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1. Introduction

The object of this article is to answer the following question:
“What happens to an object randomly moving in spacetime?”

This question received in [4] an analytic answer using stochastic calculus and coupling technique. One can see
the present article as an alternative way to these results, enlighting their algebraic and geometric content.

We shall adopt as a model of spacetime the geometric framework of special relativity, where the space of
events is the Cartesian product R × Rd, and where the geometry of space is defined by the quadratic form

q(ξ) =
(
ξ0
)2 − ((ξ1

)2
+ · · · + (ξd

)2)
, (1.1)

if ξ ∈ R × Rd has coordinates
(
ξ0, ξ1, ..., ξd

)
in the canonical basis {ε0, ε1, ..., εd}.

Rephrase our interrogation: “What is the asymptotic behaviour of an object moving at random in spacetime,
continuously, with a speed less than the speed of light?” This question has different flavours depending on who
asks it. The probabilist will ask: “What is the tail σ-algebra of this process?”, and the geometer will ask: “Does
the space have a (geometrical) boundary such that the object converges almost surely towards some random
point of this boundary, encoding completely its asymptotic behaviour?” Answers to these questions can be
given as follows. Write {ξs}s�0 the random trajectory; we shall denote by (rs, θs) ∈ R+ ×Sd−1 the (Euclidean)
polar coordinates of the point ξs in the hyperplane {ξ ∈ R × Rd; ξ0 = ξ0

s}, and by (Ω, P) the probability space
where the process {ξs}s�0 is constructed, forgetting to mention the initial point of the trajectory.

Theorem 1.1 (probabilist’s answer). P-almost surely,
• θs converges towards some random asymptotic direction θ∞,
• q(ξs, ε0 + θ∞) converges towards some random quantity �∞.
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Figure 1. Asymptotic behaviour of a typical trajectory.

The σ-algebra generated by θ∞ and �∞ coincides with the tail σ-algebra of {ξs}s�0 up to P-null sets.

The geometrical meaning of the quantity lim
s→+∞q(ξs, ε0 + σ∞) is illustrated in Figure 1: ξs wanders out to

infinity as it approaches the hyperplane parallel to the hyperplane tangent to the null cone in the direction
ε0 + σ∞, located at a random “height”: lim

s→+∞q(ξs, ε0 + σ∞).

Theorem 1.2 (geometer’s answer). Spacetime (R × Rd, q) has a natural boundary C such that

• {ξs}s�0 converges P-almost surely towards some random point ξ∞ of C,
• the σ-algebra generated by ξ∞ coincides with the tail σ-algebra of {ξs}s�0 up to P-null sets.

Following Dudley [10], Section 2.1 motivates our model of random motion in spacetime. Section 2.2 explains
how one can lift this motion to a motion in the group of affine isometries of (R×Rd, q) and how one can rephrase
probabilist’s interrogation as a question about random walks on that group. Section 3 explains how Raugi’s
method, developed in a general setting in [23], provides an explicit description of the invariant σ-algebra of the
random walk; some additional work has to be done to describe its tail σ-algebra and to rephrase the algebraic
result in the form of Theorem 1.1. The use of Raugi’s deep and elaborated method in this non trivial simple
situation is the occasion to introduce it to the non specialist; with this concern in mind, we have included
elementary proofs for some intermediate results that might be well known to specialists. One leaves algebra for
geometrical matters in Section 4. There, we address the question of the existence of a boundary to spacetime
satisfying geometer’s requirements. In the course we prove a theorem which is part of the folklore in Lorentzian
geometry but for which one we could not find any reference. Section 5 contains technical proofs which were not
included in the preceding sections in order to make them more readable.

We wish to thank the referee for his careful reasing and valuable comments.

2. From spacetime to Poincaré group

2.1. Dudley’s model of random motion in spacetime

As recalled in the introduction, the spacetime of special relativity is the space R × Rd equipped with the
geometric structure defined by the quadratic form q defined in (1.1); we shall denote it R1,d in the sequel. An
important subset of R1,d is its upper half-unit sphere

H = {ξ ∈ R
1,d; q(ξ) = 1, ξ0 > 0}.
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Although q is not definite, its restriction to any tangent space of H is definite negative; so, it endows H with a
Riemannian structure. H is (a model of) the d-dimensional hyperbolic space.

One modelizes the motion in spacetime of an object moving at a speed strictly less than the speed of light
by a timelike path.

Definition 2.1. A timelike path γ in R
1,d is a continuous path γ : I → R

1,d, s �→ γs = (ts, xs), such that for
any r < s,

|xs − xr| < ts − tr.

In particular, the time coordinate tr of γr is a continuous increasing function, and γr is absolutely continuous:
its left derivative γ̇r− exists for almost all r and

γr = γ0 +
∫ r

0

γ̇u− du.

Notation. SO0(1, d) denotes identity’s connex component in the linear group of q-orthogonal transforms.
• How should one define a random Markovian timelike path started from 0? It is first tempting to define the

coordinate processes γ �→ γs on the set Γ of all timelike paths γ : R+ → R1,d started from 0 and to consider a
probability P on Γ. Since the laws of physics are supposed to keep the same expression in any pseudo-orthonormal
frame of spacetime (Relativity Principle), we require P to enjoy the same invariance property:

P(γt1 ∈ A1, ..., γtn ∈ An) = P
(
γt1 ∈ g(A1), ..., γtn ∈ g(An)

)
,

for any times t1 < · · · < tn, any subsets A1, ..., An of R1,d, and any isometry g ∈ SO0(1, d). But noting that each
timelike path γ hits H in a unique time T , the law of the random variable γT should be, under P, a probability
measure on H invariant under the action of SO0(1, d); such a probability does not exists. So, one cannot define
an SO0(1, d)-invariant probability on the set of timelike paths started from 0.

This negative result is not surprising since laws of motion in physics always involve position γr in spacetime
as well as speed γ̇r under the form of a differential equation

d(γ̇r , γr)
dr

= F (γ̇r, γr). (2.1)

We shall make the hypothesis that position and speed are recorded in the state space of the process

R
1,d × {ξ̇ ∈ R

1+d; q(ξ̇) > 0, ξ̇0 > 0}.

If one thinks of the process (γr, γ̇r) as modelizing the motion of some particle due to the action of some
(continuous) field and to instantaneous collisions with other particles, it is natural to ask γ̇ to be càdlàg.
Noting the Markovian character of the deterministic motion given by (2.1), we shall keep this assumption in
the probabilistic model.

Definition 2.2.
• We define the Poincaré group G as the group of affine q-isometries

ϕ(ζ) = g(ζ) + ξ,

with ξ ∈ R1,d and a linear part g in SO0(1, d).
• Writing (ξ,g) for ϕ, the group structure of G is the semi-direct product:

(ξ,g)(ξ′,g′) = (ξ + gξ′,gg′).
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Given an affine isometry e = (ζ,g) of R1,d and (ξ, ξ̇) in the state space, write

e(ξ, ξ̇) = (gξ + ζ,gξ̇) (2.2)

the natural action of e on the state space.

To get a definition of the process (γ, γ̇) in accordance with the Relativity Principle we shall ask its law to
be invariant under the action of G. All this leads us to adopt as a model of random timelike path a Markov
random process (γr, γ̇r) on R1,d ×{ξ̇ = (t, x) ∈ R1+d; q(ξ̇) > 0, t > 0}, defined by a family P(ξ,ξ̇) of probabilities
such that for any (ξ, ξ̇)

(1) γ̇ is (P(ξ,ξ̇)-almost surely) càdlàg, and γr = γ0 +
∫ r

0
γ̇u− du,

(2) (Invariance) for any affine isometry e of R1,d, any times t1 < · · · < tn, and any sets A1, ..., An of the
state space

P(ξ,ξ̇)

(
(γt1 , γ̇t1) ∈ A1, ..., (γtn , γ̇tn) ∈ An

)
= Pe(ξ,ξ̇)

(
(γt1 , γ̇t1) ∈ e · A1, ..., (γtn , γ̇tn) ∈ e · An

)
.

Dudley showed in [9] that any such Markov process is a Feller process enjoying the strong Markov property (see
Thms. 5.1 and 6.1 of [9]). Note that, as a consequence of the invariance of the law of the process by translations
in R1,d, the process γ̇r itself is a Markov process.

At this step, it is useful to notice that if one reparameterizes γ by the inverse of the previsible additive
functional r �→ ∫ r

0

√
q(γ̇u) du, one obtains a strong Markov process (γ

r
, γ̇

r
) in R1,d × H, such that

(1′) γ̇ is a càdlàg strong Markov process on H, and γ
r

= γ
0
+
∫ r

0
γ̇

u− du,
(2′) γ̇

u
has an SO0(1, d)-invariant law.

So we are led to describe the class of càdlàg strong Markov processes on H with an SO0(1, d)-invariant law. One
has a clearer understanding of the situation considering H as the homogeneous space SO0(1, d)/SO(d). Indeed,

Proposition 2.3 ([18], Thm. 2.2, p. 43). There exists a right SO(d)-invariant left Lévy process {gu} in SO0(1, d)
such that its canonical projection on H has the same law as {γ̇u}.

Applebaum and Kunita gave in [3] a characterisation of Lévy processes in Lie groups as solutions of integral
equations involving stochastic integrals with respect to a Brownian motion and a Poisson random measure.
This description was completed by Applebaum in [2], Theorem 3, p. 396, where he gives a pathwise description
of a Lévy process in a Lie group G. Defining “by analogy with the Euclidean case a compound Poisson process
as the composition of a random number of i.i.d. G-valued random variables where the number of terms taken
depends on the value of a Poisson process”, he employs this compound Poisson process to describe the paths
of a Lévy process in G “as the almost sure limit of a sequence of Brownian motions interlaced with random
jumps”. This characterisation, together with Proposition 2.3, explains Dudley’s description of general random
Markovian timelike paths: in the same way as Lévy processes in R are mixings of real Brownian motion and
jumps processes, the speed γ̇ of a Markovian timelike path is a mixing of Brownian trajectories on H and jump
processes (with radial laws)1.

Note that the only continuous process of this family of processes is obtained when γ̇ is a Brownian motion.
This uniqueness property is important enough to be recorded in a

Definition 2.4. The relativistic diffusion is the process on R1,d ×H obtained as above when γ̇s is Brownian
motion on H.

1Note, yet, that Dudley deduced this result from a “static” version of the preceding “dynamic” results, characterizing Fourier
transform of some infinitely divisible laws on H, and due to Karpelevich, Schur and Tutubalin [17].
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2.2. From spacetime to Poincaré group

Relation (2.2) exhibits an action of Poincaré group G on R1,d × H. The object of this section is to describe
how one can lift the relativistic diffusion to a diffusion {es}s�0 on G.
a) Brownian motion on H

• Recall H inherits from q a Riemannian structure. Brownian motion {g0
s}s�0 on H is defined as the diffusion

with generator half of Laplacian; it has an almost surely infinite lifetime2.
Notation. Given g0 ∈ H, denote by Pg0 the law of Brownian motion {g0

s}s�0 started from g0.
Polar coordinates (ρs, σs) of g0

s satisfy the equations:

ρs = ρ0 +
d − 1

2

∫ s

0

cothρr dr + ws,

σs = Σ
(∫ s

0

dr

sh2ρr

)
, (2.3)

where w is a real Brownian motion and Σ is an independent Brownian motion on Sd−1. We shall only need a
few facts about Brownian motion on H; they are collected in the following proposition whose elementary proof
uses a comparison theorem on 1-dimensional stochastic differential equations3 and the invariance of the law of
Brownian motion by the isometric action of SO0(1, d) on H. It is left to the reader.

Proposition 2.5 (asymptotic behaviour of Brownian motion on H). Let g0 ∈ H.
(1) Given ε > 0, there exists Pg0-almost surely a constant C(ω) such that for all s � 0,

d − 1
2

(1 − ε)s − C(ω) � ρs � d − 1
2

(1 + ε)s + C(ω).

(2) The direction σs of g0
s converges Pg0-almost surely towards some random point σ∞ ∈ Sd−1.

(3) The law of σ∞ has a (smooth) density with respect to the uniform probability on Sd−1.

