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QUANTITATIVE CONCENTRATION INEQUALITIES ON SAMPLE PATH
SPACE FOR MEAN FIELD INTERACTION

François Bolley1

Abstract. We consider the approximation of a mean field stochastic process by a large interacting
particle system. We derive non-asymptotic large deviation bounds measuring the concentration of the
empirical measure of the paths of the particles around the law of the process. The method is based
on a coupling argument, strong integrability estimates on the paths in Hölder norm, and a general
concentration result for the empirical measure of identically distributed independent paths.
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This paper is devoted to the study of the particle approximation of a mean field stochastic process. In the
models to be considered, the evolution is governed by a random diffusive term, an exterior force field and a
mean field interaction depending on the law of the process itself.

Quantitative estimates on the approximation have been obtained at the level of the time marginals. Let
indeed μt be the law of the considered process at time t, and (X i

t)1≤i≤N be the position of the N particles in
the phase space R

d; let also μ̂N
t denote their empirical measure. First, [16] adapted concentration of measure

ideas to obtain non-asymptotic bounds on the deviation of observables
1
N

N∑
i=1

ϕ(X i
t ) =

∫
Rd

ϕdμ̂N
t around∫

Rd

ϕdμt, where ϕ is a given Lipschitz function on R
d. Then, transposing Sanov’s large deviation argument to

their setting, [6] got non-asymptotic bounds on the deviation of μ̂N
t around μt at the very level of the measures,

namely for a distance which induces a topology stronger that the narrow topology.
In this work we go one step further again by considering the law μ[0,T ] of the paths of the process on a given

time interval [0, T ]. A natural object to consider in the particle approximation is now the empirical measure
μ̂N

[0,T ] of the N trajectories (X i
t)0≤t≤T .

We shall give a precise meaning and estimates on the convergence of μ̂N
[0,T ] to μ[0,T ]; we shall see that they

imply previously mentioned results by projection at time t, but above all they give concentration estimates at
the level of the paths.

In the first section we state our main results and give an insight of the proofs, which will be given in more
detail in the following sections.
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1. Statement of the results

We are interested in the particle approximation of the R
d-valued process (Xt)t≥0 evolving according to the

mean field stochastic differential equation

dXt = σ dBt − b(Xt) dt − c ∗ μt(Xt) dt. (1.1)

Here σ is a d× d real matrix, (Bt)t≥0 a standard Brownian motion on R
d, b and c are R

d to R
d maps, ∗ stands

for the convolution and μt is the law on R
d of the random variable Xt.

Two instances of such processes are particularly interesting. First of all, when R
d is the phase space of

positions x ∈ R
d′

and velocities v ∈ R
d′

with d = 2d′, one is interested in the process (Xt)t≥0 = ((xt, vt))t≥0

solution to the diffusive Newton’s equations

{
dxt = vt dt

dvt =
√

2 dbt − λ vt dt −∇xU ∗x ρt(xt) dt.
(1.2)

Here (bt)t≥0 is a Brownian motion in the velocity space R
d′

, U = U(x) is an interaction potential in the position
space and ρt is the law of xt on R

d′
; moreover ∇x and ∗x respectively stand for the gradient and convolution

with respect to the position variable x ∈ R
d′

. By Itô’s formula the distribution μt of Xt is solution to the
Vlasov-Fokker-Planck equation

∂μt

∂t
+ v · ∇xμt −

(∇xU ∗x ρt

) · ∇vμt = Δvμt + λ∇v · (vμt), t > 0, x, v ∈ R
d′

.

Here a · b denotes the scalar product of two vectors a and b in R
d′

, whereas ∇v, ∇v· and Δv respectively stand
for the gradient, divergence and Laplace operators with respect to the velocity variable v ∈ R

d′
. This equation

is used in the modelling of diffusive stellar matter.
We are also concerned with the process (Xt)t≥0 = ((xt, vt))t≥0 solution to

{
dxt = vt dt

dvt =
√

2 dbt −∇vV (vt) dt −∇vW ∗ νt(vt) dt
(1.3)

where V and W are respectively exterior and interaction potentials in the velocity space and νt is the law of vt

on R
d′

. By Itô’s formula, the distribution μt of Xt is solution to

∂μt

∂t
+ v · ∇xμt = Δvμt + ∇v · (μt(∇vV + ∇vW ∗v μt)), t > 0, x, v ∈ R

d′
.

