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COUPLING A BRANCHING PROCESS TO AN INFINITE DIMENSIONAL
EPIDEMIC PROCESS ∗, ∗∗

Andrew D. Barbour1

Abstract. Branching process approximation to the initial stages of an epidemic process has been
used since the 1950’s as a technique for providing stochastic counterparts to deterministic epidemic
threshold theorems. One way of describing the approximation is to construct both branching and
epidemic processes on the same probability space, in such a way that their paths coincide for as long
as possible. In this paper, it is shown, in the context of a Markovian model of parasitic infection, that
coincidence can be achieved with asymptotically high probability until MN infections have occurred,
as long as MN = o(N2/3), where N denotes the total number of hosts.
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1. Introduction

The classical law of large numbers and central limit theorem have process analogues for many Markovian
models arising in population ecology. The law of large numbers is replaced by a deterministic process, obtained
by solving an appropriate system of ordinary or partial differential equations, and the central limit theorem
is replaced by a diffusion approximation around the deterministic limit. For many techniques and examples
concerning such density dependent Markov population processes, see Kurtz [9,10].

In the context of invasion biology, when the central question is whether the introduction of a small number
of individuals of a species can lead to its becoming established in a new habitat, these large population approx-
imations are no longer appropriate. The more natural process approximations, at least if spatial restrictions
on mixing are not critical in such small populations, are now branching processes. These were introduced, in
the context of epidemic theory, by Whittle [13], Kendall [8] and Bartlett [5] (p. 129); here, infected individuals
play the part of the invading species, and those that are infected by an individual correspond to an individual’s
“offspring”.

When considering the development of a single species as a branching process, the biological quantity R0, the
lifetime mean number of offspring of a single individual when unhampered by competition from others of the
same species, is just the mean offspring number of the corresponding Galton–Watson process. The branching
process criticality theorem then corresponds to the biological meta-theorem, that an invading population can
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only become established if its R0 (in the context that it experiences upon invasion) exceeds 1. For models
involving more species, the analogy is to multitype branching processes, and the dominant eigenvalue of the
mean matrix of the branching process has a corresponding interpretation in the biological context. For more
detailed discussions of such issues, see Heesterbeek [7] and Diekmann and Heesterbeek [6] (Sect. 5.7).

Whittle [13] was able to justify his birth and death approximation to the early stages of the Markovian SIR-
epidemic, and hence his formula for the probability of a large epidemic occurring, by sandwiching the epidemic
process, during its initial stages, between two birth and death processes with slightly differing transition rates.
This can be interpreted in terms of a pathwise comparison of processes. Ball [1] and Ball and Donnelly [2]
went rather further, using a coupling argument to link the epidemic process with an approximating branching
process on one and the same probability space, in such a way that the paths of the two processes are identical
for a certain (random) length of time. In particular, they showed that the total variation distance between the
distributions of the paths of the branching and epidemic processes is small, up to the time at which M = MN

infections have taken place, for any choice MN = o(
√
N). They also suggest that this range of MN cannot be

extended.
The coupling used by Ball and Donnelly is simple and natural, and it is somewhat surprising that accurate

coupling is in fact possible, for some epidemic processes, over rather longer time intervals than they had supposed
possible. This was first established by Barbour and Utev [4], in the context of the discrete time Reed–Frost
epidemic process. They showed that the branching process approximation to the path distribution actually has
asymptotically small error in total variation for all choices of MN = o(N2/3). The essence of their argument
lay in examining the likelihood ratio of the two processes along paths of given length, and showing that it was
typically close to 1. In this paper, we show that similar arguments can also be applied to some continuous
time models. We take as example the infinite dimensional BK-model, introduced in Barbour and Kafetzaki [3]
and subsequently generalized by Luchsinger [11,12], for describing the transmission of the parasitic disease
schistosomiasis.

