inf

y∈Iε,2
I{Bk

y}
⎤
⎦

=
(
E
[
e−θλ(ε)T1 inf

y∈Iε,2
I{A−

y }
])k−1

·E
[
e−θλ(ε)T1 inf

y∈Iε,2
I{By}

]
. (3.22)

For y ∈ Iε,2, we next specify separately in two steps the further estimation for the two different events appearing
in the latter formula.

Step B1-1. Consider the event I{A−
y } for y ∈ Iε,2. Then

I{A−
y } ≥ I{A−

y }I{Ey}I{|εW1| ≤ ε2γ

2 }I{T1 ≥ cεγ} + I{A−
y }I{Ey}I{|εW1| > ε2γ

2 }I{T1 ≥ c|ln ε|}. (3.23)



METASTABLE BEHAVIOUR OF SMALL NOISE LÉVY-DRIVEN DIFFUSIONS 427

It is easy to see that on the events Ey and {T1 ≥ c|ln ε|} we have the inclusion A−
y ⊇ {εW1 ∈ [a+3εγ , b−3εγ ]},

i.e. since xε(y) jumps from a εγ-neighbourhood of zero, and the big jump εW1 is bounded, the jump-diffusion
does not leave the interval Iε,2. Continuing the chain of inequalities we obtain with help of Ec

y ⊆ Ec:

I{A−
y } ≥ I{Ey}I{|εW1| ≤ ε2γ

2 }I{T1 ≥ cεγ} + I{Ey}I{|εW1| > ε2γ

2 }I{T1 ≥ c|ln ε|}I{εW1 ∈ [a + 3εγ , b − 3εγ ]}
≥ I{|εW1| ≤ ε2γ

2 }I{T1 ≥ cεγ} + I{|εW1| > ε2γ

2 }I{T1 ≥ c|ln ε|}I{εW1 ∈ [a + 3εγ , b − 3εγ ]} − 2I{Ec
y}

≥ I{|εW1| ≤ ε2γ

2 } + I{|εW1| > ε2γ

2 }I{εW1 ∈ [a + 3εγ , b − 3εγ]}
− I{T1 < cεγ} − I{|εW1| > ε2γ

2 }I{T1 < c|ln ε|} − 2I{Ec}
= I{εW1 ∈ [a + 3εγ , b − 3εγ ]} − I{T1 < cεγ} − I{|εW1| > ε2γ

2 }I{T1 < c|ln ε|} − 2I{Ec}.
(3.24)

Step B1-2. Similarly, the event I{By}, y ∈ Iε,2 may be estimated as follows:

I{By} ≥ I{By}I{Ey}I{T1 ≥ c|ln ε|}
≥ I{Ey}I{T1 ≥ c|ln ε|}I{εW1 /∈ [a − εγ − ε2γ , b + εγ + ε2γ ]}
≥ I{εW1 /∈ [a − 2εγ , b + 2εγ]} (1 − I{T1 < c|ln ε|} − I{Ec}) ,

(3.25)

where we used that if εW1 /∈ [a − εγ − ε2γ , b + εγ + ε2γ ] and the process xε(y) jumps from a εγ-neighbourhood
of the origin, then it leaves the interval Iε,1 for sure.

Now we apply (3.24) and (3.25) to estimate the expectations appearing in the formula for Ex[e−θλ(ε)σ(ε)
I{σ(ε) =

τk}]. Let C > 0 and let ε be small enough such that Lemma 3.2 holds and λ(ε)β−1
ε (1 + C) < 1.

Step B2-1. Here we estimate E
[
infy∈Iε,2 I{A−

y }
]
. With help of (3.24), Lemma 3.2 and using the independence

of T1 and W1 we obtain:

E
[

inf
y∈Iε,2

I{A−
y }
]
≥ Ee−θλ(ε)T1P(εW1 ∈ [a + 3εγ , b − 3εγ ]) − E[e−θλ(ε)T1I{T1 < cεγ}]

− P(|εW1| > ε2γ

2 )E[e−θλ(ε)T1I{T1 < c|ln ε|}] − 2E[e−θλ(ε)T1I{Ec}]

≥ βε

θλ(ε) + βε

(
1 − H−((a + 3εγ)/ε) + H+((b − 3εγ)/ε)

βε
− c1βεε

γ

− c2H(1/(2ε1−2γ))|ln ε| − 2e−1/εp
)

≥ βε

θλ(ε) + βε

(
1 − λ(ε)

βε
(1 + C)

)
. (3.26)

To obtain the latter inequality we used the uniform convergence from Proposition 3.3.