This equation is used in the modelling of granular media.
For position homogeneous distributions, we are brought to study the solution (vt)t≥0 to

dvt =
√

2 dbt −∇vV (vt) dt −∇vW ∗v μt(vt) dt (1.4)

in R
d with d = d′; here μt is the law of vt and is solution to the McKean-Vlasov equation

∂μt

∂t
= Δvμt + ∇v · (μt(∇vV + ∇vW ∗v μt)), t > 0, v ∈ R

d′
. (1.5)

The particle approximation of such a process consists in introducing N processes (X i
t)t≥0, with 1 ≤ i ≤ N ,

which evolve no more according to the distribution μt of the physical system, but according to its discrete
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counterpart, namely the empirical measure

μ̂N
t =

1
N

N∑
i=1

δXi
t

of the particle system (X1
t , . . . , XN

t ). In other words we let the processes (X i
t)t≥0 solve

dX i
t = σ dBi

t − b(X i
t)dt − 1

N

N∑
j=1

c(X i
t − Xj

t )dt, 1 ≤ i ≤ N. (1.6)

Here the (Bi
t)t≥0’s are N independent standard Brownian motions on R

d.
Under regularity and growth assumptions on σ, b and c, and if the particles are initially distributed in a

chaotic way, for instance as independent and identically distributed variables, then μ̂N
t indeed converges as N

tends to infinity to the distribution μt of Xt. The convergence of μ̂N
t is strongly linked with the phenomenon

of propagation of chaos for the N interacting particles (X i
t)t≥0, as we shall see below more in detail, and both

issues have been studied in [1,8,17,18] for instance. Then quantitative estimates on this convergence have been
obtained in [16] at the level of observables, and at the very level of the law in [6].

In this work we go one step further and give precise estimates on the approximation of the law μ[0,T ] of the
path X = (Xt)0≤t≤T on a time interval [0, T ] by the empirical measure

μ̂N
[0,T ] =

1
N

N∑
i=1

δXi

of the N trajectories X i = (X i
t)0≤t≤T . The convergence of μ̂N

[0,T ] has been proved in works mentioned above,
and here we extend to this new setting the techniques developed in [6].

We shall assume that b and c are Lipschitz on R
d. Then global existence and uniqueness, pathwise and in

law, of the solutions to (1.1) and (1.6) are proven in [17] for instance for square integrable initial data; moreover
the paths are continuous (in time).

To state our main theorem on the particle approximation, we first give some notation. If (S, d) is a separable
and complete metric space, and p is a real number ≥ 1, the Wasserstein distance of order p between two Borel
probability measures μ and ν on S is

Wp(μ, ν) := inf
X,Y

(
E d(X, Y )p

)1/p

where X and Y are S-valued random variables with respective law μ and ν. Wp induces a metric on the set

of Borel probability measures on S with moment
∫

S

d(x0, x)p dμ(x) finite for some (and thus any) x0 in S;

convergence in this metric is equivalent to narrow convergence plus some tightness condition on the moments
(see for instance [20]).

In this work (S, d) will be the space C := C([0, T ], Rd) of R
d-valued continuous functions on [0, T ], equipped

with the uniform norm
‖f‖∞ := sup

0≤t≤T
|f(t)|;

for this space Wp will be denoted Wp,[0,T ].

Theorem 1.1. Let μ0 be a probability measure on R
d such that

∫
Rd

ea0|x|2 dμ0(x) be finite for some a0 > 0,

and let b and c be Lipschitz functions on R
d. Given T ≥ 0, let μ[0,T ] be the law of the solution to (1.1) on [0, T ]
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for some initial value distributed according to μ0. Let also (X i
0)1≤i≤N be N independent random variables with

common law μ0 and μ̂N
[0,T ] be the empirical measure of the solutions to (1.6) on [0, T ], with respective initial

value X i
0.

Then, for any α ∈ (0, 1/2), there exist positive constants K and N0 such that

P

[
W1,[0,T ](μ[0,T ], μ̂

N
[0,T ]) > ε

]
≤ e−K N ε2

for all ε > 0 and N ≥ N0 ε−2 exp (N0 ε−1/α).

The constants K and N0 depend on T, b, c, α and a finite square exponential moment of μ0.
Kantorovich-Rubinstein dual formulation of the W1 distance on a general space (S, d) reads

W1(μ, ν) = sup
[ϕ]1≤1

{∫
S

ϕdμ −
∫

S

ϕdν
}

(1.7)

where [ϕ]1 := sup
x �=y

|ϕ(x) − ϕ(y)|
d(x, y)

· Then the bound in Theorem 1.1 can be written as

P

[
sup

[ϕ]1≤1

{ 1
N

N∑
i=1

ϕ(X i) −
∫
C

ϕdμ[0,T ]

}
> ε

]
≤ e−K N ε2

where the supremum runs over all 1-Lipschitz functions ϕ on C. By projection at time t, it implies the concen-
tration inequalities

P

[
sup

[ϕ]1≤1

{ 1
N

N∑
i=1

ϕ(X i
t) −

∫
Rd

ϕdμt

}
> ε

]
≤ e−λNε2

(1.8)

given in [6] for the time marginals, provided N ≥ N0 ε−(d+2) for some N0; here the supremum runs over all

1-Lipschitz functions ϕ on R
d. But above all it gives error bounds in the approximation by

1
N

N∑
i=1

ϕ(X i) of the

expectation of quantities ϕ(X) which depend on the whole path X. In return we impose a stronger condition
on the required size of the sample.