Use of half-space coordinates (y, x) ∈ R>0 × Rd−1 on H give another insight on that result. The coordinates
(ys, xs) of g0

s satisfy equations

dys = ysdwy
s − d

2
ysds,

dxs = ysdwx
s , (2.4)

where (wy , wx) is a d-dimensional Brownian motion. One sees on these equations that ys converges exponentially
fast to 0 and that xs converges towards some random point of Rd−1.

b) A Brownian motion on SO0(1,d)
• Following Eells and Elworthy, one usually constructs Brownian motion on an oriented Riemannian manifold

(M, g) of dimension n as the projection of a singular diffusion on the bundle OM of direct orthonormal frames
of TM. Precisely, there exist canonical horizontal vector fields {Hi}i=1...n on OM such that the differential

operator
n∑

i=1

H2
i on OM induces Laplacian �M on M, in the sense that if we denote by π the natural projection

OM → M, we have for all f ∈ C2(M), (
n∑

i=1

H2
i

)
f ◦ π = (�Mf) ◦ π. (2.5)

2Consult [22] or [13], Cor.6.8.
3See Theorem 1.1 p. 437 of [16] for example.
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These vector fields are defined as follows. Denote by (x, f) =
(
x, (f1, ..., fn)

)
a generic element of OM: x ∈ M

and f is a direct orthonormal basis of TxM. Given j ∈ {1, .., d}, one defines a motion {(xs, fs)} in OM by
asking that dxs

ds = fj(s), and f should be transported parallely along {xs}. One defines a vector field Hj on
OM looking at the infinitesimal motion of all the points of OM, according to the preceding dynamics. These
are the canonical horizontal vector fields.

• In our situation, where H is the half unit pseudo-sphere of R1,d, the space OH can be identified with
SO0(1, d) and the natural projection is

g =
(
g0, (g1, ...,gd)

) ∈ SO0(1, d) �→ g0 ∈ H.

It is elementary to check that the horizontal vector fields Hi are given by the formulas

Hi(g) = gEi, i = 1 ... d,

where the Ei are the matrices E1 =

⎛⎜⎝0 1 (0)
1 0 · · ·
0

... Od−1

⎞⎟⎠, E2 =

⎛⎜⎜⎜⎜⎝
0 0 1 (0)
0 0 · · ·
1

...

(0)
... Od−1

⎞⎟⎟⎟⎟⎠, etc.: Ei exchanges ε0 and εi

and sends the other basis vectors to 0. These left invariant vector fields give rise to the left invariant differential
operator H2

1 + · · ·+H2
d on SO0(1, d). So, if one considers the diffusion {gs}s�0 on SO0(1, d) solving the equation

dgs = gsE1 ◦ dw1
s + · · · + gsEd ◦ dwd

s , (2.6)

where the wi’s are real independent Brownian motions, the H-valued process {g0
s}s�0 is by construction a

Brownian motion on H.
It is customary in the framework of the study of Lévy processes on Lie groups to call a right-stationary4

continuous process with independent right-increments5 a right-Brownian motion. The diffusion {gs}s�0 is a
right-Brownian motion on SO0(1, d). Setting

ξs = ξ0 +
∫ s

0

g0
r dr, (2.7)

the diffusion {(ξs,gs)}s�0 in R
1,d × SO0(1, d) naturally projects to the relativistic diffusion in R

1,d × H.

c)A Brownian motion and a random walk on G • The diffusion {(ξs,gs)}s�0 in R1,d × SO0(1, d) is actually a
right-Brownian motion on the group G. Indeed, setting Ẽi = (0, Ei), for i = 1 ... d, Ẽ0 = (ε0, 0), and defining
the left invariant vector fields Vi on G by the formula

Vi

(
(ξ,g)

)
= (ξ,g)Ẽi, i = 0 ... d,

it is elementary to see that equations (2.6) and (2.7) are equivalent to

d
(
(ξs,gs)

)
= Vi

(
(ξs,gs)

) ◦ dwi
s + V0

(
(ξs,gs)

)
ds. (2.8)

Adopting the notation es = (ξs,gs) the preceding equation takes its definitive form:

des = Vi(es) ◦ dwi
s + V0(es) ds. (2.9)

4For any s > 0, the process {g−1
s gs+t}t�0 has the same law as {g−1

0 gt}t�0.
5For any s1 < · · · < sn, the increments g−1

s1 gs2 , g−1
s2 gs3 , ...,g−1

sn−1gsn are independent.
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Using the Markov property and the left invariance of the vector fields Vi it is easy to show that {es}s�0 is a
right-Brownian motion on G6. Its infinitesimal generator will be denoted by L̃:

L̃ =
1
2

d∑
i=1

V 2
i + V0. (2.10)

Notice that this operator is not elliptic. Yet this Brownian motion {es}s�0 has useful properties needed in the
sequel; they are summarised in the following proposition, proved in Section 5.1.
Notation. Given e ∈ G, we shall write Pe the law of the solution of (2.9) started from e. We write Haar(da)
for a Haar measure on G7.

Proposition 2.6.
(1) Smoothness of the law – Given s > 0, there exists a smooth function ps on G such that for all bounded

Borel function f on G
Ee[f(es)] =

∫
G

ps(e−1a)f(a)Haar(da).

(2) Support of ps – supp(ps) =
{
e = (ξ,g) ∈ G ; ξ

s ∈ ConvHull(H)
}
, where ConvHull(H) is the convex

hull of H ⊂ R1,d.
(3) Moment – The probability ps(a)Haar(da) has a first moment.

We shall recall in Section 3.1 what assertion 3 precisely means. The process {es}s�0 having independent
increments, the sequence {en}n�0 is a random walk on G, with jump law p1(a)Haar(da). The next section
explains how one can reduce the problem of the description of the tail σ-algebra of the diffusion {es}s�0 to the
problem of the description of the invariant σ-algebra of the random walk {en}n�0.

2.3. From diffusion to random walk

Recall that the invariant σ-algebra Inv
(
es

)
of the diffusion {es}s�0 is generated by the events of the form

“{es}s�0 ∈ A iff {es+t}s�0 ∈ A for all t � 0”. The tail (or asymptotic) σ-algebra of {es}s�0 is

Tail
(
es

)
=
⋂
t�0

σ(es; s � t).

For general processes one just have Inv
(
es

) ⊂ Tail
(
es

)
. Besides, the invariant σ-algebra of the random walk

being generated by the events of the form “{en}n�0 ∈ A iff {en+p}n�0 ∈ A for all p � 0”, one just have the
a priori inclusions Inv

(
es

) ⊂ Inv
(
en

) ⊂ Tail
(
es

)
. Yet, we shall see that

Theorem 2.7. The two σ-algebras Inv
(
es

)
and Tail

(
es

)
are indistinguishable under any Pe.

As a consequence, the two σ-algebras Inv
(
es

)
and Inv

(
en

)
coincide up to Pe-null sets for any e ∈ G.

This brings us back to describe the invariant σ-algebra of the random walk {en}n�0; this will be done in
the forthcoming Section 3. We shall get a result in terms of algebraic quantities; we shall see in Section 3.5
how to interpret them in terms of the relativistic diffusion to recover Theorem 1.1. For the moment we prove
Theorem 2.7. Recall an L̃-harmonic function on G is a C2 function h such that L̃h = 0. Give a similar definition of
a
(
∂t+L̃

)
-harmonic function on R×G. The proof of Theorem 2.7 relies on the well known correspondence between

invariant σ-algebras and the set of bounded harmonic functions. Note that this correspondence implicitly8 uses
the hypoellipticity of L̃ and of its parabolic companion ∂t + L̃ (an easily verified fact using the explicit formula
(2.10) and Hörmander’s theorem).

6See [18] for this fact and a proof that (2.9) has a unique solution.
7Notice that G being a unimodular group, right and left Haar measures coincide.
8See Section 9 of [21] for example.
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Lemma 2.8.
• Given any Inv

(
es

)
-measurable real bounded random variable X, the formula

h(e) = Ee[X ],

defines a bounded L̃-harmonic function. Any bounded L̃-harmonic function is of this form.
• Given any Tail

(
es

)
-measurable real bounded random variable X, the formula

h(e) = Ee[X ],

defines a bounded
(
∂t + L̃

)
-harmonic function. Any bounded

(
∂t + L̃

)
-harmonic function is of this form.

Using this bridge between probability and analysis, Theorem 2.7 can be restated as follows.

Theorem 2.9. Any bounded (∂t + L̃)-harmonic function does not depend on time t.

So any bounded (∂t + L̃)-harmonic function is L̃-harmonic. To prove this theorem, we use the same scheme
as in the proof of Corollary 3.2 of [1], but use a Harnack inequality established in [4]. Recall the definition of
pr given in Proposition 2.6.

Proof. Let 0 < ε < 1 and h be a bounded (∂t + L̃)-harmonic function. Since the identity

h(t + ε, e) − h(t, e) =
∫ {

pr−ε(e−1e′) − pr(e−1e′)
}
h(t + r, e′)Haar(de′)

holds, for any e ∈ G, r � 1, we have∣∣h(t + ε, e) − h(t, e)
∣∣ � ‖h‖∞

∥∥pr−ε(e−1.) − pr(e−1.)
∥∥

L1(Haar)
,

� ‖h‖∞
∥∥pr−ε(.) − pr(.)

∥∥
L1(Haar)

. (2.11)

Now, the function (r, e′) ∈ R>0 ×G �→ pr(e′) being (∂r − L̃∗)-harmonic, and this operator being hypoelliptic,
one can use the Harnack inequality stated in Theorem 17 in [4]; it ensures the existence of a constant C such
that

∀ r � 1, ∀ e′ ∈ G, pr−ε(e′) � C pr(e′). (2.12)

Inequality (2.12) means that if the probability pr−ε(a)Haar(da) puts some mass m on some set, then the
probability pr(a)Haar(da) puts at least some mass m

C on that set. So, the variation distance 1
2‖pr−ε(.) −

pr(.)‖L1(Haar) between these two probabilities is � 1 − 1
C < 1.

Thus, ∥∥pr−ε(.) − pr(.)
∥∥

L1(Haar)
� 2
(
1 − 1

C

)
< 2.

Derriennic’s 0 − 2 law, [8], p. 118, states that one has∥∥pr−ε(e, .) − pr(e, .)
∥∥

L1(Haar)
−→

r→+∞ 0,

under the preceding condition; this implies, with (2.11), that

h(t + ε, .) = h(t, .);

as this holds true for any ε > 0, the conclusion follows. �
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3. Invariant σ-algebra of the random walk

As emphasised above, it is the same to determine the invariant σ-algebra of the random walk {en}n�0 and
to determine the set of its bounded harmonic functions h:

∀ e ∈ G, h(e) = Ee[h(e1)].

We shall concentrate on the description of this set. The method proceeds by finding first what “components”
of en converge: we shall find three subgroups D−, D+ and K of G such that

• the application D− ×D+ ×K → G given by (d−,d+,k) �→ d−d+k is a diffeomorphism,
• the D−component d−

n of en converges almost surely towards some random d−
∞ ∈ D−.

The paper [4] in some sense studied the random walk {en}n�0 conditioned on d−∞, using couplings to prove
that the invariant σ-algebra of the conditioned random walk is trivial. Here the algebraic framework enables
us to proceed differently and to bring back the problem to show that any D−-left invariant bounded harmonic
function is constant; this will be done in Sections 3.3 and 3.4 where Raugi’s method is used. In order to make
this approach accessible to non specialists we have included elementary proofs for some intermediate results that
are perhaps well known to specialists. We first recall in Section 3.1 a few basic facts on measures and bounded
harmonic functions on G. The above decomposition of G is obtained in Section 3.2 and the convergence of the
D−component of the random walk in Section 3.3.

3.1. Basics on measures and bounded harmonic functions

a) Subadditive function and moments of a measure on G
Definition 3.1. A Borelian function f : G → R is said to be subadditive if

∀ e, e′ ∈ G, f(ee′) � f(e) + f(e′).

The function f is said to be a gauge if there exists a constant C ∈ R such that

∀ e, e′ ∈ G, f(ee′) � f(e) + f(e′) + C.

The fundamental example of gauge is the gauge associated with a compact neighbourhood V of Id, generating
G9:

∀e ∈ G, fV (e) = inf{n � 1 ; e ∈ V n} < ∞.

In our connected group G = SO0(1, d) × R1,d, any compact neighbourhood V of Id generates G. So, we drop
the assumption “V generates G” in the sequel. The importance of this example comes from the following fact.

Proposition 3.2 (Guivarch’ [14], p. 52). Let V be a compact neighbourhood of Id ∈ G. For any gauge f , there
exists a constant C, depending on V and f , such that

f � C fV .

As a consequence all gauges fV are equivalent: if V ′ is another compact neighbourhood of Id, there exists
constants c(V, V ′) and C(V, V ′) such that

c(V, V ′)fV � fV ′ � C(V, V ′)fV .

As a result, if μ is a non-negative measure on G, and p ∈ N, the integral
∫

fV (e)pμ(de) is finite iff
∫

fV ′(e)pμ(de)
is finite.

9G =
⋃

n∈N

V n.
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Definition 3.3. Let p > 0. A non-negative Borel measure μ on G is said to have a moment of order p if∫
fV (e)pμ(de) < ∞.