Step B2-2. Similarly, for ε small enough we obtain

E
[

inf
y∈Iε,2

I{By}
]
≥P(εW1 /∈ [a − 2εγ , b + 2εγ])

(
Ee−θλ(ε)σ(ε)− E[e−θλ(ε)T1I{T1 < c|ln ε|}]−E[e−θλ(ε)T1I{Ec}]

)

≥ H−(a − 2εγ) + H+(b + εγ)
βε

βε

θλ(ε) + βε

(
1 − c1βε| ln ε| − c2e−1/εp

)
≥ λ(ε)

βε
(1 − C) .

(3.27)
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Consequently for ε small enough and x ∈ Iε,2 we have

Ex[e−θλ(ε)σ(ε)] ≥
∞∑

k=1

[
βε

θλ(ε) + βε

]k [
1 − λ(ε)

βε
(1 + C)

]k−1
λ(ε)
βε

(1 − C) ≥ 1 − C

θ + 1 + C
, (3.28)

where an easy calculation justifies that the series converges for all θ ≥ −1. �

3.3. Proof of Proposition 3.1. Upper estimate

In this section we obtain an estimate for the Laplace transform of λ(ε)σ(ε) from above in the small noise
limit ε → 0. This leads to the following Lemma with a rather technical proof again.

Lemma 3.5. For any θ > −1, any C ∈ (0, θ + 1) there exists ε0 > 0 such that for all 0 < ε ≤ ε0

Exe−θλ(ε)σ(ε) ≤ 1 + C

1 + θ − C
(3.29)

uniformly over x ∈ Iε,2.

Proof. For x ∈ Iε,1, we use the following obvious inequality

Exe−θλ(ε)σ(ε) =
∞∑

k=1

(
Ex[e−θλ(ε)σ(ε)

I{σ(ε) = τk}] + Rk(x, ε)
)

, (3.30)

where

Rk(x, ε) ≤
{

Ex[e−θλ(ε)τkI{σ(ε) ∈ (τk−1, τk)}], −1 < θ < 0,

Ex[e−θλ(ε)τk−1I{σ(ε) ∈ (τk−1, τk)}], θ ≥ 0.
(3.31)

With arguments analogous to (3.22) we obtain the factorisation:

Ex

[
e−θλ(ε)σ(ε)

I{σ(ε) = τk}
]

= Ex

[
e−θλ(ε)σ(ε)

I{Xε
s ∈ Iε,1, s ∈ [0, τk), Xε

τk
/∈ Iε,1}

]

= Ex

⎡
⎣e−θλ(ε)τk

k−1∏
j=1

I{Aj(Xε
τj−1

)} · I{Bk(Xε
τk−1

)}
⎤
⎦

≤
(

E

[
e−θλ(ε)T1 sup

y∈Iε,1

I{Ay}
])k−1

·E
[
e−θλ(ε)T1 sup

y∈Iε,1

I{By}
]

.

(3.32)

Analogously we estimate the remainder term Rk which refers to the exit between the (k − 1)th and the kth
arrival times of the compound Poisson process ηε, k ∈ N. Here we distinguish two cases.

In the first case, k = 1, x ∈ Iε,2. Then

R1(x, ε) ≤
{

Ex[e−θλ(ε)T1I{∃s ∈ (0, T1) : Xε
s /∈ Iε,1}], −1 < θ < 0,

Ex[I{∃s ∈ (0, T1) : Xε
s /∈ Iε,1}], θ ≥ 0,

≤
{

Ex[e−θλ(ε)T1 supy∈Iε,2
I{∃s ∈ (0, T1) : Xε

s /∈ Iε,2}], −1 < θ < 0,

Ex[supy∈Iε,2
I{∃s ∈ (0, T1) : Xε

s /∈ Iε,2}], θ ≥ 0.