2. The BK-model

In the BK-model, N hosts are infected by parasites, with XN
j (t) hosts having j parasites at time t, for

j ∈ Z+ and t ≥ 0. The process evolves as a Markov jump process XN in continuous time on the set X := {(ξj ∈
Z+, j ≥ 0):

∑
j≥0 ξj = N}, with transition rates given by

ξ → ξ + e(j − 1) − e(j) at rate jμξj , j ≥ 1;

ξ → ξ + e(j) − e(0) at rate λξ0
∑
l≥1

(ξl/N)plj , j ≥ 1,

for any ξ ∈ X , where e(j) denotes the unit vector in the jth coordinate. The first of the transitions models
the death of a parasite in one of the ξj hosts currently carrying j parasites, the parasites being assumed to
have independent exponentially distributed lifetimes with mean 1/μ. The second transition models infection.
Only currently uninfected hosts can be newly infected, and each makes contacts that could potentially lead
to infection at rate λ, the chance of such a contact being made with a host carrying l parasites being (ξl/N)
(homogeneous mixing of hosts). If there is such a contact between an uninfected host and an l-host, then j
parasites are established in the previously uninfected host with probability plj ; in the BK-model, it is supposed
that plj = P[Ul = j], for Ul :=

∑l
i=1 Yi, where the Yi are independent and identically distributed random

variables with mean θ and finite variance, implying that each of the l parasites transmits on average θ infective
stages to the newly infected host at an infectious contact, independently of the others.

For a disease such as schistosomiasis, infection is actually indirect, and involves a host infecting suitable
aquatic snails and these snails subsequently passing infection to other hosts. Thus the BK-model does not seem
at first sight to be at all realistic. However, it can be thought of as an extreme case of a model incorporating
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features of the transmission process that were not present in many of the previous models: infection by parasites
in groups, rather than singly, immunity in the definitive host (here, in the form of perfect concomitant immunity),
explicit incorporation of the parasite burdens of individual hosts.

The model that results is interesting for a number of reasons. The first is that, although it is rather com-
plicated, it is still simple enough for some analytic conclusions to be reached. For instance, it can be shown
that the model has a “law of large numbers” approximation for large N , in the form of the solution to an
infinite system of differential equations, whose components approximate the proportions of hosts with different
numbers of parasites. If θ > e, this differential equation system has no (endemic) equilibrium solution that
yields a finite mean number of parasites per host. In practice, the distribution of parasites among hosts is
observed to be extremely irregular, so that such behaviour is very encouraging: most earlier models have tacitly
predicted Poisson-like distributions, which are far from realistic, and those that have tried to account for the
over-dispersed distributions observed have imposed a specific form for the distribution without proposing any
mechanism that might generate it. Another feature is that, if θ < e, there is exactly one equilibrium distribution
of the differential equation system that has finite mean number of parasites per host, and that, in this equilib-
rium, the distribution of the number of parasites per host, conditional on the host being infected, depends only
on the value of θ, and not on λ or μ.

For the purposes of this paper, it is the behaviour when few hosts are infected that is of primary relevance,
with interest centering on questions such as the probability that the introduction of a single infected host can
cause endemic infection to become established. These are the kinds of problem that can be addressed by way of
a branching process approximation. Here, we begin by proving an error bound for the approximation (Thm. 3.1)
that is asymptotically valid in total variation for paths of length o(N2/3) transitions as N → ∞. The branching
process in turn yields a criticality theorem, which, to a close approximation, describes whether or not endemic
equilibrium is possible in the BK-model.

However, the approximating branching process – a Markov branching process with countably infinitely many
types – itself displays unexpected critical behaviour. If θ ≤ e, the branching process is super-critical, in the
sense of having positive probability of growing indefinitely, if and only if λθ/μ > 1. The quantity λθ/μ has an
immediate interpretation, being the lifetime average number of offspring of a single parasite, where offspring is
interpreted in terms of parasites successfully passed on to other hosts, and is therefore precisely the biological
quantity R0, as seen from the parasites’ viewpoint. Its appearance as the criticality parameter is therefore
exactly what one would expect. However, if θ > e, the criticality parameter is λe log θ/μ, a fact that is much
more difficult to interpret.