This definition does not depend of the choice of the compact neighbourhood V of the identity.

b) Two properties of bounded harmonic functions

Proposition 3.4.
1. Any bounded harmonic function h is right uniformly continuous.
2. ([24]) Let e0 ∈ G, and h be a bounded harmonic function on G. One has Pe0-almost surely, for any

e ∈ Supp(p1),
lim

n→+∞h(ene) = lim
n→+∞h(en).

Proof. 1. Let ε > 0 and V be a compact neighbourhood of Id∈ G. One can find a compact set K ⊂ G such that

∀ ẽ ∈ V ,

∫
Kc

p1(ẽ−1e)Haar(de) � ε.

Then, for any e ∈ G and ẽ ∈ V , one has

|h(eẽ) − h(e)| =
∣∣∣∣∫ {p1

(
(eẽ)−1e′

)− p1

(
e−1e′

)}
h(e′)Haar(de′)

∣∣∣∣
=
∣∣∣∣∫ {p1

(
ẽ−1a

)− p1

(
a
)}

h(a)Haar(da)
∣∣∣∣ =
∣∣∣∣∫

K

· +
∫

Kc

·
∣∣∣∣

�
∣∣∣∣∫

K

{
p1

(
ẽ−1a

)− p1

(
a
)}

h(a)Haar(da)
∣∣∣∣ + 2ε ‖h‖∞.

Since p1 is continuous and h is bounded, one can use dominated convergence theorem in the integral and obtain
the existence of a neighbourhood Ṽ ⊂ V of Id∈ G such that

∀ e ∈ G, sup
ẽ∈Ṽ

∣∣h(eẽ) − h(e)
∣∣ � 2 ‖h‖∞ε + ε,

which shows the result.

2. Let h be a bounded harmonic function. Remarking that the inequality

Ee0

[∫ ∑
n�0

(h(ene) − h(en))2p1(e)de
]

=
∑
n�0

(
Ee0 [h

2(en+1)] − Ee0 [h
2(en)]

)
< +∞,

justifies the p1(e)Haar(de) ⊗ Pe0(dω)-almost sure existence of the limit

lim
n+∞

(
h(ene) − h(en)

)
= 0,

one gets from the Pe0 -almost sure convergence of
{
h(en)

}
n�0

the identity:

lim
n→+∞h(ene) = lim

n→+∞h(en).

The right uniform continuity of h actually yields the awaited stronger result:

Pe0 -almost surely, for all e ∈ Supp(p1), lim
n→+∞h(ene) = lim

n→+∞h(en).

�
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3.2. Decomposition of G
One generally studies the behaviour of a random walk on some group G looking for actions of this group on

some space X such that for any x ∈ X the trajectory {en.x}n�0 of x converges almost surely; these convergences
provide information on en.

As an example, let us concentrate on the SO0(1, d)-part gn of en, which is a random walk in its own
right. Consider SO0(1, d) as the set of direct isometries of the hyperbolic space, in its half-space representation{
(y, x) ∈ R∗

+ × Rd−1
}
. It is an elementary fact that any isometry ϕ of the half-space can uniquely be written

ϕ = t ◦ λ ◦ r (3.1)

where t is a R
d−1-translation, λ the homothety (y, x) �→ (λy, λx) and r is a hyperbolic rotation with centre

(1, 0). This decomposition of ϕ is Iwasawa decomposition. Write

gn = tn ◦ λn ◦ rn. (3.2)

The random walk {gn}n�0 was constructed in Section 2.2, c), in such a way that gn

(
(1, 0)

)
is a Brownian

motion on H at time n. Since we saw in the remark following Proposition 2.5 that its Rd−1 component xn has
an almost sure limit, it means that tn converges almost surely. To use the additional information provided by
Proposition 2.5 let us re-write Iwasawa decomposition (3.2) in matrix form.

The groups N , A, K of homotheties, translations and rotations have respective Lie algebras
• n: the nilpotent algebra

n =

⎧⎨⎩
⎛⎝0 0 tx

0 0 tx
x −x 0d−1

⎞⎠ ; x ∈ R
d−1

⎫⎬⎭ ; (3.3)

• a: the commutative algebra generated by α ≡
⎛⎝ 0 1 (0)

1 0 (0)
(0) (0) 0d−1

⎞⎠10;

• k =

⎧⎪⎨⎪⎩
⎛⎜⎝0 ... 0

... so(d)
0

⎞⎟⎠
⎫⎪⎬⎪⎭.

In matrix terms the groups N , A, K are described as

N = Exp(n) =
{
N(x) =

⎛⎜⎝1 + ‖x‖2

2 − ‖x‖2

2 x∗
‖x‖2

2 1 − ‖x‖2

2 x∗

x −x 1d−1

⎞⎟⎠ ; x ∈ R
d−1
}
,

A = Exp(a) =
{
A(t) =

⎛⎝cht sht (0)
sht cht (0)
(0) (0) 1d−1

⎞⎠ ; t ∈ R

}
K =

{( 1 (0)
(0) A

)
; A ∈ SO(d)

}
.

Notice that
• ∀x ∈ R

d−1, N(x)(ε0 + ε1) = ε0 + ε1, and N(x)∗(ε0 − ε1) = ε0 − ε1;
• ∀ t ∈ R, A(t)(ε0 + ε1) = et(ε0 + ε1), and A(t)(ε0 − ε1) = e−t(ε0 − ε1);

10We denote by 0d−1 the (d − 1) × (d − 1) zero matrix.
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• ∀x ∈ Rd−1, ∀ t ∈ R, A(t)N(x)A−1(t) = N(etx);
• ∀x, y ∈ Rd−1, N(x)N(y) = N(x + y).

Identity (3.2) for gn takes the matrix form

gn = N(xn)A(tn)Kn,

with xn ∈ Rd−1, tn ∈ R and Kn ∈ K.
Denote by 〈., .〉 the Euclidean scalar product on R1+d. On the one hand one has

〈ε0 − ε1,g0
s〉 = 〈ε0 − ε1, N(xs)A(ts)ε0〉 = 〈ε0 − ε1, A(ts)ε0〉 = e−ts .

On the other hand, using polar coordinates (ρs, σs) ∈ R∗
+ × Sd−1 of g0

s
11: g0

s = ch(ρs)ε0 + sh(ρs)σs ∈ R1,d, one
has

〈ε0 − ε1,g0
s〉 = ch(ρs) − sh(ρs)σ1

s .

where σ1
s = 〈ε1, σs〉. Now g0

s being a Brownian motion on H one knows from Proposition 2.5 that
• ρs = d−1

2 s + o(s);
• σ1

s converges almost surely towards a (random) limit σ1
∞ such that |σ1

∞| < 1;
as a consequence,

〈ε0 − ε1,g0
s〉 = ch(ρs) − sh(ρs)σ1

s =
1 − σ1

s

2
eρs + o(1)

=
1 − σ1

s

2
e

d−1
2 s+o(s) + o(1) = e−ts .

Proposition 3.5. The component N(xn) of gn in Iwasawa decomposition gn = N(xn)A(tn)Kn converges
almost surely, and tn

n −→
n→+∞ − d−1

2 , a.s.

To get information on what happens in the R1,d component of en we shall define an action of some sub-group
of G on a vector space of polynomials on the Lie algebra g of G. Before doing so we need a few notations.

Identify SO0(1, d) with a subgroup of G, and so(1, d) with a sub-algebra of g.
Set

• d = R1+d ⊕ n ⊕ a,
• d− = R(ε0 + ε1) ⊕ n,
• d+ =

(
R(ε0 − ε1) ⊕ 〈ε2, ..., εd〉

)⊕ a12,
so that

d = d− ⊕ d+.

As is clear from equation (2.4), the behaviour of the y component of Brownian motion in the half-space model
explains the convergence of its x component. In the algebraic framework, it is the behaviour of An which explains
the dynamics of gn. The preceding decomposition of g is adapted to the structure of A: (ε0 + ε1) is contracted
by An, (ε0 − ε1) is dilated, and 〈ε2, ..., εd〉 is stable. This decomposition has the following straightforward
properties:

• d− and d+ are Lie sub-algebras of g, with associated groups

D− ≡ R(ε0 + ε1) ×N , and D+ ≡ (R(ε0 − ε1) ⊕ 〈ε2, ..., εd〉
)×A;

• d is the Lie algebra of the group D ≡ R1+d ×NA; and
• the group (D−, .) is isomorphic to the Abelian group (d−, +).

11We see Sd−1 as a subset of Rd ⊂ R1,d.
12〈ε2, ..., εd〉 is the vector space spanned by ε2, ..., εd.
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Proposition 3.6 (decomposition of G). The application D− ×D+ ×K → G given by (d−,d+,k) �→ d−d+k is
a diffeomorphism.

Notation. It will be convenient to write

e = d−d+k = πD(e)k = πD−(e)d+k,

with πD(e) = d−d+ ∈ D and πD−(e) = d− ∈ D−.

3.3. Convergence on D−

a) An action of D on d− • The map

(d,d−) ∈ D ×D− �→ d.d− := πD−(dd−) ∈ D−

defines an action of D on D− which corresponds to the action of D on the homogeneous space D/D+, identified
with D−. Given any s, r ∈ R, y, x ∈ Rd−1 and ξ ∈ Rd+1, we have(

ξ, N(y)A(s)
)(

r(ε0 + ε1), N(x)
)

=
(
ξ + res(ε0 + ε1), N(y + esx)A(s)

)
which can be written(

0, N(y + esx)
)((〈

N−1(y + esx)ξ, ε0 + ε1

〉
+ ret

)
(ε0 + ε1),1d+1

)(
ζ, A(t)

)
where ζ = N−1(y + esx)ξ − 〈N−1(y + esx)ξ, ε0 + ε1

〉
(ε0 + ε1) ∈ R(ε0 − ε1) ⊕ 〈ε2, ..., εd〉. Therefore, for

d =
(
ξ, N(y)A(s)

) ∈ D and d− =
(
r(ε0 + ε1), N(x)

) ∈ D−,

d.d− =
((〈

N−1(y + esx)ξ, ε0 + ε1

〉
+ res

)
(ε0 + ε1), N

(
y + esx

))
.

Now, via the exponential map, we identify the Abelian Lie group N with its Lie algebra n, itself identified with
Rd−1. This identification gives us the following action of D on d−, identified to R × Rd−1:

d(r, x) =
(〈

N−1(y + esx)ξ, ε0 + ε1

〉
+ res, y + esx

)
.

If one decomposes d =
(
t(ε0 + ε1), N(y)

)(
ζ, A(s)

) ∈ D into its D−-part and its D+-part, then one reads on the
preceding formula that

d(r, x) =
(
t + esr +

〈
N
(−esx

)
ζ, ε0 + ε1

〉
, esx + y

)
. (3.4)

As is clear, D do not have an affine action on d−; nonetheless we shall see that this action induces a linear
action on some space of polynomials on d−.

b) Polynomials on d− • The algebra d− is a nilpotent algebra of height 2:

[d−, d−] = R(ε0 + ε1, 0), [d−, R(ε0 + ε1, 0)] = 0.

As such, it has a natural graded structure. We consider the algebra of polynomial functions R(x1, ..., xd−1, r)
on d−, provided with the adapted concept of degree:

d◦xi = 1, ∀ i = 1 ... d − 1,

d◦r = 2.
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c) An action of D on polynomials on d−, identified to R×Rd−1 • The group D acts linearly on R(x1, ..., xd−1, r)
in the following way

∀P ∈ R(x1, ..., xd−1, r), ∀d ∈ D, (P.d)
(
r, x
)

= P
(
d.
(
r, x
))

.

Moreover, as N(x) is a matrix with quadratic coefficients in x, one reads on formula (3.4) that this action leaves
the vectorial sub-space generated by the family

{
1; x1, ..., xd−1; (x1)2, ..., (xd−1)2, r

}
invariant. The matrix of

the linear action of d =
(
ξ, N(y)A(s)

) ∈ D in the basis
{
1; x1, . . . , xd−1; (x1)2, . . . , (xd−1)2, r

}
is

M(d) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 y1 · · · yd y2
1 · · · y2

d t

(0) (esIdd−1) (2esIdd−1) (∗)

(0) (0)
(
e2sIdd−1

)
(∗)

(0) es

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where (∗) depends on d. We shall write it in a more concise form

M(d) =
(

1 U(d)
(0) T (d)

)
=

⎛⎝ 1 U(d) t
(0) T (d) V (d)
0 (0) es

⎞⎠ .

d) Convergence of the D−-component • Let now see what this action of D on polynomials of degree �2 tells
us about en. We shall write en = dnkn, with dn ∈ D and kn ∈ K. For convenience, denote by μ the jump law
of en, and write

en+1 = enyn+1,

where the yi are independent random variables with common law μ. As

en+1 = dn+1kn+1 = enyn+1 = dnknyn+1 = dnπD(knyn+1)πK(knyn+1),

we have
dn+1 = πD(e0y1)πD(k1y2)...πD(knyn+1). (3.5)

and13

M(dn) = M
(
πD(kn−1yn)

)
M
(
πD(kn−2yn−1)

) · · ·M(πD(e0y1)
)
. (3.6)

To prove the Pe0 -almost sure convergence of the D−-component of the random walk
{
en

}
n�0

we prove the
convergence of the matrices M(dn).