(3.33)
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In the second case, k ≥ 2, x ∈ Iε,1. Consider first non-negative values of θ. Then

Rk(x, ε) ≤ Ex[e−θλ(ε)τk−1I{Xε
s ∈ Iε,1, s ∈ [0, τk−1]}I{∃s ∈ (τk−1, τk) : Xε

s /∈ Iε,1}]

= Ex

⎡
⎣e−θλ(ε)τk−1

k−1∏
j=1

I{Aj(Xε
τj−1

)} · I{∃s ∈ [0, Tk) : xk
s(Xε

τk−1
) /∈ Iε,1}

⎤
⎦

≤ E

⎡
⎣k−2∏

j=1

e−θλ(ε)Tj sup
y∈Iε,1

I{Aj
y} · e−θλ(ε)Tk−1

× sup
y∈Iε,1

I{Ak−1
y }I{∃s ∈ [0, Tk] : xk

s(xk−1
Tk−1

(y) + εWk−1) /∈ Iε,1}
]

=

(
E

[
e−θλ(ε)T1 sup

y∈Iε,1

I{Ay}
])k−2

E

[
e−θλ(ε)T1 sup

y∈Iε,1

I{Ay}I{∃s ∈ [0, T2] : x2
s(x

1
T1

(y) + εW1) /∈ Iε,1}
]

.

(3.34)

Analogously, for −1 < θ < 0 we get

Rk(x, ε) ≤
(

E

[
e−θλ(ε)T1 sup

y∈Iε,1

I{Ay}
])k−2

× E

[
e−θλ(ε)(T1+T2) sup

y∈Iε,1

I{Ay}I{∃s ∈ [0, T2] : x2
s(x

1
T1

(y) + εW1) /∈ Iε,1}
]

. (3.35)

Next, we specify separately in four steps the further estimation for the four different events appearing in the
formulae for expectations above. The argument is similar to Steps B1-1 and B1-2 and we omit intermediate
calculations.

Step A1-1. Consider I{Ay} with y ∈ Iε,1. Similarly to Step B1-1, we may estimate this indicator as

I{Ay} ≤ I{εW1 ∈ I} + I{|εW1| > ε2γ

2 }I{T1 < c|ln ε|} + I{Ec}. (3.36)

Step A1-2. Consider I{By} with y ∈ Iε,1. As in Step B1-2 we get

I{By} ≤ I{εW1 /∈ [a + 2εγ , b − 2εγ ]} + I{|εW1| > ε2γ

2 }I{T1 < c|ln ε|} + I{T1 < cεγ} + I{Ec}. (3.37)

Step A1-3. Consider I{∃s ∈ [0, T1] : x1
s(y) /∈ Iε,1}. For y ∈ Iε,2, we may estimate

I{∃s ∈ [0, T1] : x1
s(y) /∈ Iε,1} ≤ I{Ec

y} + I{∃s ∈ [0, T1] : x1
s(y) /∈ Iε,1}I{Ey} ≤ I{Ec}. (3.38)
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Step A1-4. Finally, for y ∈ Iε,1, we may estimate

I{Ay}I{∃s ∈ [0, T2] : x2
s(x

1
T1

(y) + εW1) /∈ Iε,1}
= I{x1

s(y) ∈ I, s ∈ (0, T1], x1
T1

(y) + εW1 ∈ Iε,2} · I{∃s ∈ [0, T2] : x2
s(x

1
T1

(y) + εW1) ∈ Iε,1}
+ I{x1

s(y) ∈ I, s ∈ (0, T1], x1
T1

(y) + εW1 ∈ Iε,1\Iε,2} · I{s ∈ [0, T2] : x2
s(x

1
T1

(y) + εW1) /∈ Iε,1}
≤ I{x1

s(y) ∈ I, s ∈ (0, T1], x1
T1

(y) + εW1 ∈ Iε,2} · sup
y∈Iε,2

I{∃s ∈ [0, T2] : x2
s(y) /∈ Iε,1}

+ I{x1
s(y) ∈ I, s ∈ (0, T1], x1

T1
(y) + εW1 ∈ Iε,1\Iε,2}

≤ sup
y∈Iε,2

I{∃s ∈ [0, T2] : x2
s(y) /∈ Iε,1} + I{x1

s(y) ∈ Iε,1, s ∈ (0, T1], x1
T1

(y) + εW1 ∈ Iε,1\Iε,2}. (3.39)

The first term in the resulting expression in the Step A1-4 is identical to the expression handled in Step A1-3,
while the second term requires an inessential modification of the estimation in Step A1-2, namely we consider
an event {x1

T1
(y) + εW1 ∈ Iε,1\Iε,2} instead of {x1

T1
(y) + εW1 /∈ Iε,1}.