Another feature of the model is that the mean number of parasites develops in time with exponential
rate λθ − μ, whereas, if θ > e, a super-critical process has a smaller exponential growth rate for the num-
ber of infected hosts. Thus, in such circumstances, the mean number of parasites per host increases ever faster.
As a result, because deaths of parasites are counted as transitions, paths containing mN transitions may contain
many fewer infections – roughly speaking, one may well have only MN ≈ mα

N infections, for some α < 1. For
such choices of the parameters, this makes the above theorem unsuitable for direct comparison with the results
of Ball and Donnelly [2]. We therefore prove a second error bound in Theorem 3.2, which is expressed in terms
of the asymptotics of MN . Its proof turns out to be a relatively simple adaptation of that of Theorem 3.1. We
conclude with Theorem 4.2, which establishes a rather stronger local statement, showing that, except on a set
of asymptotically negligible probability, the ratio of the likelihoods under the two models of paths containing
at most M infections typically differs from 1 by an amount of order O

(
(M2/3/N)

√
log(N/M2/3)

)
.

3. Total variation approximation

The Markov branching process X := (Xj(·), j ≥ 1) that approximates the BK-model is obtained from the
process XN by ignoring the 0-component, taking the countable set X ∗ := {(ξj ∈ Z+, j ≥ 1):

∑
j≥1 ξj < ∞}
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as state space, and modifying the transition rates to

ξ → ξ + e(j − 1) − e(j) at rate jμξj , j ≥ 2;
ξ → ξ − e(1) at rate μξ1,

ξ → ξ + e(j) at rate λ
∑
l≥1

ξlplj , j ≥ 1,

for ξ ∈ X ∗. These rates are identical with those for XN , except that, in the infection transition, the factor
ξ0/N = 1 − S(ξ)/N is replaced by 1, where S(ξ) :=

∑
j≥1 ξj . This represents the fact that, in the branching

approximation, the total proportion of infected hosts is considered to be vanishingly small. Clearly, this should
make little difference to individual transitions if S(ξ) 	 N . The main result of this paper is to show that it
makes little difference even for the distribution of whole path segments, considered as paths in X ∗, provided that
the number of transitions m in the segment and the initial state ξ(0) ∈ X ∗ are such that m+ S(ξ(0)) 	 N2/3.
We denote such a path by {(ξ(l), t(l)), 0 ≤ l ≤ m}, where t(0) := 0, and we let Fm denote the Borel σ-algebra of
events generated by these paths. To avoid trivial exceptions caused by paths that are absorbed in 0 ∈ X ∗ never
making further jumps, we suppose that both processes, when in state 0, make “jumps” to state 0 at unit rate.

Theorem 3.1. Suppose that ξ(0) ∈ X ∗, N ≥ 2 and m are such that Sm
√
m < N , where Sm := m + S(ξ(0)).

Then, for any A ∈ Fm, we have

|P[X∗N ∈ A] − P[X ∈ A]| ≤ 8
Sm

√
m

N
,

where X∗N denotes the process XN without the zero coordinate.

Proof. For ξ ∈ X ∗ with 1 ≤ S(ξ) ≤ N , write

ΛN(ξ) := λ(1 − S(ξ)/N)
∑
l≥1

ξl(1 − pl0), ρN (ξ) = μ
∑
l≥1

lξl + ΛN(ξ);

Λ(ξ) := λ
∑
l≥1

ξl(1 − pl0), ρ(ξ) = μ
∑
l≥1

lξl + Λ(ξ).

The quantities ρN(ξ) and ρ(ξ) respectively denote the overall jump rates of the processes XN and X in state ξ,
ΛN (ξ) and Λ(ξ) the overall infection rates; for ξ = 0 ∈ X ∗, we set ρN (0) = ρ(0) = ΛN (0) = Λ(0) = 1. Suppose
that m+ S(ξ(0)) ≤ N . Then, for a path with m transitions starting in ξ(0) at time 0 and then passing through
the sequence of states (ξ(l), 1 ≤ l ≤ m) at times t(1) < t(2) < . . . < t(m), the likelihood ratio dPXN /dPX

evaluated at such a path is just

LN
m := LN

m(ξ(·), t(·)) =
m−1∏
l=0

V N
l , (3.1)

where

V N
l := V N

l (ξ(l), ξ(l+1), t(l), t(l+1))