Setting, with the convention k0 = eO,

M
(
πD(kpyp+1)

)
=
(

1 Up

(0) Tp

)
,

we have
U(dn) = U0 + U1 T0 + U2 T1 T0 + . . . + Un−1 Tn−2 · · ·T0, (3.7)

and
Tn−1 · · ·T0 = T (dn).

We temporarily admit the following lemma, in which ‖.‖ is any norm on matrices.

Lemma 3.7. One has Pe0-almost surely

13Remember we have a right action.
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(1) lim
∥∥M(πD(kn−1yp)

)∥∥1/n � 1,
(2) lim ‖T (dn)‖ 1

n = e−
d−1
2 < 1.

It follows from this lemma that lim ‖Un‖ 1
n � lim

∥∥M(πD(kn−1yn)
)∥∥ 1

n � 1; we thus see that the right hand side
of (3.7) converges as n → +∞. Together with the first point of the Lemma 3.7, this proves the convergence of
M(dn).

Theorem 3.8 (convergence theorem). The D−-component d−
n of en converges Pe0-almost surely, for every

e0 ∈ G.

It remains to prove Lemma 3.7. All norms being equivalent, it does not matter which norm we use; we choose
to work with an algebra norm, for which ‖AB‖ � ‖A‖‖B‖, for any matrices A, B.

Proof. 1. Set for e ∈ G
φ(e) ≡ sup

k∈K
log
∥∥M(πD(ke)

)∥∥.
K being compact, the supremum is finite.

Lemma 3.9. φ is subadditive: for any e, e′ ∈ G, φ(ee′) � φ(e) + φ(e′).

Proof of Lemma 3.9. The inequality is a direct consequence of the identity

∀k ∈ K, e, e′ ∈ G, πD(kee′) = πD
(
πD(ke)πK(ke)e′

)
= πD(ke)πD

(
πK(ke)e′

)
. �

It follows from Proposition 3.2 that φ is bounded by a multiple of a gauge, and that since μ has a first moment
(and φ � 0) one has ∫

φ(e)μ(de) < ∞.

Therefore, ∑
n�1

μ(φ � n c) < ∞, for any c > 0,

and ∑
n�2

Pe0

(
log ‖M(πD(kn−1yn)

)‖ � n c
)

�
∑
n�2

P
(
φ(yn) � n c

)
=
∑
n�2

μ(φ � n c) < ∞.

An application of Borel-Cantelli lemma yields the Pe0 -almost sure inequality

lim ‖M(πD(kn−1yn)
)‖ 1

n � ec.

As this inequality holds for any c > 0, one has Pe0 -almost surely

lim
∥∥M(πD(kn−1yn)

)∥∥ 1
n � 1. (3.8)

2. Write

M
(
πd(knyn)

)
=
(

1 un

(0) tn

)
=

⎛⎝ 1 un ρn

(0) τn vn

0 (0) eun

⎞⎠ ,

using obvious notations. One sees from relation (3.6) that

V (dn) =
n−1∑
k=0

τn−1 · · · τk+1vk euk−1+···+u0 =
n−1∑
k=0

T (dn)T (dk+1)−1vk esk

= T (dn)
n−1∑
k=0

esk+1T (dk+1)−1e−ukvk. (3.9)
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As one has lim
n,+∞

∥∥eskT (dk)−1
∥∥ 1

n = 1 and lim
∥∥e−ukvk

∥∥ 1
n � 1, from the first point of the lemma, one deduces

easily that

lim
∥∥V (dn)

∥∥ 1
n � e−

d−1
2 ,

and, therefore, that lim
∥∥T (dn)

∥∥ 1
n = e−

d−1
2 .

�

We are now ready to determine the invariant σ-algebra of {en}n�0. As explained earlier, it is equivalent to
determine the set of its μ-bounded harmonic functions.

3.4. Invariant σ-algebra of the random walk

The description of the set of μ-bounded harmonic functions, leads us to introduce the space of the jumps{
yn = e−1

n−1 en

}
n∈N∗ of the trajectories, which define a sequence of independent random variables with common

law μ, instead of the trajectories
{
en

}
n∈N

. In other words, we consider the product space Ω̃ = GN
∗
, provided

with its Borel σ-algebra and the product measure P̃ = ⊗N∗μ. Under P̃, the coordinate maps {Yn}n�1 of Ω̃ are
independent, with common law μ. We call θ the shift on Ω̃: for any ω ∈ Ω̃,

Yn(θ(ω)) = Yn+1(ω).

Denote by
{Fn

}
n�0

the filtration defined by

F0 = {∅, Ω̃} and ∀n ≥ 1, Fn = σ(Y1, . . . , Yn).

We consider the product space G × Ω̃ provided with its Borel σ-algebra. A map θ̃ on G × Ω̃ is defined setting

∀e ∈ G, θ̃(e, ω) =
(
eY1(ω), θ(ω)

)
.

Theorem 3.8 says us that, for any e ∈ G, the D−-component of eY1 · · ·Yn converges P̃-almost surely towards
a D−-valued random variable d−(e, .) =

(
r∞(e, ·)(ε0 + ε1), N

(
x∞(e, ·))), which is θ̃-invariant. If we call η the

map ω ∈ Ω �→ (yn(ω))n∈N∗ ∈ Ω̃, then

∀e ∈ G, ∀n ∈ N, en(ω) = e y1(ω) · · ·yn(ω) = eY1(η(ω)) · · · Yn(η(ω)), Pe- a.e.

Let A ∈ σ(en : n � 0), and consider the subset B of G × Ω̃, defined by

1B(e0, η(·))) = 1A(e0(·), . . . , en(·), . . .).

Then,
A ∈ Inv

(
en

)⇔ θ̃−1(B) = B.

Below we prove that any Borel bounded θ̃-invariant function is a Borel bounded function of d−∞(e, .). To do
so, we shall use the following random walk version of Lemma 2.8, for which one can consult the book [19] of
Neveu, Proposition V.2.4.

Lemma 3.10.
• If Z is a bounded θ̃-invariant random variable on G × Ω̃, then the function

h(e) = E
P̃
[Z(e, ·)], e ∈ G
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is bounded and μ-harmonic. Moreover

∀n ∈ N, E
P̃
[Z(e, ·)|Fn] = E

P̃
[Z(eY1 · · ·Yn, θn(·))|Fn] = h(eY1 · · ·Yn)

converges P̃-almost surely towards Z(e, ·) (martingale convergence theorem).
• Reciprocally, if h is a bounded μ-harmonic function then, for any e ∈ G, the process h(eY1 · · ·Yn) is a

bounded martingale relatively to the filtration (Fn)n�0, and consequently (martingale convergence theorem),
converges P̃-almost surely towards a random variable Z(e, ω) which is θ̃-invariant and satisfies

h(e) = E
P̃
[Z(e, ·)].

Theorem 3.11 (Poisson boundary of the random walk).
• The σ-algebra generated by the random variable d−(e, ·) coincide with the invariant σ-algebra of {en}n�0

up to Pe-null sets, for any e ∈ G.
Equivalently,

• any bounded harmonic function h is of the form

h(e) = E
P̃

[
H(d−

∞(e, .))
]

for some bounded Borel function H on N × R.

Lemma 3.12 (fundamental lemma). It suffices to show that any bounded D−-left invariant harmonic function
is constant to prove Theorem 3.11.

Proof. Suppose that any bounded D−-left invariant harmonic function is constant, and given any bounded
harmonic function h let us prove that it is of the form

h(e) = E
P̃

[
H(d−

∞(e, .))
]

(3.10)

for some bounded function H .
Notice that we only need to get such a representation for left uniformly continuous (LUC) functions, for if h is

not LUC, take {fn}n�0 an approximation of unity with compact support, and set hn(e) =
∫

fn(a)h(ae)Haar(da).
This bounded harmonic function being LUC will have a representation of the form (3.10) for some bounded
function Hn such that |Hn| � ‖h‖∞. Taking a sub-sequence if necessary, we shall get

h(e) = lim
n→+∞hn(e) = lim

n→+∞E
[
Hn

(
d−(e, .)

)]
= E
[
H
(
d−(e, .)

)]
,

for some bounded function H . Let now suppose that h is LUC.
We write Ω and P instead of Ω̃ and P̃. Set, for any e ∈ G and ω ∈ Ω,

Z(e, ω) = lim sup
n

h(eY1(ω) · · ·Yn(ω)).

This formula defines a Borel bounded θ̃-invariant function Z on G × Ω, such that, for any e ∈ G, the bounded
martingale h(eY1 . . . Yn) converges P-almost surely towards Z(e, ·). We prove that there exists a bounded Borel
function H : D− → R, such that one has P-almost surely

Z(e, .) = H
(
d−(e, .)

)
, ∀e ∈ G.

First, using the left uniform continuity of h, one obtains the existence of a measurable set Ω1 ⊂ Ω, of P-
probability 1, such that the limit Z(e, ω) exists for all ω ∈ Ω1 and all e ∈ G. It follows that given e ∈ G, one
defines a random variable setting

φe(e′, ω) = Z
(
e
(
d−(e′, .)

)−1
e′, ω

)
.
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This bounded random variable is shift invariant as a function of ω and D−-left invariant as a function of e′14.
So (Lem. 3.10) one defines a bounded harmonic function setting

f(e′) = E
[
φe(e′, .)

]
;

this function is D−-invariant because of the invariance of φe(e′, .). As such, it is constant, but depends on the
parameter e; denote it by H(e). As f(en) converges almost surely towards φe(e′, ω)15 one can suppose that
one has

φe(e′, ω) = H(e), ∀ω ∈ Ω1, ∀ e, e′ ∈ G,

that is
∀ω ∈ Ω1, ∀ e, e′ ∈ G, Z

(
e
(
d−(e′, ω)

)−1
e′, ω

)
= H(e). (3.11)

It is elementary from this formula to check that H is a bounded measurable function of e ∈ G. Now, taking
e = d−∞(e′, ω), formula (3.11) reads

∀ω ∈ Ω1, ∀ e′ ∈ G, Z(e′, ω) = H
(
d−(e′, ω)

)
,

as awaited. �

It remains to show the main point.

Proposition 3.13. Any bounded D−-left invariant harmonic function is constant.

Proof. 1) The proof of this Proposition relies on a lemma which gives a sufficient condition for an element x ∈ G
to be a left period of any bounded harmonic function.

Lemma 3.14 (left periods of bounded harmonic functions). Suppose x ∈ G is such that, for any e ∈ G, one
can write

xeen = eenx′
n,

where the sequence {x′
n}n�0 has P-almost surely a converging (random) sub-sequence. Then, x is a left period

for bounded harmonic functions: one has for any such h

h(xe) = h(e), ∀ e ∈ G.

Proof of Lemma 3.14. One proves this lemma in two steps.
a) We saw in Proposition 3.4 that any element of the support of μ is a “stochastic right period”, meaning

that
lim

n→+∞h(ene) = lim
n→+∞h(en),

for any e in the support of μ. We first show that this property holds on the bigger set

T = {e = (ξ,g) ∈ G; q(ξ) � 0}.

Recall en is the position at time n of the diffusion {es}s�0 on G constructed in Section 2.2(c). A bounded
harmonic function h for the random walk being given, we know from Theorem 2.7 that it is a bounded harmonic
function for any random walk of the form {esn}n�0, s > 0. The jump law ps(e)Haar(de) of this random walk
having support

supp(ps) =
{
e = (g, ξ) ∈ G ;

ξ

s
∈ ConvHull(H)

}
.

14Because for any d− ∈ D− and any ω ∈ Ω1, one has d−(d−e′, ω) = d−d−(e′, ω).
15Since f is a bounded harmonic function.
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one gets the Pe0 -almost sure identity

∀ e ∈ supp(ps), limh(en
p
e) = limh(en

p
) = limh(en),

applying Proposition 3.4 to the random walk {esn}n�0. One can then use the right uniform continuity of h to
say that Pe0 -almost surely

lim h(ene) = lim h(en), ∀ e ∈
⋃
s�0

supp(ps).