Now we apply (3.36), (3.37), (3.38) and (3.39) to estimate the expectations Ex[e−θλ(ε)τkI{σ(ε) = τk}] and
remainder terms Rk(x, ε). Fix θ and let C be an arbitrary small constant such that 0 < C < θ + 1.

Step A2-1. For ε small enough we get

E

[
e−θλ(ε)T1 sup

y∈Iε,1

I{Ay}
]
≤ E[e−θλ(ε)T1 ]P(εW1 ∈ I) + P(|εW1| > ε2γ

2 )E[e−θλ(ε)T1I{T1 < c|ln ε|}]

+ E[e−θλ(ε)T1I{Ec}] ≤ βε

θλ(ε) + βε

(
1 − λ(ε)

βε
(1 − C)

)
. (3.40)

Step A2-2. Similarly to Step Step B1-2 we estimate for ε small enough:

E

[
e−θλ(ε)T1 sup

y∈Iε,1

I{By}
]
≤ βε

θλ(ε) + βε

λ(ε)
βε

(
1 +

C

3

)
· (3.41)

On these steps, we again used the uniform convergence of slowly varying functions, see Proposition 3.3.

Step A2-3. Estimate R1(x, ε). For θ > −1 and x ∈ Iε,2 we have

R1(x, ε) ≤ e−1/εp ≤ βε

θλ(ε) + βε

λ(ε)
βε

C

3
, (3.42)

p > 0 being a constant from Lemma 3.2.
Step A2-4. Finally we estimate the last factor in the representation for Rk(x, ε) for θ ≥ 0 as

E

[
e−θλ(ε)T1 sup

y∈Iε,1

I{Ay}I{∃s ∈ [0, T2] : x2
s(x

1
T1

(y) + εW1) /∈ Iε,1}
]

≤ 2E[e−θλ(ε)T1I{Ec}] + E[e−θλ(ε)T1 ] (P(|εW1 − a| ≤ εγ) + P(|εW1 − b| ≤ εγ))

+ E[e−θλ(ε)T1I{T1 < c|ln ε|}]P(|εW1| > ε2γ

2 )

≤ βε

θλ(ε) + βε

λ(ε)
βε

C

3
(3.43)
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and analogously for −1 < θ < 0 as

E

[
e−θλ(ε)(T1+T2) sup

y∈Iε,1

I{Ay}I{∃s ∈ [0, T2] : x2
s(x

1
T1

(y) + εW1) /∈ Iε,1}
]
≤
(

βε

θλ(ε) + βε

)2
λ(ε)
βε

C

4

≤ βε

θλ(ε) + βε

λ(ε)
βε

C

3
·

(3.44)

Collecting together the above estimates yields the upper bound for the Laplace transform of the first exit
time σx(ε) for x ∈ Iε,2. Fix θ > −1 and let ε be small enough such that all estimates above hold and

βε

θλ(ε)+βε
(1 − λ

β (1 − C)) ≤ 1
2 . Then the following chain of inequalities finishes the proof:

Ex

[
e−θλ(ε)σ(ε)

]
≤

∞∑
k=1

[
βε

θλ(ε) + βε

(
1 − λ(ε)

βε
(1 − C)

)]k−1
βε

θλ(ε) + βε

λ(ε)
βε

(
1 +

C

3

)

+
βε

θλ(ε) + βε

λ(ε)
βε

C

3
+

∞∑
k=2

[
βε

θλ(ε) + βε

(
1 − λ(ε)

βε
(1 − C)

)]k−1
βε

θλ(ε) + βε

λ(ε)
βε

C

3

≤ λ(ε)(1 + C)
θλ(ε) + βε

∞∑
k=1

[
βε

θλ(ε) + βε

(
1 − λ(ε)

βε
(1 − C)

)]k−1

=
1 + C

θ + 1 − C
· � (3.45)

Proof of the Proposition 3.1. The first statement of Proposition 3.1 follows directly from Lemmas 3.5 and 3.4
and immediately implies convergence in distribution. Since the Laplace transform is finite for at least one
negative θ, the random variables λ(ε)σx(ε) have finite moments of all orders. Consequently, for any p > 0,
(λ(ε)σx(ε))p d→ ξp, ξ being a standard exponential random variable, and (λ(ε)σx(ε))p, 0 < ε ≤ ε0, is a family
of uniformly intergable non-negative random variables, which implies the convergence of moments (see [14],
Lem. 4.11).