:= exp{−(ΛN(ξ(l)) − Λ(ξ(l)))(t(l+1) − t(l))}
(

1 − S(ξ(l))
N

)ul

, (3.2)

where

ul =

{
1 if S(ξ(l+1)) = S(ξ(l)) + 1;
0 otherwise.
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Hence we have
LN

l+1 = LN
l (1 + ηN

l1 )(1 − ηN
l2 ),

with

ηN
l1 := exp{−(ΛN(ξ(l)) − Λ(ξ(l)))(t(l+1) − t(l))} − 1,

and

ηN
l2 :=

S(ξ(l))
N

1{ul = 1}.
Note that each of these quantities is zero if ξ(l) = 0 ∈ X ∗.

The inequality
0 ≤ ηN

l2 ≤ S(ξ(l))/N (3.3)

is immediate. Then, from the definitions of ΛN and Λ, it follows directly that

Λ(ξ) − ΛN (ξ) = λ
S(ξ)
N

∑
l≥1

ξl(1 − pl0),

implying that
|ΛN (ξ)/Λ(ξ) − 1| ≤ S(ξ)/N. (3.4)

Furthermore, using the inequality 0 ≤ ex − 1 ≤ 2x in 0 ≤ x ≤ 1, if

η̃N
l1 := |ΛN (ξ(l))/Λ(ξ(l)) − 1|Λ(ξ(l))(t(l+1) − t(l)) ≤ 1, (3.5)

we also have
|ηN

l1 | ≤ 2η̃N
l1 ≤ 2{S(ξ(l))/N}el, (3.6)

where
el := ρ(ξ(l))(t(l+1) − t(l)).

Hence, if (3.5) is satisfied, it follows that

|LN
l+1 − LN

l | ≤ N−1S(ξ(l)){1 + 2el}LN
l . (3.7)

Now suppose that (X(l), l ≥ 0) is a path resulting from a realization of the process X starting with X(0) = ξ(0),
and that (T (l), l ≥ 1) are the corresponding jump times: set T (0) = 0. Then, defining

El+1 := ρ(X(l))(T (l+1) − T (l)), l ≥ 0, (3.8)

we note that L(El+1 | Fl) is the standard exponential distribution for each l. Furthermore, recalling that we
take m + S(ξ(0)) ≤ N , the process {LN

l (X(·), T (·)), 0 ≤ l ≤ m} is a non-negative martingale with LN
0 = 1 a.s.

We now modify LN slightly to a process L̃N , in such a way that L̃N remains a martingale with mean 1 and is
with high probability identical with LN for a long time, but whose increments always satisfy the inequality

|L̃N
l+1 − L̃N

l | ≤ 2N−1S(X(l)){1 + 2El}. (3.9)

For technical reasons, this represents a useful improvement on having (3.7) satisfied with high probability.
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To make this modification, it is clear that one should stop LN as soon as it reaches a value greater than 2.
Then we need also to protect against large values of the increment T (l+1) − T (l), which may lead to (3.5) (and
hence (3.7)) being violated. To do so, we note that, for any t0 > 0,

E{V N
l (X(l), X(l+1), T (l), T (l+1))1{T (l+1)−T (l)>t0} | Fl}

= P[T (l+1) − T (l) > t0] exp{−(ΛN(X(l)) − Λ(X(l)))t0}
E{V N

l (X(l), X(l+1), T (l) + t0, T
(l+1)) | Fl ∩ {T (l+1) − T (l) > t0}}

= P[T (l+1) − T (l) > t0] exp{−(ΛN(X(l)) − Λ(X(l)))t0},

where the last line uses the strong Markov property for X . Hence we may replace V N
l (X(l), X(l+1), T (l), T (l+1))

by exp{−(ΛN(X(l)) − Λ(X(l)))t(l)0 } on the event T (l+1) − T (l) > t
(l)
0 := N/{S(X(l))ρ(X(l))}, without altering

its conditional expectation given Fl. Now (3.5), and hence (3.9), are satisfied if T (l+1) − T (l) ≤ t
(l)
0 , because