The set
⋃

s�0 supp(ps) is equal to T . Note that T generates G:

T T−1 = G. (3.12)

b) One now proves Lemma 3.14. Let x ∈ G be as in the statement and let {np}p�0 be a (random) sub-
sequence such that limx′

np
exists. Using identity (3.12), write

limx′
np

= st−1,

for some s, t ∈ T , and use the right uniform continuity of h to get the P-almost sure equalities

lim
n

h(xeen) = lim
p

h(xeenp) = lim
p

h(eenpx
′
np

)
a)
= lim

p
h(eenpx

′
np

t)

= lim
p

h(eenps) = lim
n

h(eens) = lim
n

h(een). (3.13)

Finally take mean to obtain

h(xe) = h(e). �

2) The proof of Proposition 3.13 now begins. It will rely on Lemma 3.14. Let h be a D−-left invariant
harmonic function. To prove that h is constant we shall proceed in three steps. Define the group normal
sub-group D̃ = R1,d ×N of D; one has D = D̃A, and the inclusions

D̃ ⊂ D̃A = D ⊂ G.

We prove in this point, 2, that h is D̃-left invariant. We shall prove in point 3 that it is D-left-invariant, and
finally that it is constant in point 4.

i) As any d ∈ D̃ can be written d = d−(ζ, Id), for some d− ∈ D− and ζ ∈ 〈ε0 − ε1, ε2, ..., εd〉, and since h is
D−-left invariant, it suffices to show that one has

h(xe) = h(e), ∀ e ∈ G

for every x ∈ D of the form x = (ζ, Id), with ζ ∈ 〈ε0 − ε1, ε2, ..., εd〉. Such x are in D+.
ii) For any n ∈ N∗ we write en = dn kn =

(
ξn, N(xn)A(tn)

)
kn. Remember that by Theorem 3.8 we know

that 〈ξn, ε0 + ε1〉 and N(xn) converge P-a.s. Let d+ = (ζ, I) ∈ D+ with ζ ∈ 〈ε0 − ε1, ε2, . . . , εd〉. We have

xdn =
(
ζ + ξn, N(xn)A(tn)

)
= dn

(
A−1(tn)N−1(xn) ζ), Id

)
.



WHERE DOES RANDOMNESS LEAD IN SPACETIME? 35

Since h is D−-left invariant we have to work modulo D−, and, in particular, modulo the subgroup (R(ε0+ε1), Id)
which is a normal subgroup of D, because the subspace R(ε0 + ε1) is invariant by the matrices of NA. So we
deduce that, modulo the closed subgroup (R(ε0 + ε1), Id),

xdn ≡ dn

(
A−1(tn)

(
N−1(xn) ζ − 〈N−1(xn) ζ, ε0 + ε1〉(ε0 + ε1)

)
, Id
)
.

Now we have

ζn := A−1(tn)
(
N−1(xn) ζ − 〈N−1(xn) ζ, ε0 + ε1

〉
(ε0 + ε1)

)
= A−1(tn)

( 〈
N−1(xn) ζ, ε0 − ε1

〉
(ε0 − ε1) +

d∑
k=2

〈
N−1(xn) ζ, εk

〉
εk

)

= etn
〈
N−1(xn) ζ, ε0 − ε1

〉
(ε0 − ε1) +

d∑
k=2

〈
N−1(xn) ζ, εk

〉
εk,

which shows the convergence P-a.s. of ζn. It follows from above that

h(xen) = h
(
xdn kn) = h

(
en k−1

n (ζn, Id)kn

)
;

kn moving in the compact set K and ζn converging, the sequence k−1
n (ζn, I)kn has P-almost surely a convergent

sub-sequence. By Lemma 3.14, we obtain ∀e ∈ G, h(xe) = h(e); this proves the D̃-left-invariance of h.

3) Recall that D = D̃A. We now show that h is D-left invariant, proving that it is A-left invariant. Set
a = (0, A(t)) ∈ A. Given d = (ξ, N(x)) ∈ D̃, one has

ad =
(
0, A(t)

)(
ξ, N(x)

)
=
(
A(t)ξ, N(etx)

) (
0, A(t)

)
=: d′a,

with d′ = (A(t)ξ, N(etx)) ∈ D. So writing en = (ξn, N(xn)) (0, A(tn))kn ≡ d̃nankn ∈ D̃AK, the D̃-left
invariance of h ( •=) enables to write

h(xen) = h(xd̃nankn) = h(d′
nxankn) •= h(xankn) •= h

(
d̃nxankn

)
= h

(
d̃nanknk−1

n a−1
n xankn

)
= h

(
enk−1

n a−1
n xankn

)
.

As A is commutative, a−1
n aan = a, and

h(ae) = h
(
enk−1

n akn

)
.

It remains to notice that since the sequence {k−1
n xkn}n�0 has P-almost surely a converging (random) subse-

quence, Lemma 3.14 applies:
h(ae) = h(e), ∀ e ∈ G.

4) We can now prove that h is constant. Given e ∈ G, denote by π(e) the class of e in D\G. The application
K → D\G, k �→ π(k) is a diffeomorphism, which identifies K and D\G. One can use it to define from the
DA-left invariant function h a continuous function h in K, by the formula

h(k) = h(dak), ∀d ∈ N , a ∈ A.

Identifying K(� D\G) and NA\SO0(1, d), the space K appears as an SO0(1, d)-space; for k ∈ NA\SO0(1, d)
and g ∈ SO0(1, d), write k.g the right action of g ∈ SO0(1, d) on k ∈ NA\SO0(1, d).
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Recall we defined ν(.) = P(g1 ∈ .); using the ellipticity of Brownian motion {gs}s�0 on SO0(1, d) it is not
difficult to show that ν charges any open set of SO0(1, d). Now, the harmonicity of h becomes for h:

∀k ∈ K, h(k) =
∫

h(k.g)ν(dg).

Let k0 be a point of K where h reaches its maximum. Would h not be constant we could find some ε > 0 and
some open set U such that one has

h(k) < h(k0) − ε, ∀k ∈ U .

One could then use the fact that the set V = {g ∈ SO0(1, d); k0.g ∈ U}, being open, has a positive ν-measure
to obtain a contradiction:

h(k0) =
∫

h(k0.g)ν(dg) =
∫
V

h(k0.g)ν(dg) +
∫
Vc

h(k0.g)ν(dg)

< (h(k0) − ε)ν(V) + h(k0)ν(Vc)

< h(k0).

�

3.5. Invariant σ-algebra of the relativistic diffusion

Now that we have determined the invariant σ-algebra of the random walk {en}n�0, the description of the
invariant σ-algebra of the relativistic diffusion is automatic: any bounded harmonic function h for the relativistic
diffusion extending on G as a harmonic function of the random walk, there exists a bounded Borel function H
on D− such that

h
(
(ξ,g0)

)
= E
[
H(d−

∞(e, .))
]
,

where e =
(
ξ, (g0,g1, ...,gd)

)
is any point in G above (ξ,g0). Yet it would be more satisfactory to express

d−
∞(e, .) as a functional of the path

{
(ξs,g0

s)
}

s�0
of the relativistic diffusion. This is what Theorem 3.15 makes;

its proof is given in Appendix. We shall write r∞ and x∞ instead of r∞(e, ω) and x∞(e, ω). Recall that we
denote by (ρs, σs) ∈ R

∗
+ × S

d−1 polar coordinates of g0
s ∈ H, and that ε0 is the first vector of the canonical

basis, generating the time axis.

Theorem 3.15 (asymptotic behaviour of the relativistic diffusion). Given any e ∈ G, one has Pe-almost surely

(1) σ∞ ∈ Sd−1 is the stereographic projection of x∞ ∈ Rd−1;
(2) lim

s→+∞q(ξs, ε0 + σ∞) = r∞
1+|x∞|2 .

To prove Theorem 1.1 is now straightforward: reparameterizing ξs by its time coordinate t =
∫ s(t)

0

chρr dr,

and setting xt =
∫ s(t)

0

(shρr)σr dr, one has

dxt

dt
= (thρs(t))σs(t) → σ∞,

from which the statement of Theorem 1.1 follows.
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Figure 2. Past of a path.

4. Spacetime boundary

If Theorem 3.11 is satisfying in that it enables to represent any bounded harmonic function on G in terms of
the G-space D−, its geometric content is not clear. In so far as the random walk was constructed in a canonical
way from the metric defining Minkowski space, it is natural to ask if one can recover this G-space as a geometric
object accessible to someone living in R1,d. The present section brings a positive answer.

We assume throughout this section that the reader is familiar with the basic notions of Lorentzian geometry.
All that is really needed is just the notion of Lorentzian manifold, of Lorentzian (infinitesimal) cone, causal,
null and timelike paths, and geodesics, and conformal equivalence. All this can be found in the first pages of
the book [20] of O’Neill.

4.1. A natural boundary to spacetime

Leaving for a moment probabilities and relativistic diffusion, this subsection is dedicated to answering this
question: “How can one define a boundary to spacetime R

1,d?” From a pedestrian point of view the information
which is accessible about a point ξ far away from us is its past: the set Past(ξ) = {ζ ∈ R1,d; q(ξ − ζ) > 0}
of points from which one can emit a “signal” propagating in spacetime at a speed less than (or equal to) the
speed of light up to ξ16.

We shall call a causal path a C1 path γ : I → R1,d, such that one has q(γ̇s) � 0 for all s ∈ I; the path will
be called future oriented if its time component increases17; future oriented causal paths correspond to the
preceding “signals”. By past of a set we shall mean the union of the past of its elements.

Noting that points of R1,d are characterized by their past18 it seems natural to say that two future-oriented
causal curves γ and γ′, leaving every compact, converge towards the same point at infinity if γs and γ′

s eventually
have the “same” past:

γ ∼ γ′ if
⋃
s�0

Past(γs) =
⋃
s�0

Past(γ′
s).

This equivalence relation defines the causal boundary of R
1,d.

16The notation usually used for Past(ξ) is J−(ξ).
17Remember the set {q > 0} has two components.
18ξ = ξ′ iff Past(ξ) = Past(ξ′).
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If geometric intuition leads naturally to this notion of boundary, it is not that easy to formulate correctly19,
and certainly not practical at first sight. We are going to bypass this difficulty using the fact that past cones used
to define that boundary are conformal objects. This will allow us to embed (R1,d, q) conformally in a compact
Lorentzian manifold (Ein2+d, q̂ ) that we are going to introduce in Section 4.1.1. This space Ein2+d has the
property that the topological boundary R1,d\R

1,d of R
1,d in Ein2+d can be identified with its causal boundary,

as defined above. The space (Ein2+d, q̂ ) is called Einstein universe. This spacetime is a classical and
fundamental object in relativity, for it plays in Lorentzian geometry the role that spheres plays in Riemannian
geometry: any simply connected constant curvature Lorentzian manifold appears as an open set of this space.
We describe the classical construction of Ein2+d and some of its elementary properties in the next section20;
the conformal embedding of R1,d in Ein2+d will be explicitly written in Section 4.1.2.

4.1.1. Einstein universe

a) Construction

Definition 4.1. Endow R2+(1+d) with the quadratic form

q2,1+d(x) = −2x0x2+d +
(
x1
)2 − (x2

)2 − · · · − (x1+d
)2

,

expressed in the canonical basis (ε̃0, ε̃1, ..., ε̃1+d, ε̃2+d) of R2+(1+d). Endowed with this quadratic form, R2+(1+d)

will be denoted R2,1+d. Denote by C2,1+d the lightcone of R2,1+d, made up of all vectors with q2,1+d-null
norm. C2,1+d\{0} is a smooth manifold. Its tangent space at a point v ∈ C2,1+d\{0} is denoted by TvC

2,1+d.

Let π : C2,1+d → RP2+d be the restriction to C2,1+d of the canonical projection of R2+(1+d)\{0} in RP2+d.
Write

Ein1+d ≡ π
(
C2,1+d

)
;

this is a hypersurface of RP2+d. Let v ∈ C2,1+d and set p = π(v). The restriction of the quadratic form q2,1+d

to TvC
2,1+d has signature (0, +,−, · · · ,−), where 0 is for the v-direction. Since v is in the kernel of π, TpEin1+d

bears a Lorentzian cone, C̃(p), image of the lightcone C(v) of q2,1+d
|TvC2,1+d , by Tvπ. This cone C̃(p) is well defined:

Tv′π
(
C(v′)

)
= Tvπ

(
C(v)

)
, if π(v′) = π(v).

It depends smoothly on p. This smooth distribution of Lorentzian cones gives Ein1+d a natural conformal
Lorentzian structure.

Definition 4.2. Einstein universe is this Lorentzian manifold together with its conformal structure:(
Ein1+d, {C̃(p)}p∈Ein1+d

)
.

This construction of Ein1+d makes it clear that its group of conformal transforms contains the projective group
PO(2, 1+d) of q2,1+d-orthogonal transforms. The situation is clarified by the following Liouville type theorem21.