To obtain the third statement we repeat the steps of the argument of Lemmas 3.5 and 3.4 taking θ = 0 and
redefining the event Bj

y in (3.13) and thereafter as

{xj
s(y) ∈ Iε,1, s ∈ [0, Tj], x

j
Tj

(y) + εWj ∈ Ωj
ε}. (3.46)

Then, it is easy to see that for x ∈ Ωi
ε

[
H−( sj−mi

ε ) − H−( sj−1−mi

ε )

H−( si−1−mi

ε ) + H+( sj−mi

ε )

]−1

Px(Xε
σi(ε) ∈ Ωj

ε) → 1, if j < i,

[
H+( sj−1−mi

ε ) − H+( sj−mi

ε )

H+( si−1−mi

ε ) + H+( sj−mi

ε )

]−1

Px(Xε
σi(ε) ∈ Ωj

ε) → 1, if i < j,

(3.47)

and the ratios in brackets converge to qij/qi as defined in (1.9). �
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4. Transitions between the wells

For 0 < Δ < Δ0 = min1≤i≤n{|mi − si−1|, |mi − si|} and x ∈ R denote BΔ(x) = {y : |x − y| ≤ Δ}. Consider
the following stopping times:

T i(ε) = inf{t ≥ 0 : Xε
t (·) ∈ ∪k �=iΩk

ε}, (4.1)

τ i(ε) = inf{t ≥ 0 : Xε
t (·) ∈ ∪k �=iBΔ(mk)}, (4.2)

Si(ε) = inf{t ≥ 0 : Xε
t (·) /∈ B2εγ (si)}, i = 1, . . . , n − 1. (4.3)

For x ∈ Ωi
ε, T i is the transition time between the wells. For x ∈ BΔ(mi), τ i is the transition time between

Δ-neighbourhoods of wells’ minima, and for x ∈ B2εγ (si), Si
x is the exit time from a neighbourhood of the

saddle point.

Lemma 4.1. Let i = 1, . . . , n − 1 and x ∈ B2εγ (si). Then

lim
ε↓0

H(1/ε)ExSi(ε) = 0. (4.4)

Proof. To estimate ExSi(ε) we notice that for x ∈ B2εγ (si),

Si
x(ε) ≤ inf{t > 0 : |εLt − εLt−| > 4εγ} = J(ε) a.s., (4.5)

i.e. the first exit time of Xε from the 2εγ-neighbourhood of the saddle point si is a.s. bounded from above by
the time of the first jump of εL exceeding 4εγ . Note that J(ε) is exponentially distributed with mean

EJ(ε) =

(∫
|y|>4/ε1−γ

ν(dy)

)−1

=
1

H(4/ε1−γ)
· (4.6)

The statement of the lemma follows from the fact that H(1/ε)/H(4/ε1−γ) → 0 as ε ↓ 0. �

Proposition 4.2. For x ∈ Ωi
ε and j 
= i

lim
ε↓0

Px(Xε
T i(ε) ∈ Ωj

ε) =
qij

qi
(4.7)

lim
ε↓0

Px(T i(ε) > σi(ε)) = 0, (4.8)

lim
ε↓0

λi(ε)ExT i(ε) = 1. (4.9)

Proof. It is obvious that for all x ∈ Ωi
ε

σi(ε) ≤ T i(ε) Px-a.s. (4.10)

We have the inequality

Px(Xε
T i(ε) ∈ Ωj

ε) = Px(Xε
σi(ε) ∈ Ωj

ε) + Px(Xε
T i(ε) ∈ Ωj

ε, T
i(ε) > σi(ε)) ≥ Px(Xε

σi(ε) ∈ Ωj
ε). (4.11)

Recall (3.6) in Proposition 3.1 and note that
∑

j �=i
qij

qi
= 1. Then the limits (4.7) and (4.8) follow.
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For any δ > 0 there exists ε0 > 0 such that for 0 < ε ≤ ε0 the following estimates hold

sup
x∈Ωi

ε

Px

(
Xε

σi(ε) ∈ ∪n−1
j=1 B2εγ (sj)

)
≤ δ,

sup
x∈Ωi

ε

λi(ε)Exσi(ε) ≤ 1 + δ,

max
1≤j≤n−1

sup
x∈B2εγ (sj)

λi(ε)ExSj(ε) ≤ δ.