Λ(X(l)) ≤ ρ(X(l)) and from (3.4). However, if T (l+1) − T (l) > t
(l)
0 , it follows from the same observations that

0 ≤ exp{(Λ(X(l)) − ΛN (X(l)))t(l)0 } − 1 ≤ e− 1 ≤ 2
S(X(l))
N

El+1,

because T (l+1)−T (l) > t
(l)
0 is equivalent to El+1S(X(l))/N > 1. So if, at the first occasion thatEl+1S(X(l))/N > 1,

we replace V N
l by

exp{(Λ(X(l)) − ΛN (X(l)))N/(S(X(l))ρ(X(l)))},
and then stop, we preserve (3.9) in this case also.

Hence we define
L̃N

l := LN
l∧τN

1 ∧τN
2

(X(·), T (·))CN
l , (3.10)

where

CN
l :=

⎧⎨⎩
1 if τN

1 > min{l, τN
2 };

1
V N

τN
1

exp
{

N(Λ(X(τN
1 −1))−ΛN (X(τN

1 −1)))

S(X(τN
1 −1))ρ(X(τN

1 −1))

}
if τN

1 ≤ min{l, τN
2 },

and

τN
1 := inf{l ≥ 1: El > N/S(X(l−1))},
τN
2 := inf{l ≥ 1: LN

l > 2}.

We then observe that L̃N is a martingale whose differences satisfy (3.9), and that LN
l = L̃N

l for all 0 ≤ l ≤
min{τN

2 , (τ
N
1 − 1)}. Note also that S(X(l)) ≤ S(ξ(0)) + l ≤ Sm for all 0 ≤ l ≤ m, so that, from (3.9),

|L̃N
l+1 − L̃N

l | ≤ 2SmN
−1(1 + 2El) for all 0 ≤ l < m. (3.11)

Now, because L̃N
l is a martingale, it follows from (3.11) that

E(L̃N
m − 1)2 ≤ 4mS2

m

N2
E(1 + 2E1)2 =

52mS2
m

N2
· (3.12)

Then, for any A ∈ Fm, we have

P[X ∈ A] − P[X∗N ∈ A] = E{(1 − LN
m)1{X ∈ A}} ≤ E{(1 − LN

m)+}
≤ P[τN

1 ≤ m] + P[{τN
2 ≤ m} ∩ {τN

1 > m}] + E(1 − L̃N
m)+. (3.13)
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From the definition of τN
1 , it is immediate that

P[τN
1 ≤ m] ≤ me−N/Sm ≤ 4e−2 Sm

√
m

N
(3.14)

if Sm
√
m ≤ N . Then we have

P[{τN
2 ≤ m} ∩ {τN

1 > m}] ≤ P[L̃N
m − 1 > 1] ≤ E(L̃N

m − 1)+. (3.15)

Finally, we have

E(1 − L̃N
m)+ + E(L̃N

m − 1)+ = E|1 − L̃N
m|

≤
√

E(1 − L̃N
m)2 ≤ 2

√
13Sm

√
m/N.

It remains to note that 4e−2 + 2
√

13 < 8. �

In general, the bound given in the theorem provides useful information as long as Sm
√
m	 N . In asymptotic

terms, for fixed ξ(0), this allows paths of lengths mN = o(N2/3) as N → ∞, with an error bound of order
O(N3γ/2−1) if mN ∼ Nγ for some γ < 2/3.

If the Ball and Donnelly [2] coupling is used to obtain error bounds, the resulting order O(N2γ−1), if ξ(0) is
fixed and MN ∼ Nγ , is at first sight not as sharp. However, there is an important difference between the two
results: the theorem above has mN , the total number of transitions, in the error bound, whereas the Ball and
Donnelly coupling leads to an error expressed in terms of MN , the number of births or infections. Now the total
number of transitions includes all the parasite deaths, and if the mean number of parasites per host grows fast,
as may be the case when θ > e, mN may be substantially bigger than MN . Thus Theorem 3.1 is not strong
enough to yield an obvious improvement. For this reason, we now bound the discrepancies in the likelihood
ratio more carefully, basing the argument explicitly on the sequence of infection events. To this end, we let Hl

denote the Borel σ-algebra of events generated by paths containing exactly l infection events; as before, to avoid
trivial exceptions caused by paths that are absorbed in 0 ∈ X ∗ having no further infections, we suppose that
both processes, when in state 0, create “pseudoinfections” at unit rate.