Theorem 4.3 (Liouville). • PO(2, 1 + d) acts transitively on Ein1+d and respects its conformal structure.
• PO(2, 1 + d) acts transitively on the bundle of lightlike directions over Ein1+d.
• Any local conformal transformation of Ein1+d is the restriction of the action on Ein1+d of a unique

element of PO(2, 1 + d).

a) Lightlike geodesics and light cone of a point • In the framework of conformal Lorentzian geometry, the notion
of geodesic is not well defined generally; yet, that of lightlike geodesic is a well defined geometric notion.

19See [12].
20Consult for instance the article [15], or the book [6] of Beem and Ehrlich.
21See [11] for a proof.
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C

p

Figure 3. The lightcone C(p) of p.

Proposition 4.4. Let g0 be a Lorentzian metric on Ein1+d with the C̃(p)’s as null cones. Let f : Ein1+d → R

be a smooth map, and e2fg0 a conformal metric on Ein1+d. Any lightlike g0-geodesic γ : I → Ein1+d can be
reparameterised to give a (e2fg0)- lightlike geodesic.

Proof. Let ∇ and ∇′ be the Levi-Civita connection associated with g0 and e2fg0 respectively. The statement
is a direct consequence of the following identity

∇′
V W = ∇V W + (V.f)W + (W.f)V − g0(V, W )∇f,

holding for every vector fields V, W on Ein1+d, and where ∇f is the gradient of f with respect to the metric
g0. �

This proposition justifies that we should introduce the

Definition 4.5. A 1-dimensional manifold Γ ⊂ Ein1+d is said to be a lightlike geodesic if any point ξ of Γ
has a neighbourhood U such that Γ ∩ U is of the form γ(I) for some

(
e2fg0

)
-geodesic γ : I → Ein1+d.

Fortunately, the high homogeneity of the space enables to give an elementary description of lightlike geodesics,
proved in Appendix.

Proposition 4.6. Any lightlike geodesic running through the point π(v) is of the form π
(〈v, v′〉∩ C2,1+d

)
, where

v′ ∈ TvC
2,1+d is a null vector. In other words, the non parameterized lightlike geodesics are the projections in

Ein1+d of totally degenerated planes of R2,1+d; they are topological circles.

Definition 4.7. Given some point p in Ein1+d, the set of all lightlike geodesics running through p is called the
lightcone of p and denoted C(p).

One deduces from the preceding proposition that if p = π(v) and v⊥ is the orthogonal of v with respect to
q2,1+d, then

C(p) = π
(
C2,1+d ∩ v⊥

)
.

C̃(p) is the infinitesimal version of C(p). For example, if p = π(ε̃0),

C(p) = π
(
C2,1+d ∩ {x2+d = 0}). (4.1)

One sees on that formula that C(p) is a compact subset of Einstein universe22 with a singularity at p, such that
C(p)\{p} is a hypersurface, diffeomorphic to R × Sd−1. Note that Ein1+d\C(p) is dense in Ein1+d and that
C(p)\{p} is foliated by lightlike geodesics: any point of C(p)\{p} belongs to a unique lightlike geodesic.

22Einstein universe being a closed subset of the compact manifold RP2+d is compact. C(p) is a closed subset of Einstein universe.
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4.1.2. Where does Minkowski space hide?

Set p = π(ε̃0) ∈ Ein1+d. Recall (ε0, ..., εd) denotes the canonical basis of R1,d. The following proposition
provides an explicit conformal embedding of R1,d in Ein1+d. It is taken from [11].

Proposition 4.8. R1,d is conformally equivalent to the dense open set Ein1+d\C(p). In that sense, Ein1+d

provides a compactification of R
1,d in which C(p) is its boundary.

Proof. Let i : (R1,d, q) → (R2,1+d, q2,1+d) be the linear identification of R1,d to 〈ε̃1, ..., ε̃1+d〉 sending εi on ε̃i+1;
this is an isometry. The map

j : x ∈ R
1,d �→ q(x, x)ε̃0 + 2i(x) + ε̃2+d ∈ C2,1+d (4.2)

is well defined and maps the lightcone of R1,d to the lightcone of Tj(x)C
2,1+d. The map π being injective on

j(R1,d), the application π ◦ j is a conformal equivalence between R1,d and π ◦ j(R1,d) ⊂ Ein1+d; it is called a
stereographic projection. To prove that π ◦ j

(
R1,d

)
is dense in Ein1+d, note that the only points of Ein1+d

that are not in the image of π ◦ j are the projection in Ein1+d of the points x of C2,1+d with x2+d = 0, i.e.
C(p), as noticed in (4.1). �

From now on, we identify R1,d and its stereographic projection π◦j(R1,d) ⊂ Ein1+d. We shall write C for C(p).

4.1.3. Spacetime boundary and bounded harmonic functions

The stereographic projection is the adequate tool to identify the causal boundary of R
1,d as the set C. The

following theorem gives a much more precise description saying among other things that C\{p} can be identified
from the inside of R1,d and characterizing convergence towards some point of C\{p}. Although this theorem is
essentially well known to specialists, no proof being available in the literature, we prove it in Appendix.

Theorem 4.9.
1. For any non lightlike geodesic ξ + R v of R1,d, ξ + tv converges to p as t → +∞.
2. Any point in C\{p} is the limit of a lightlike geodesic of R1,n−1. More precisely,

– Let v ∈ R1,d be an isotrope vector. There is a lightlike geodesic Δv of C such that for every lightlike
geodesic ξ + R v, with direction v, ξ + tv converges towards a point of Δv\{p} as t → +∞. This
lightlike geodesic of Ein1+d depends only on the direction Rv of v.

Identify the set of null directions with Sd−1: say that the vector v has direction σ if R v = R (ε0 + σ),
σ ∈ Sd−1. Write Δσfor Δv if v has direction σ.

Now, given σ ∈ S
d−1 and a null vector v = ε0 + σ ∈ R

1,d with direction σ,
– two v-directed geodesics ξ + R v and ξ′ + R v converge to the same point iff ξ′ is in the affine

hyperplane ξ + v⊥.
The function q(v, .) is constant on ξ + v⊥, note � ∈ R this constant. We note pσ(�) ∈ Δσ the limit of
ξ + R v.

– Any point of Δσ is the limit of a lightlike geodesic ξ + R (ε0 + σ), for some ξ ∈ R1,d.
3. A natural parameterization of C\{p} – The map

(σ, �) ∈ S
d−1 × R �→ pσ(�) ∈ C\{p}

is a diffeomorphism.
4. (a) Every timelike path {γs}s∈I in R1,d, future-oriented and inextensible23, converges toward a point

of C.
(b) Let σ ∈ Sd−1 and � ∈ R.

γs −→
s→+∞ pσ(�) iff q

(
γs, ε0 + σ

) −→
s→+∞ �.

23That is, I is an interval of R, the time component γ0
t of γt increases, and γ : I → R1,d has no proper C1 extension.
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If no such σ and � exist, then γs −→
s→+∞ p.

– If γs → pσ(�) then Past(γs) −→
s→+∞

{
ζ ∈ R

1,d ; q
(
ζ, ε0 + σ

)
� �
}
; if γs → p, then Past(γs) −→

s→+∞
R1,d.
So, we can identify C with the causal boundary of R1,d.

Comparing assertion 4(b) and Theorem 1.1 brings an answer to geometer’s question formulated in the intro-
duction.

Theorem 4.10.
• The R1,d-part {ξs}s�0 of the relativistic diffusion P(ξ,ξ̇)-converges almost surely towards some random

point ξ∞ of C\{p}, for any initial starting point (ξ, ξ̇).
• The σ-algebra generated by ξ∞ coincide with the tail σ-algebra of {ξs}s�0 up to P(ξ,ξ̇)-null sets.

The boundary C describing the space of lightlike geodesics, we shall resume this theorem as the relativistic
diffusion eventually behaves as a lightlike geodesic, a good conclusion where to stop.

5. Appendix

This appendix contains the different proofs that were not written in the core of the article to make it more
readable. We prove Proposition 2.6 concerning the properties of the jump law of the random walk, Theorem 3.15
reformulating the algebraic result on the invariant σ-algebra of the relativistic diffusion in terms of spacetime
quantities, and Theorem 4.9 identifying the causal boundary of R1,d.

5.1. Proof of Proposition 2.6 on the properties of the law of {es}s�0

a) – 1. This point comes from the fact that the infinitesimal generator L̃ of {es}s�0 is a hypoelliptic differential
operator: see [4], Proposition 10.

2. We determine the support of the probability ps. Fix s > 0 and denote by δ any left-invariant distance on
SO0(1, d).

1) As the Brownian motion {gs}s�0 on SO0(1, d) is an elliptic diffusion, for any continuous (deterministic)
path {γr}0�r�s in SO0(1, d) and any ε > 0 we have

Pg0

(
sup

0�r�s
δ(gr, γr) � ε

)
> 0.

So, the support of Ps

(
(g0, ξ0), .

)
is the closure of the set of points (g, ζ) ∈ G of the form g = γs and ζ =

ζ0 +
∫ s

0 γr dr for some continuous path {g
r
}r�s in SO0(1, d).

2) Besides, as {gs}s�0 can go from one open set of SO0(1, d) to any other one in an arbitrarily small amount

of time with positive probability, we see that the heart of the proof is to show that
{

1
s

∫ s

0
γ0

r dr ; γ : [0, s] →
SO0(1, d), continuous

}
= ConvHull(H).

3) Taking constant γ’s gives

ConvHull(H) ⊂
{

1
s

∫ s

0

γ0
r dr ; γ : [0, s] C0→ H

}
.

4) Conversely, the convexity of ConvHull(H) implies that for any n � 1,

1
n

n−1∑
j=0

γ0
js
n

∈ ConvHull(H),
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since each γ0
js
n

belongs to H ⊂ ConvHull(H). As 1
n

n−1∑
j=0

γ0
js
n

−→
n→+∞

1
s

∫ s

0

γ0
r dr, the result follows.

3. Actually we can prove a little more.

Proposition 5.1. The probability ps(a)Haar(da) has moments of any order.

Proof. We can take s = 1 without loss of generality, and write μ instead of p1(a)Haar(da). Let p � 1. Given any
neighbourhood V of IdG , we need to show that the associated gauge fV is in Lp(μ). As they are all equivalent
(Prop. 3.2) we can choose a particular V . To describe it, identify SO0(1, d) with the set of orthonormal frames
on H. Set

Ṽ = {(g0,R) ∈ OH ; d(g0, ε0) < 1}24;

this open set of SO0(1, d) satisfies the identity

Ṽ n =
{
(g0,R) ∈ OH ; d(g0, ε0) < n

}
.

Define V as the product
V = Ṽ × B,

where B is the unit Euclidean ball of R
1+d.

We shall prove that one has ∑
n�2

μ
(
(V n)c

)
np < +∞, (5.1)

which implies that ∫
fV (e)pμ(de) = μ(V ) +

∑
n�2

μ
(
V n\V n−1

)
np < ∞.

The proof relies on the following elementary fact, whose proof is left to the reader.

Lemma 5.2. Let q � 1, g ∈ Ṽ q. The set {gg ; g ∈ Ṽ 2q} contains Ṽ q.

Notations. We denote by
[

n
9

]
the integer part of n

9 , and set qn =
[

n
9

]− 1.

Let n � 18. As the point

(g1, 0) · · · (gqn , 0)(gqn+1, ξ)(gqn+2, 0) · · · (g3qn , 0)(g3qn+1, ξ
′)(g3qn+2, 0) · · · (g9qn+3, 0),

belongs to Ṽ n for any ξ, ξ′ ∈ B, and is equal to

(g1 · · ·g9qn+3,g1 · · ·gqnξ + g1 · · ·gqngqn+1 · · ·g3qnξ′),

we conclude from Lemma 5.2 that

Ṽ 3qn+1
(
Ṽ qn · B + Ṽ qn · B

)
⊂ V n25.

The inclusion
Ṽ qn

(
Ṽ qn · B + Ṽ qn · B

)
⊂ V n,

will be sufficient to meet our purpose.

24The notation (g0,R) ∈ OH means that g0 ∈ H and R is an orthonormal basis of Tg0H; d is the hyperbolic distance in H.
25 We write Ṽ qn · B for {g(b) ∈ R1,d; g ∈ Ṽ qn , b ∈ B}, and A + B = {a + b; a ∈ A, b ∈ B}.
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So,

μ
(
(V n)c

)
�μ
((

Ṽ qn

(
Ṽ qn ·B + Ṽ qn ·B

))c)
�μ
((

Ṽ qn
)c

R
1,d
)
+μ
({

(g, ξ)∈G; ξ /∈
(
Ṽ qn ·B + Ṽ qn ·B

)})
. (5.2)

We majorize both terms of the right hand side of inequality (5.2) separately.
a) The first one is equal to P

(
g1 /∈ Ṽ qn

)
. Noting (ρ1, θ1) the polar coordinates of g0

1,

P̃

(
g1 /∈ Ṽ qn

)
� P (ρ1 � qn) � P

(
sup

s∈[0,1]

ρs � qn

)
.