(4.12)

Then is easy to see that

λi(ε)ExT i(ε) ≤ λi(ε)Exσi(ε) +
∞∑

k=1

(k + 1)(1 + δ) + kδ)δk ≤ 1 + δ · Const. (4.13)

which proves (4.9). �

Proposition 4.3. For any 0 < Δ < Δ0 the following limits hold

lim
ε↓0

Px

(
Xε

τ i(ε) ∈ BΔ(mj)
)

=
qij

qi
(4.14)

λi(ε)τ i(ε) d→ exp(1), (4.15)

lim
ε↓0

λi(ε)Exτ i(ε) = 1, (4.16)

uniformly for x ∈ BΔ(mi) and i = 1, . . . , n, j 
= i.

Proof. It is obvious that for all x ∈ BΔ(mi)

σi(ε) ≤ T i(ε) ≤ τ i(ε) Px-a.s. (4.17)

On the other hand, the main contribution to τ(ε) is made by the switching time T (ε), for if the trajectory
overcomes the saddle point and is in Ωj

ε for some j 
= i, it follows the deterministic trajectory with high
probability and reaches the set BΔ(mj) in short (logarithmic) time.

First we show that

lim
ε↓0

Px

(
τ i(ε) ≤ T i(ε) + c|ln ε|) = 1, (4.18)

where c is defined in (3.10). Let Xε
T i(ε)(x) ∈ Ωj

ε for some j 
= i. On the event Aε = {ω : supt∈[0,c|lnε|] |εLt+T i(ε)−
εLT i(ε)| ≤ ε4γ} the trajectory Xε

t (Xε
T i(ε)(x)) follows the deterministic trajectory x0

t (X
ε
T i(ε)(x)) which reaches

the small neighbourhood of the local minimum mj in time c|ln ε|. The limit (4.18) holds since Px(Aε) → 1.
Then

Px(Xε
τ i(ε) ∈ BΔ(mj)) ≥ Px(Xε

τ i(ε) ∈ BΔ(mj), Xε
T i(ε) ∈ Ωj

ε, Aε)

= Px(Xε
T i(ε) ∈ Ωj

ε, Aε) ≥ Px(Xε
T i(ε) ∈ Ωj

ε) − Px(Ac
ε) →

qij

qi
(4.19)

and (4.14) is proved since
∑

j �=i
qij

qi
= 1.

Convergence (4.15) follows easily from inequality (4.17), limits (4.8) and (4.18) and the fact that λi(ε)|ln ε| → 0.
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To prove (4.16) we repeat the argument of Proposition 4.2. Indeed, for any δ > 0 there is ε0 > 0 such that
for 0 < ε ≤ ε0 the following inequalities hold:

sup
x∈Ωi

ε

Px

(
sup

t∈[0,c|ln ε|]
|εLt| ≤ ε4γ}

)
≤ δ, max

1≤i≤n
λi(ε)c|ln ε| ≤ δ,

sup
x∈Ωi

ε

λi(ε)ExT i(ε) ≤ 1 + δ, max
1≤j≤n−1

sup
x∈B2εγ (sj)

λi(ε)ExSj(ε) ≤ δ.

(4.20)

Then it is easy to see that for 0 < ε ≤ ε0

λi(ε)Exτ i(ε) ≤ λi(ε)(ExT i(ε) + c|ln ε|) +
∞∑

k=1

[
(1 + δ + λi(ε)c|ln ε|)(k + 1) + δk

]
δk ≤ 1 + δ · Const. (4.21)

which finishes the proof. �

5. Metastable behaviour. Proof of Theorem 1.1

5.1. Convergence on short time intervals

Proposition 5.1. Let 0 < δ < r. Then if x ∈ Ωi, i = 1, . . . , n, then for t > 0

Xε
t/εδ (x) D→ mi, ε ↓ 0. (5.1)

Proof. For some 1 ≤ i ≤ n, let x ∈ Ωi. We shall prove a stronger result: for any A > 0 and 0 < Δ < Δ0

Px

(
sup

s∈[cεδ|ln ε|,A]

|Xε
s/εδ − mi| ≤ Δ

)
= Px

(
sup

s∈[c|ln ε|,A/εδ ]

|Xε
s − mi| ≤ Δ

)
→ 1, ε ↓ 0. (5.2)