Theorem 3.2. Suppose that ξ(0) ∈ X ∗, N ≥ 2 and M are such that SM

√
M ≤ N , where SM := M + S(ξ(0)).

Then, for any A ∈ HM , we have

|P[X∗N ∈ A] − P[X ∈ A]| ≤ 8
SM

√
M

N
·

Proof. The likelihood ratio at a path ξ(·) in HM can be written, using (3.2), in the form

L′N
M := L′N

M (ξ(u), 0 ≤ u ≤ σM )

:=
M∏
l=1

{
exp

(
−
∫ σl

σl−1

(ΛN (ξ(u)) − Λ(ξ(u))) du

) (
1 − S(ξ(σl))

N

)}
, (3.16)

where 0 = σ0 < σ1 < . . . denote the times of infection transitions. Hence, very much as before, we have

L′N
l = L′N

l−1(1 + η′Nl1)(1 − η′Nl2),

with

η′Nl1 := exp

(
−
∫ σl

σl−1

(ΛN (ξ(u)) − Λ(ξ(u))) du

)
− 1,
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and

η′Nl2 :=
S(ξ(σl))

N
,

each of these quantities being zero if ξ(l) = 0 ∈ X ∗.
From (3.4), setting

η̃′
N

l1 :=
∫ σl

σl−1

{1 − ΛN (ξ(u))/Λ(ξ(u))}Λ(ξ(u)) du (3.17)

we have
0 ≤ η′Nl1 ≤ 2η̃′

N

l1 ≤ 2{S(ξ(σl−1))/N}el, (3.18)

whenever η̃′
N

l1 ≤ 1, where

el :=
∫ σl

σl−1

Λ(ξ(u)) du.

Hence, noting that S(ξ(u)) ≤ SM for 0 ≤ u ≤ σM , if

el =
∫ σl

σl−1

Λ(ξ(u)) du ≤ N/SM (3.19)

is satisfied, it follows that

|L′N
l − L′N

l−1| ≤ N−1SM{1 + 2el}L′N
l−1, 1 ≤ l ≤M. (3.20)

Now suppose that (X(u), u ≥ 0) is a path resulting from a realization of the processX starting withX(0) = ξ(0),
and that (σl, l ≥ 1) are the corresponding times of births (infection transitions): set σ0 = 0. Then, defining

E′
l :=

∫ σl

σl−1

Λ(X(u)) du, l ≥ 1, (3.21)

we note that L(E′
l+1 |Hl) is the standard exponential distribution for each l. We now argue as before using the

likelihood ratio martingales {L′N
l (X(·)), l ≥ 0} and L̃′N

l := L′N
l∧τ ′N

1 ∧τ ′N
2

(X(·))C′N
l , where

τ ′N1 := inf{l ≥ 1: E′
l > N/SM},

τ ′N2 := inf{l ≥ 1: L′N
l > 2},

and C′N
l is the analogue of CN

l in the previous section. Here, arguing much as before, on the event σl+1 > τl+1,
where

τl+1 := inf
{
t ≥ σl :

∫ t

σl

ρ(ξ(u)) du ≥ N/SM

}
,

we replace

exp
{
−
∫ σl+1

σl

(ΛN (ξ(u)) − Λ(ξ(u))) du
} (

1 − S(ξ(σl))
N

)
by

exp
{
−
∫ τl+1

σl

(ΛN (ξ(u)) − Λ(ξ(u))) du
}

without altering the martingale property, and preserving (3.20) on this event. Hence, and since (3.19) is satisfied
for all 0 ≤ l < τ ′N1 , it follows from (3.20) and the definition of τ ′N2 that

|L̃′N
l+1 − L̃′N

l | ≤ 2SMN−1(1 + 2E′
l+1) for all 0 ≤ l < M. (3.22)