We estimate this probability using the comparison theorem on the equation

ρs = ws +
∫ s

0

d − 1
2

coth(ρr) dr,

noting that coth(ρ) � 2 as soon as ρ � 2. Precisely, if one notes w(d−1),2 a Brownian motion with drift (d− 1),
started from 2, one has

sup
s∈[0,1]

ρs � sup
s∈[0,1]

w(d−1),2
s . (5.3)

Denote by P
(d−1)
2 the law of w(d−1),2. One can use formula 1.1.4, in [7], p. 197, to conclude from (5.3) that

P

(
sup

s∈[0,1]

ρs � qn

)
� P

(d−1)
2

(
sup

s∈[0,1]

w(d−1),2
s � qn

)
� 1

2
f

(
qn − d − 1√

2

)
+

1
2
e(d−1)(qn−2)f

(
qn − 3 + d√

2

)
,

with f(x) = e−x2

√
πx

. The convergence ∑
n�2

P

(
g1 /∈ Ṽ qn

)
np < ∞, (5.4)

follows.

b) The second term of the right member of inequality (5.2) is equal to P

(
ξ1 /∈ Ṽ qn · B + Ṽ qn · B

)
.

To deal with it, we use the following two lemmas; the proof of the first one is elementary.
Write BH(ε0, R) = {g0 ∈ H; d(ε0,g0) � R}, where d denotes the hyperbolic distance in H.

Lemma 5.3. Let R > 0. For any continuous path {g0
s}s∈[0,1] contained in BH(ε0, R), one has

∫ 1

0

g0
s ds ∈ ConvHull

(
BH(ε0, R)

) ⊂ R
1,d.

Lemma 5.4. ConvHull
(
BH(ε0, qn)

) ⊂ Ṽ qn · B + Ṽ qn · B
Proof of Lemma 5.4. In dimension d = 1, we see on Figure 4 that the inclusion of the statement holds: a point
of H in BH(ε0, qn) being of the form g(ε0) for some g ∈ Ṽ qn , any point in the convex hull in R1,d of BH(ε0, qn)
can be written as g(ε0) + g′(sε0), where g′ is the hyperbolic rotation of angle −qn and s ∈ [0, 1].

In bigger dimension, any point ξ of ConvHull
(
BH(ε0, qn)

)
is in the plane 〈ε0, ξ〉, where the 2-dimensional

result applies. �
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ConvHull
(
BH(ε0, qn)

)

Figure 4. The dashed zone is in Ṽ qn · B + Ṽ qn · B.

One deduces from Lemmas 5.3 and 5.4 that

μ
({

(g, ξ) ∈ G ; ξ /∈ Ṽ qn · B + Ṽ qn · B
)

� P

(
sup

s∈[0,1]

ρs � qn

)
.

It remains to use formula 1.1.4 of [7] to obtain∑
n�2

P

(
ξ1 /∈ Ṽ qn · B + Ṽ qn · B

)
np < ∞.

Together with (5.4) and (5.2), this inequality proves (5.1). �

5.2. Proof of Theorem 3.15 on the asymptotic behaviour of the relativistic diffusion

1. We first show that the asymptotic direction σs of the speed g0
s of the relativistic diffusion is the stereo-

graphic projection of the vector x∞ ∈ Rd−1 appearing in d−∞.
On the one hand, the expression

g0
s = gsε0 = N(xs)A(ts)Ksε0 = N(xs)A(ts)ε0 = N(xs)

⎛⎝ch ts
sh ts
(0)

⎞⎠
gives the coordinates of g0

s in the canonical basis:

g0
s =

⎛⎜⎝1
2 (|xs|2 + 1)e−ts + ets

2
|xs|2−1

2 e−ts + ets

2
e−tsxs

⎞⎟⎠ .

On the other hand,
g0

s = (chρs)ε0 + (shρs)σs.

Comparing these two expressions, we obtain

σ∞ = lim
s→+∞

|xs|2 − 1 + e2ts

|xs|2 + 1 + e2ts
ε1 +

2xs

|xs|2 + 1 + e2ts
=

|x∞|2 − 1
|x∞|2 + 1

ε1 +
2x∞

|x∞|2 + 1
·

This is the analytical expression of the stereographic projection of x∞ ∈ Rd−1 ⊂ 〈ε2, ..., εd〉 on Sd−1 ⊂ 〈ε1, ..., εd〉.



WHERE DOES RANDOMNESS LEAD IN SPACETIME? 45

2. We are now going to prove that lim
s→+∞q(ξs, ε0 + σ∞) = r∞

1+|x∞|2 . We shall consider Sd−1 as a subset of

〈ε1, ..., εd〉 and identify Rd−1 to 〈ε2, ..., εd〉. We use the notation 〈., .〉 for the Euclidean scalar product in R1+d.

a) • We first give in the forthcoming identity (5.6) an expression of rn involving only xn ∈ R
d−1 and ξn ∈ R

1,d.
Use the fact that N(xn)(ε0 + ε1) = ε0 + ε1 to re-write the decomposition

en = (ξn,gn) =
(
ξn, N(xn)A(tn)Kn

)
=
(〈

N(xn)−1ξn, ε0 + ε1

〉
(ε0 + ε1), N(xn)

)(
N(−xn) ξn − 〈N(−xn) ξn, ε0 + ε1〉(ε0 + ε1), A(tn)Kn

)
, (5.5)

which proves that the D−-component of en is(〈
N(−xn)ξn, ε0 + ε1

〉
(ε0 + ε1), N(xn)

)
.

Since

tN(xn)−1(ε0 + ε1) = (|xn|2 + 1)ε0 + (1 − |xn|2)ε1 − 2xn,

we obtain

rn =
〈
ξn,t N(xn)−1(ε0 + ε1)

〉
= (|xn|2 + 1)

〈
ε0−

( |xn|2 − 1
|xn|2 + 1

ε1 +
2xn

|xn|2 + 1

)
, ξn

〉
= (|xn|2 + 1)q

(
ε0+

( |xn|2 − 1
|xn|2 + 1

ε1 +
2xn

|xn|2 + 1

)
, ξn

)
. (5.6)

Remark that

(thρs)σs =
|xs|2 − 1 + e2ts

|xs|2 + 1 + e2ts
ε1 +

2xs

|xs|2 + 1 + e2ts
,

is almost equal to
(

|xs|2−1
|xs|2+1ε1 + 2xs

|xs|2+1

)
.

• We now show that q
(
ε0+

(
|xn|2−1
|xn|2+1ε1 + 2xn

|xn|2+1

)
, ξn

)
and q(ε0 + σn, ξn) have the same limit. We can do

this in two steps:

1. q
(
ε0+

(
|xn|2−1
|xn|2+1ε1 + 2xn

|xn|2+1

)
, ξn

)
− q(ε0 + (thρn)σn, ξn) = o(1),

2. q(ε0 + (thρn)σn, ξn) − q(ε0 + σn, ξn) = o(1).

1 is a consequence of the following easily established estimates:

• ∀ ε > 0, |ξn| � O
(
e(1+ε) d−1

2 n
)

26,

•
∣∣∣ |xn|2−1+e2tn

|xn|2+1+e2tn − |xn|2−1
|xn|2+1

∣∣∣ = O
(
e2tn
)
,

•
∣∣∣ 1
|xn|2+1+e2tn − 1

|xn|2+1

∣∣∣ = O
(
e2tn
)
.

2 since

q(ε0 + (thρn)σn, ξn) − q(ε0 + σn, ξn) = q
(
(1 − thρn)σn, ξn

)
� O

(
e−2ρn

)
O
(
e(1+ε) d−1

2 n
)

,

26|ξn| is the (d − 1)-Euclidean norm of ξs ∈ R1+d.
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the second point is a direct consequence of the estimate ρn

n → d−1
2 of Proposition 2.5. As a consequence, we

have
(1 + |xn|2)q(ε0 + σn, ξn) → r∞. (5.7)

b) It remains to prove that q
(
(1, σn), ξn

)
and q

(
(1, σ∞), ξn

)
have the same limit.

Denote by (., .) Euclidean scalar product in Rd. For σ ∈ Sd−1,

q
(
ε0 + σ, ξn

)
= q
(
ε0 + σ, ξ0

)
+
∫ n

0

chρs ds −
∫ n

0

(shρs)(σs, σ) ds

= q
(
ε0 + σ, ξ0

)
+
∫ n

0

(chρs − shρs) ds +
∫ n

0

(shρs)
(
1 − (σs, σ)

)
ds.

So,

q
(
ε0 + σn, ξn

)− q
(
ε0 + σ∞, ξn

)
= q
(
ε0 + σn, ξ0

)− q
(
ε0 + σ∞, ξ0

)
+
∫ n

0

(shρs)
{(

1 − (σs, σn)
)− (1 − (σs, σ∞)

)}
ds

= o(1) +
∫ ∞

0

(shρs)
{(

1 − (σs, σn)
)− (1 − (σs, σ∞)

)}
1s�n ds. (5.8)

We want to apply the dominated convergence theorem to show that the integral tends to 0. In order to do this,
we need to majorize

{(
1 − (σs, σn)

) − (1 − (σs, σ∞)
)}

1s�n by some function f(s) independent of n and such
that

∫∞
0 (shρs)f(s) ds < ∞.

Denote by ds,n the spherical distance between σs and σn, and ds,∞ the spherical distance between σs and
σ∞. Since

1 − (σs, σn) =
d2

s,n

2
+ o(d2

s,n),

1 − (σs, σn) =
d2

s,∞
2

+ o(d2
s,∞), (5.9)

we estimate ds,n and ds,∞.
As σs = Σ (Ts), where Σ is a Brownian motion on Sd−1 and Ts a converging random time change independent

of Σ, we can use estimates on the continuity modulus of Σ to majorize ds,n and ds,∞. In their article [5], Baldi
and Chaleyat-Maurel showed that Levy’s estimate on the continuity modulus of real Brownian motion has an
analogous for elliptic diffusions, provided one replaces Euclidean geometry of R by the Riemannian geometry
associated with the diffusion. For Brownian motion Σ on Sd−1, this geometry is the usual geometry induced by
the ambient Euclidean space. So, if osc(Σ; u, v) denotes the oscillation of Σ on the time interval [u, v], one has
almost surely

osc(Σ; u, v) �
√

3(v − u) log
1

v − u
,

provided (v − u) is small enough (and [u, v] is in a fixed interval). Since

ds,n and ds,∞ � osc(Σ; Ts, T∞)

we have
d2

d,n + d2
s,∞ � 2 osc(Σ; Ts, T∞)2 � 6(T∞ − Ts) log

1
T∞ − Ts

·
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for s large enough.

As T∞ − Ts =
∫ ∞

s

dr

sh2ρr

�
∫ ∞

s

4 dr

(eρr − 1)2
, and the function ε �→ ε log 1

ε increases on ]0, 1
e [,

d2
d,n + d2

s,∞ � 24

(∫ ∞

s

dr

(eρr − 1)2

)
log

(∫ ∞

s

dr

(eρr − 1)2

)−1

,

for s large enough.

Let ε > 0. We saw in Proposition 2.5 that the inequalities
d − 1
2 + ε

r � ρr � d − 1
2 − ε

r, hold for r large enough;

so, a majoration of the form

d2
d,n + d2

s,∞ � Ce
−2 d−1

2+ ε
2

s
,

holds for s large enough. It follows from (5.9) that the same kind of majoration holds for{(
1 − (σs, σn)

)− (1 − (σs, σ∞)
)}

1s�n,

independently of n, for s large. As we eventually have shρs � e
d−1
2−ε s,

(shρs)
{(

1 − (σs, σn)
)− (1 − (σs, σ∞)

)}
1s�n � C exp

(
−(d − 1)

(
2

2 + ε
2

− 1
2 − ε

)
s

)
.

The majorant being integrable for ε > 0 small enough, we can use the dominated convergence theorem in (5.8),
and conclude that

q(ε0 + σn, ξn) − q(ε0 + σ∞, ξn) = o(1). (5.10)

Now, (5.6), (5.7) and (5.10) prove that

lim
n→+∞q(ε0 + σ∞, ξn) =

r∞
|x∞|2 + 1

·

It remains to remark that the function s �→ q(ε0 + σ∞, ξs) increases to finally obtain

lim
s→+∞q(ε0 + σ∞, ξs) =

r∞
|x∞|2 + 1

· �

5.3. Proof of Theorem 4.9 on causal boundary of R
1,d

Recall that (ε̃0, ..., ε̃2+d) is the canonical basis of R2,1+d, that (ε0, ..., εn−1) is the canonical basis of R1,d, and
that the map i : R1,d → 〈ε̃1, . . . , ε̃1+d〉 is the linear identification of R1,d with 〈ε̃1, . . . , ε̃n〉 sending εj on ε̃j+1.