Indeed, recalling Section 2 we choose γ > 0 and c > 0 such that |Xε
c|ln ε|(x) − mi| ≤ Δ/2 a.s. on the event

E = Ec|ln ε| ∩ {T1 > c|ln ε|}, where Ec|ln ε| = {sup[0,c|ln ε|] |εξε
t | ≤ ε4γ}. This gives

Px

(
sup

s∈[c|ln ε|,A/εδ ]

|Xε
s − mi| > Δ

)
≤ sup

|y−mi|≤Δ/2

Py

(
sup

s∈[0,A/εδ−c|ln ε|]
|Xε

s − mi| > Δ

)
+ P(Ec)

≤ sup
|y−mi|≤Δ/2

Py

(
σΔ(ε) < A/εδ − c|ln ε|)+ P(Ec)

≤ sup
|y−mi|≤Δ/2

Py

(
σΔ(ε) < A/εδ

)
+ P(Ec

μ|ln ε|) + P(T1 ≤ c|ln ε|), (5.3)

where σΔ(ε) = inf{t > 0 : |Xε
t −mi| > Δ}. On the other hand we know that for λΔ(ε) = H−(−Δ/ε)+H+(Δ/ε),

λΔ(ε)σΔ(ε) d→ exp(1). (5.4)

Since λΔ(ε)/εδ → 0 as ε ↓ 0 we have Py

(
σΔ(ε) < A/εδ

)→ 0, as well as P(Ec
c|ln ε|) → 0 and P(T1 ≤ c|ln ε|) → 0

in the limit of small ε. This finishes the proof of (5.2). �

Remark 5.2. It is easy to notice in view of Section 2 that the convergence in Proposition 5.1 is uniform in x
for x ∈ Ωi

ε.
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5.2. Proof of Theorem 1.1

Lemma 5.3. For any t > 0 and 0 < Δ < Δ0,

Px

(
Xε

t/H(1/ε) ∈ ∪n
j=1BΔ(mj)

)
→ 1, ε ↓ 0, (5.5)

uniformly for x ∈ R.

Proof. Choose ρ and γ such that Proposition 3.1 and Lemma 4.1 hold for small ε. 1. Let |x − si| ≤ 2εγ for
some i = 1, . . . , n − 1. We know (see Lem. 4.1) that Si

x(ε) ≤ J(ε) = inf{t > 0 : |εLt − εLt−| > 4εγ} a.s. and
J(ε) ∼ exp( 1

H(4/ε1−γ )) if 1 − γ > ρ. We show that

Px

(
Xε

2/εr(1−γ/2) /∈ ∪n
j=1BΔ(mj)

)
→ 0. (5.6)

Indeed, the strong Markov property implies

Px

(
Xε

2/εr(1−γ/2) /∈ ∪n
j=1BΔ(mj)

)
≤ Px

(
Xε

2/εr(1−γ/2) /∈ ∪n
j=1BΔ(mj), Si(ε) ≤ 1/εr(1−γ/2)

)
+ P
(
J(ε) > 1/εr(1−γ/2)

)

=
n∑

k=1

Ex

[
PXε

Si(ε)

(
Xε

2/εr(1−γ/2)−Si(ε) /∈ ∪n
j=1BΔ(mj)

)
· I{Si(ε)

≤ 1/εr(1−γ/2)} · I{Xε
Si(ε) ∈ Ωk

ε}
]

+ Ex

[
PXε

Si(ε)

(
Xε

2/εr(1−γ/2)−Si(ε) /∈ ∪n
j=1BΔ(mj)

)
· I{Si(ε)

≤ 1/εr(1−γ/2)} · I{Xε
Si(ε) /∈ ∪n

j=1Ω
j
ε}
]

+ P
(
J(ε) > 1/εr(1−γ/2)

)

≤
n∑

k=1

sup
y∈Ωk

ε

Py

(
sup

s∈[c|ln ε|,2/εr(1−γ/2)]

|Xε
s − mk| > Δ

)

+ P
(

sup
t∈[0,1/εr(1−γ/2)]

ε|Lt − Lt−| > a
)

+ P
(
J(ε) > 1/εr(1−γ/2)

)
, (5.7)

with a = 1
2 min{s2 − s1, . . . , sn−1 − sn−2}. The first summand in the latter formula tends to 0 due to Proposi-

tion 5.1. The second summand is estimated by 1 − exp(ε−r(1−γ/2)H(a/ε)) → 0, and the third summand also
tends to 0 due to the definition of J(ε).