COUPLING A BRANCHING PROCESS TO AN INFINITE DIMENSIONAL EPIDEMIC PROCESS 61

The remaining argument is now exactly as before, using the martingale L̃′
l to compare the probabilities P[X∗N ∈

A] and P[X ∈ A] for A ∈ HM . �

Thus Theorem 3.2 yields bounds of order O(N3γ/2−1), improving on the rate obtained using the Ball and
Donnelly [2] coupling, if ξ(0) is fixed and MN ∼ Nγ for γ < 3/2, where MN denotes the number of infection
transitions.

The new argument exploits the fact that the life histories of individuals infected with a given number of
parasites have identical distributions in both models, except for the infection events, so that the likelihood
ratio is correspondingly simpler. The key element is then that the difference in infection rates between the two
models is sufficiently small compared to the infection rate itself. The argument in Theorem 3.1 is less precise
largely because, if the number of parasites is large, the bound (3.6) is rather pessimistic, since a potentially
small factor Λ(ξ)/ρ(ξ) is not being exploited.

4. Local approximation

It was argued in Barbour and Utev [4] that total variation approximation is not necessarily the best measure
of closeness, if statistical applications involving likelihoods are to be justified. It is much more natural to want
to have local approximations, which ensure that the ratio of actual and approximate likelihood is very close
to 1, except possibly on a set of very small probability. As a result, they defined a measure of relative closeness:
probability measures P and Q on F are said to be ε-relatively close with tolerance η, RC (ε, η) for short, if
there exists a set B ∈ F such that

P (Bc) ≤ η, Q(Bc) ≤ η, sup
x∈B

| log((dP/dQ)(x))| ≤ ε.

In this section, we show that the branching process approximation of the previous sections is indeed relatively
close, as long as MN 	 N2/3.

We begin with a minor modification of the bounded differences lemma for martingales.

Lemma 4.1. If (Ln,Gn, n ≥ 0) is a martingale, and if

|Ln+1 − Ln| ≤ a+ bEn+1 for each n ≥ 0,

where L(En+1 | Gn) is the standard exponential distribution exp(1) for each n ≥ 1, then

(1) : max{P[Ln − L0 ≤ −y],P[Ln − L0 ≥ y]} ≤ exp
{ −3y2

8n{(a+ b)2 + b2}
}

for all

0 ≤ y ≤ 4n
3
ε0{(a+ b)2 + b2}/max(a, b),

where ε0 > 1/15 is the constant defined by eε0(1 − ε0)−3 = 4/3. Furthermore, for all y ≥ 0,

(2) : max{P[Ln − L0 ≤ −y],P[Ln − L0 ≥ y]} ≤ exp
{ −y

15 max(a, b)
√
n

+
2

135

}
·
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Proof. If X is any random variable with EX = 0 and |X | ≤ a+ bE, where E ∼ exp(1), then it follows that, for
any θ > 0,

E{eθX} ≤ E

{
1 + θX + 1

2θ
2X2eθ|X|

}
≤ 1 + 1

2θ
2
E

{
(a+ bE)2eθ(a+bE)

}
= 1 + 1

2θ
2eaθ

{
a2

1 − bθ
+

2ab
(1 − bθ)2

+
2b2

(1 − bθ)3

}
≤ exp

{
2
3
θ2{(a+ b)2 + b2}

}
,

as long as θmax(a, b) ≤ ε0, with ε0 defined as above. Hence, for any n ≥ 1,

E

{
eθ(Ln−L0) | Gn−1

}
= eθ(Ln−1−L0)E

{
eθ(Ln−Ln−1) | Gn−1

}
≤ exp

{
2
3
θ2{(a+ b)2 + b2}

}
eθ(Ln−1−L0),

implying that

E

{
eθ(Ln−L0)

}
≤ exp

{
2
3
θ2{(a+ b)2 + b2}

}
E

{
eθ(Ln−1−L0)

}
for all n ≥ 1, and hence that

E

{
eθ(Ln−L0)

}
≤ exp

{
2
3
nθ2{(a+ b)2 + b2}

}
.