First, we show that the lightlike geodesics of Einstein universe have the simple description given in Proposi-
tion 4.6. The proof makes use of the conformal embedding of R1,d in Ein1+d as a dense subset, with boundary
C. We identify R1,d with its stereographic projection.

Proposition 5.5. The lightlike geodesics of Ein1+d are the projections in Ein1+d of totally isotrope planes of
R2,1+d.

Proof of Proposition 5.5. Using the transitive action of PO(2, 1 + d) on the bundle of lightlike geodesic over
Ein1+d, we are brought back to show that the lightlike geodesic γ : t ∈ R �→ t(ε0 + ε1), (locally) embeds into
the projection of a totally degenerated plane of R2,1+d. We see on formula (4.2) defining j that this is indeed
the case: j

(
γ(R)

)
= π
(〈ε̃d+2, ε̃1 + ε̃2〉

)
. �
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Proof of Theorem 4.9. Given v ∈ R1,d, define the geodesic γs = a + s v ∈ R1,d, s ∈ R. The image of γ by j is
the curve of C2,1+d

j(γs) = s2q(v) ε̃0 + 2 s
(
q(a, v) ε̃0 + i(v)

)
+ 2i(a) + q(a) ε̃0 + ε̃d+2. (5.11)

1. We first show that if v is not a null vector γ converges to p. For such a vector v, q(v) �= 0 and

lim
s→+∞π

(
j(γs)

)
= lim

s→+∞π
(
s2q(v) ε̃0 + 2 s

(
q(a, v) ε̃0 + i(v)

)
+ 2i(a) + q(a) ε̃0 + ε̃d+2

)
= lim

s→+∞π
(
ε̃0 + o(s−1)

)
= π(ε̃0) = p. (5.12)

2. We now describe what happens to lightlike geodesics of R1,d. We just need two ingredients to obtain the
description given in point 2 of Theorem 4.9. The first one is that for a null vector v ∈ R1,d and an associated
lightlike geodesic γs = a + s v,

lim
s→+∞π

(
j(γs)

)
= π
(
q(a, v) ε̃0 + i(v)

)
. (5.13)

The other one is the remark that C\{p} is foliated by lightlike geodesics27:

C\{p} =
∐

σ∈Sd−1

π
(

Rε̃0 + i
(
ε0 + σ

))
=
∐

σ∈Sd−1

Δσ\{p}. (5.14)

All the results stated in point 2 can be read directly on formula (5.13).

3. Parameterization of C\{p} • Recall pσ(�) is the limit of any lightlike geodesic {a + t(ε0 + σ)}t∈R such
that q(a, ε0 + σ) = �. The injectivity of (σ, �) ∈ Sd−1R �→ pσ(�) ∈ C\{p} reads directly on formula (5.13). To
prove that it is a diffeomorphism, define

ϕ : S
d−1 → C\{p}, σ �→ pσ(0) = π

(
i
(
ε0 + σ

))
;

ϕ is easily seen to be a diffeomorphism from Sd−1 to ϕ
(
Sd−1

)
.

Introduce the family ϕ(t, .) of translations of R1,d

ϕ(t, .) : R
1,d → R

1,d, ζ �→ ζ + tε0.

The element of O(2, 1 + d) whose action on Ein1+d induces ϕ(t, .) on R1,d ⊂ Ein1+d has matrix28

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 t 0 · · · 0 t2

1 0 · · · 0 2t
. . .

... 0

(0)
. . . 0

...
1 0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We see on this expression that one can extend this smooth flow of translations to a smooth flow of transforms
of PO(2, 1 + d) acting on Ein1+d, say φ(t, .).

27This comes from the description of the lightlike geodesics of Ein1+d and from the definition of C.
28 This matrix belongs to O(2, 1+d). Check that it has the good action on R1,d, i.e. look at coordinates 1 to 1+d. As Liouville

theorem asserts the existence of a unique such transform, this one is the good one.
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Lemma 5.6. The flow {φ(t, .)}t∈R preserves each lightlike geodesic of C, and is transitive on each Δσ\{p}.
Proof of Lemma 5.6. Since a point pσ(�) is the limit of a lightlike geodesic {γs}s�0 = {a + s(ε0 + σ)}s�0, with
� = q

(
a, ε0 + σ

)
φ
(
t, pσ(�)

)
= lim

s→+∞φ(t, γs).

As φ(t, γs) = π ◦ j(γs + tε0), the formulas for j and π give

φ
(
t, pσ(�)

)
= lim

s→+∞φ(t, γs) = π
(
q
(
a + tε0, ε0 + σ

)
ε0 + i(ε0 + σ)

)
= π
(
(� + t)ε0 + i(ε0 + σ)

)
= pσ(� + t). (5.15)

So, the flow preserves each geodesic Δσ of C; transitiveness of the action reads on formulas (5.15) and (5.14).
�

Since ϕ(σ) = pσ(0), formula (5.15) reads

φ(�, σ) = pσ(�).

The flow property of φ and the fact that σ �→ pσ(0) is a diffeomorphism prove that the application (σ, �) �→ pσ(�)
is indeed a parameterization of C\{p}.

4. Causal boundary of R1,d • To prepare the proof of point 4 we need an intermediate result describing the
past of a point pσ(�) in R

1,d. A point ξ ∈ R
1,d being given, define its lightcone as the set

C0(ξ) = {ζ ∈ R
1,d; q(ζ − ξ) = 0},

and its future as
C�0(ξ) = {ζ ∈ R

1,d; q(ζ − ξ) � 0, ζ0 − ξ0 � 0}.
These are subsets of Ein1+d. Future cones and null cones are linked by the relation

C�0(ξ) =
⋃
t�0

C0(ξ + tε0).

It is a direct consequence of the result of point 3 that
• C0(ξ) ∩C =

{
pσ

(
q(ε0 + σ, ξ)

)
; σ ∈ Sd−1

}
is diffeomorphic to Sd−1,

• C�0(ξ) ∩ (C\{p}) =
{
pσ(�); � � q(ε0 + σ, ξ)

}
.

Define now

Past
(
pσ(�), R1,d

)
=
{
ζ ∈ R

1,d; ∃ γ : R
�0 → R

1,d, is future-oriented, causal, and γ0 = ζ, lim
s→+∞γs = pσ(�)

}
.

It is straightforward that one can also write Past
(
pσ(�), R1,d

)
as{

ζ ∈ R
1,d; pσ(�) ∈ C�0(ζ)

}
.

For example, Past(p, R1,d) = R1,d.
Remark. Let us insist on the fact that we look at the past of pσ(�) in R1,d: the past of pσ(�) is Einstein universe
is the whole space. Indeed, let us prove this fact for the point 0; the homogeneity of the space confering the
same property to all the other points.

Choose σ ∈ Sd−1 and call Γ : R → R1,d ⊂ Ein1+d the geodesic s �→ s(ε0 + σ). One reads on formula (5.12)
that Γ(s) converges towards pσ(0) as s → +∞ and s → −∞. This implies that the half-geodesic Γ

(
(−∞, 0]

)
is
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in the future of pσ(0) and, as such, is also in the future of 0; the point 0 is thus in its own future and in its own
past.

Lemma 5.7. Past(pσ(�), R1,d) =
{
ζ ∈ R1,d; q(ζ, ε0 + σ) � �

}
.

Past(pσ(�), R1,d) ∩ C = {pσ(r), , r � �}.
Proof. We show the first point, the second being a direct consequence of it. Given ζ0 ∈ R1,d with q

(
ζ0, ε0+σ

)
� �,

find a timelike path from ζ0 to the hyperplane
{
q
(
., ε0 +σ

)
= �
}
. It hits the hyperplane at ζ1. Then, follow the

unique lightlike geodesic with direction σ, passing through ζ1. The concatenation of the two paths is a causal
path from ζ to pσ(�). So,

{
q
(
., ε0 + σ

)
� �
} ⊂ Past

(
pσ(�), R1,d

)
.

On the other side, if q
(
ζ0, ε0 + σ

)
> �, then pσ(�) cannot be in C�0(ζ0) ∩

(
C\{p}), since

C�0(ζ0) ∩
(
C\{p}) =

{
pσ(�); � � q

(
ε0 + σ, ζ0

)}
.

�

4(a). The proof of the point 4(a) relies on an algebraic lemma.

Lemma 5.8. PO(2, 1 + d) acts transitively on the pairs of points of Ein1+d that are not on the same lightlike
geodesic.

Proof. Since any pair of points of Ein1+d that are not on the same lightlike geodesic is of the form
(
π(u), π(v)

)
,

with u and v null vectors, not orthogonal, we are brought back to show that O(2, 1 + d) acts transitively on the
set of such pairs (u, v), that is, O(2, 1 + d) acts transitively on the set of planes of signature (+,−). This is a
well known (elementary) fact. �

Given ξ ∈ R1,d, define C>0(ξ) as the inside of the future C�0(ξ) of ξ, and for ζ in Einstein universe, define
C<0(ζ) as the inside of its past Past

(
ζ, R1,d

)
in R1,d. For example, since Past(p, R1,d) = R1,d, any timelike

path γ is in C<0(p).
Let {γs}s�0 be a timelike path in R1,d, future-oriented and inextensible. The points γ0 and p not being on

the same lightlike geodesic of Ein1+d, we can find an element T of PO(2, 1 + d) that maps γ0 and p to −ε0

and ε0 respectively. We prove the statement 4(a) for the path T ◦ γ, with T (C) instead of C; this implies the
original statement. We shall still denote by γ the path T ◦ γ. The path γ being timelike it remains in the
diamond D ≡ C>0(−ε0) ∩ C<0(ε0) ⊂ R1,d.

−

       pσ(�)

ε0

−ε0

γs

The following lemma is an easily proved and useful fact.

Lemma 5.9. The family
{C>0(m − tε0) ∩ C<0(m + tε0) ; m ∈ R1,d , t > 0

}
is a basis of the topology of R1,d29.

Definition 5.10. We call a neighbourhood of m of the form C�0(m− tε0) ∩ C�0(m + tε0) a diamond neigh-
bourhood of m, written D(m, t).

29The statement is true in a much greater generality.



WHERE DOES RANDOMNESS LEAD IN SPACETIME? 51

Denote by Cl(γ) the set of points of the past lightcone of ε0 that are in the closure of γ, and suppose that
Cl(γ) contains two distinct points p1 and p2. Let D(p1, t1) and D(p2, t2) two diamond neighbourhoods of p1

and p2, respectively, that do not intersect.
Since γ is a timelike path, and p1 ∈ Cl(γ), for any s � 0, the point γs ∈ C<0(p1). All the more, since

p1 ∈ Cl(γ), the path γ enters D(p1, t1) at some time; in particular, there is a time s1 such that γs1 ∈ C>0(p1 −
t1ε0). No timelike path started from a point of C>0(p1 − t1ε0) can exit from this set. So, γ remains in
C>0(p1 − t1ε0) ∩ C�0(p1) ⊂ D(p1, t1), from that time on. But since D(p1, t1) and D(p2, t2) do not intersect, p2

cannot belong to Cl(γ), contradicting the hypothesis.
We denote by γ∞ the unique point of C in Cl(γ).

4(b). i) Let σ ∈ S
d−1 and � ∈ R be given, and let {γs}s�0 be a timelike path such that q(γs, ε0 + σ) −→

s→+∞ �.

As {γs}s�0 is timelike, the function s ∈ R�0 → q
(
γs, ε0 + σ

)
increases. We know by Lemma 5.7 that the

point γs belongs to Past
(
pσ(�), R1,d

)
, and that γ∞ ∈ {pσ(r); r � �}.

Should γ∞ be equal to some pσ(r), with r < �, then q
(
γs, ε0 + σ

)
would remain � r, contradicting the

hypothesis. This shows that γ∞ = pσ(�).
ii) Reciprocally, suppose that γ∞ = pσ(�), for some σ ∈ S

d−1 and � ∈ R. Then q
(
γs, ε0 + σ

)
� �, for all

s � 0. This function of s increases to a limit r � �. Point i) shows that γ∞ = pσ(r), so r = �. Thus, given
σ ∈ Sd−1 and � ∈ R,

γs −→
s→+∞ pσ(�) iff q(γs, ε0 + σ) −→

s→+∞ �. (5.16)

Since γ must converge to some point of C (7.(a)), we conclude from (5.16) that γs −→
s→+∞ p if we cannot find

some σ ∈ Sd−1 and � ∈ R such that (5.16) holds.

4(c). Apply Lemma 5.7 to see that if γs → pσ(�) then Past(γs) → Past
(
pσ(�)

)
; the point follows from this

observation. �
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Birkhäuser Verlag, Basel. Second edition (2002).
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