2. It is clear from the proof that the limit (5.6) holds also for x ∈ Ωi
ε, i = 1, . . . , n, and thus for all x ∈ R.

Then, for ε small enough such that t/H(1/ε) > 2/εr(1−γ/2) the application of the Markov property

Px

(
Xε

t/H(1/ε) /∈ ∪n
j=1BΔ(mj)

)
= ExPXε

t/H(1/ε)−2/εr(1−γ/2)

(
Xε

2/εr(1−γ/2) /∈ ∪n
j=1BΔ(mj)

)
(5.8)

finishes the proof. �
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Proof of Theorem 1.1. It is clear from the Markov property that it is sufficient to show that for any t > 0 and
x ∈ Ωi

ε, i = 1, . . . , n,
Px

(
Xε

t/H(1/ε) ∈ BΔ(mj)
)
→ Pmi (Yt = mj) , j 
= i. (5.9)

Define a sequence of stopping times (τ(k))k≥0 and states (m(k))k≥0 such that τ(0) = 0, m(0) = mi and for
k ≥ 1

τ(k) = inf{t > τ(k − 1) : Xε
t ∈

n⋃
i=1

BΔ(mi)\BΔ(m(k − 1))},

m(k) =
n∑

j=1

mjI{Xε
τ(k) ∈ BΔ(mj)}.

(5.10)

Define also a (non-Markovian) process X̂ε on a state space {m1, . . . , mn}

X̂ε
t =

∞∑
k=0

m(k) · I{t ∈ [H(1/ε)τ(k), H(1/ε)τ(k + 1))}. (5.11)

The strong Markov property of Xε and Proposition 4.3 imply that

Law
(
H(1/ε)(τ(k + 1) − τ(k))|X̂ε

τ(k) = mi

)
→ exp(1/qi),

Px(X̂ε
τ(k+1) = mj |X̂ε

τ(k) = mi) → qij

qi
,

(5.12)

uniformly for k ≥ 0.
The process Y defined in the statement of the Theorem is given by the sequence of its jump times and

states, (θ(k), Yk)k≥0 with the property that the interjump times are conditionally independent and exponentially
distributed and for k ≥ 0, 0 ≤ i, j ≤ n, i 
= j,

Law (θ(k + 1) − θ(k)|Yk = mi) = exp(1/qi),

P(Yk+1 = mj |Yk = mi) =
qij

qi
.

(5.13)

Then∣∣∣Px

(
Xε

t/H(1/ε) ∈ BΔ(mj)
)
− Pmi (Yt = mj)

∣∣∣
≤
∣∣∣Px

(
Xε

t/H(1/ε) ∈ BΔ(mj)
)
− Px

(
X̂ε

t = mj

) ∣∣∣+ ∣∣∣Px

(
X̂ε

t = mj

)
− Pmi (Yt = mj)

∣∣∣. (5.14)

The second summand in (5.14) vanishes in the limit of small ε due to the weak convergence of the jump process
X̂ε to Y . Indeed, in this case the weak convergence is equivalent to the weak convergence of the sequences of
jump times and jump sizes (see [22]) (τ(k), m(k))k≥0 ⇒ (θ(k), Yk)k≥0, which follows from (5.12) and (5.13).

To estimate the first summand in (5.14) we use Lemma 5.3. Indeed,∣∣∣Px

(
Xε

t/H(1/ε) ∈ BΔ(mj)
)
− Px

(
X̂ε

t = mj

) ∣∣∣ =∣∣∣Px

(
Xε

t/H(1/ε) ∈ BΔ(mj), X̂ε
t = mj

)
+ Px

(
Xε

t/H(1/ε) ∈ BΔ(mj), X̂ε
t 
= mj

)
(= 0)

− Px

(
X̂ε

t = mj , X
ε
t/H(1/ε) ∈ BΔ(mj)

)
− Px

(
X̂ε

t = mj , X
ε
t/H(1/ε) ∈ ∪k �=jBΔ(mk)

)
(= 0)

− Px

(
X̂ε

t = mj , X
ε
t/H(1/ε) /∈ ∪n

k=1BΔ(mk)
) ∣∣∣ ≤ Px

(
Xε

t/H(1/ε) /∈ ∪n
k=1BΔ(mk)

)
→ 0, (5.15)

which finishes the proof of the theorem. �
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