Hence, for any y ≥ 0 and any θ such that θmax(a, b) ≤ ε0, we have

P[Ln − L0 ≥ y] ≤ exp
{
−yθ +

2
3
nθ2{(a+ b)2 + b2}

}
.

Now, if ymax(a, b) ≤ (4ε0/3)n{(a+ b)2 + b2}, we can take

θ =
y

(4n/3){(a+ b)2 + b2} ,

to give

P[Ln − L0 ≥ y] ≤ exp
{ −3y2

8n{(a+ b)2 + b2}
}
·

On the other hand, for all y ≥ 0 and n ≥ 1, we can choose θ = 1/{15 max(a, b)
√
n}, giving

P[Ln − L0 ≥ y] ≤ exp
{ −y

15 max(a, b)
√
n

+
2

135

}
·

The same arguments also cover P[Ln − L0 ≤ −y] for the corresponding choices of y, since the conditions of the
theorem apply equally well to the martingale −Ln. �

This lemma enables us to prove the following estimate of relative closeness.
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Theorem 4.2. Suppose that ξ(0) ∈ X ∗, N ≥ 2 and M are such that ψ(M,N) := SM

√
M/N ≤ 1, where

SM := M + S(ξ(0)). Then, with respect to paths in HM , the processes X∗N and X are RC (εr
M,N , η

r
M,N)

relatively close for any choice of r ≥ 1, where

εr
M,N := Crψ(M,N)

√
log(1/ψ(M,N));

ηr
M,N := 2ψ(M,N)r + e2/135 exp{−1/60ψ(M,N)}+Me−N/SM ,

and Cr :=
√

416r/3, provided that M ≥ (1/5)C2
r logN and that εr

M,N ≤ 1.

Proof. It was shown in the proof of Theorem 3.2 that the likelihoods of the processes X∗N and X are close;
here, we tighten the argument. We start from (3.22), which states that

|L̃′N
l+1 − L̃′N

l | ≤ 2SMN−1(1 + 2E′
l+1) for all 0 ≤ l < M,

where L(E′
l+1 |Hl) is the standard exponential distribution for each l, and from the observation that, by the

definition of L̃′N
M , we have L̃′N

M = L′N
M as long as min{τ ′N1 , τ ′N2 } > M . Now it is immediate, as for (3.14), that

P[τ ′N1 ≤M ] ≤ Me−N/SM .

Then, from the definition of τ ′N2 , it follows that

P[{τ ′N1 > M} ∩ {τ ′N2 ≤M}] ≤ P[L̃′N
M − 1 > 1].

Hence, to establish the desired relative closeness, we take

Bc := {min(τ ′N1 , τ
′N
2 ) ≤M} ∪ {|L̃′

M − 1| > εr
M,N/2},

(here using the assumption that εr
M,N ≤ 1) and bound the probabilities P[L̃′N

M−1 > 1] and P[|L̃′
M−1| > εr

M,N/2]
using Lemma 4.1 with n = M and 2a = b = 4SM/N .

First, we use Lemma 4.1 (2) to give

P[L̃′N
M − 1 > 1] ≤ exp{−N/(60SM

√
M)}e2/135.

Then we use Lemma 4.1 (1) to show that

P[|1 − L̃′N
M | > y] ≤ 2 exp{−3N2y2/(416MS2

M)},
provided that

0 ≤ y ≤ 4M
3

ε0
13SM

N
·

Hence we can take y = εr
M,N/2 if

CrSM

√
M
√

logN/N ≤ 104MSM/45N,

and thus if M ≥ (1/5)C2
r logN , giving

P[|1 − L̃′N
M | > εr

M,N/2] ≤ 2

{
SM

√
M

N

}(3/416)C2
r

= 2

{
SM

√
M

N

}r

· �

Thus asymptotic relative closeness of order O{ψ(M,N)
√

log(1/ψ(M,N))} can be established with tolerance
of arbitrarily small polynomial order in ψ(M,N) = SM

√
M/N .
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