An example is the distance d(X, A) = inf{|Xt − y|; t ∈ [0, T ], y ∈ A} of the trajectory to a given set A in R
d,

which measures how close Xt has been to A; under the assumptions of Theorem 1.1, for any α ∈ (0, 1/2) there
exist constants K and N0 such that

P

[∣∣E[d(X, A)] − 1
N

N∑
i=1

d(X i, A)
∣∣ > ε

]
≤ e−KNε2

for any Borel set A in R
d, ε > 0 and N ≥ N0 ε−2 exp(N0ε

−1/α).
A more involved example of such error bounds will be discussed in detail in Section 5.

As pointed out in [18], the convergence of the empirical measure μ̂N
[0,T ] towards the distribution μ[0,T ] is

strongly linked with the phenomenon of propagation of chaos, namely, that the interacting particles X i tend to
behave like independent variables with law μ[0,T ], as N goes to infinity. For instance, letting

μ̂N,2
[0,T ] :=

1
N(N − 1)

∑
i�=j

δ(Xi,Xj)
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be the empirical measure of pairs of paths, the asymptotic independence of two paths (among N) can be
estimated as

Theorem 1.2. With the same notation and assumptions as in Theorem 1.1, for all T ≥ 0 and α ∈ (0, 1/2)
there exist positive constants K and N0 such that

P

[
W1,[0,T ]

(
μ[0,T ] ⊗ μ[0,T ], μ̂

N,2
[0,T ]

)
> ε

]
≤ e−K N ε2

for all ε > 0 and N ≥ N0 ε−2 exp(N0 ε−1/α).

Here the constants K and N0 depend on T, b, c, α and a finite square exponential moment of μ0, and W1,[0,T ]

stands for the Wasserstein distance of order 1 on the product space C × C.
In turn this leads to error bounds in the approximation of functions of the paths of two independent solutions

to (1.1). Let for instance (Xt)t≥0 and (X̃t)t≥0 be the solutions to (1.1) respectively driven by two independent
Brownian motions B and B̃ and with independent initial data. Then, in average, the minimal distance d(X, X̃) =

inf{|Xt− X̃t|; t ∈ [0, T ]} between Xt and X̃t on [0, T ] is approximated by
1

N(N − 1)

∑
i�=j

d(X i, Xj) with an error

controlled by

P

[∣∣E[d(X, X̃)] − 1
N(N − 1)

∑
i�=j

d(X i, Xj)
∣∣ > ε

]
≤ e−KNε2

for ε > 0 and N ≥ N0 ε−2 exp(N0ε
−1/α).

The proof of Theorem 1.1 is based on this phenomenon of propagation of chaos: as N goes to infinity,
the interacting particles (X i

t)t≥0 tend to behave like the N independent and identically distributed processes
(Y i

t )t≥0 solution to {
dY i

t = σ dBi
t − b(Y i

t ) dt − c ∗ μt(Y i
t ) dt

Y i
0 = X i

0
1 ≤ i ≤ N. (1.9)

Here μt is the law of Xt, but is also the law of any Y i
t and, for each i, (Bi

t)t≥0 is the Brownian motion driving
the evolution of (X i

t)t≥0. Then the paths (Y i
t )t≥0 are close to the paths (X i

t)t≥0 and Proposition 2.1 ensures
the existence of a constant C (depending only on b, c and T ) such that

W1,[0,T ]

(
μ[0,T ], μ̂

N
[0,T ]

)
≤ C W1,[0,T ]

(
μ[0,T ], ν̂

N
[0,T ]

)

holds almost surely, where ν̂N
[0,T ] :=

1
N

N∑
i=1

δY i and Y i = (Y i
t )0≤t≤T ; hence controlling the distance between

μ[0,T ] and μ̂N
[0,T ] reduces to the same issue with μ[0,T ] and ν̂N

[0,T ].
But, by definition, the N paths Y i for 1 ≤ i ≤ N are independent and distributed according to μ[0,T ].

Then Propositions 3.1 and 4.1 ensure good concentration estimates for the empirical measure ν̂N
[0,T ] around the

common law μ[0,T ]. In the end we obtain the bound

P

[
W1,[0,T ]

(
μ[0,T ], μ̂

N
[0,T ]

)
> ε

]
≤ P

[
W1,[0,T ]

(
μ[0,T ], ν̂

N
[0,T ]

)
>

ε

C

]
≤ e−K N ε2

under a condition on ε and N .
The proof will be given in greater detail in Section 4 and above all in [4]. It is an adaptation of the argument

given in [6], Section 2.6 of estimates (1.8) for time marginals. The current proof turns out to be simpler since
it consists in fewer steps; in return each step of the present infinite dimensional case, where μ[0,T ] is a measure
on the functional space C, exhibits new difficulties with respect to the finite dimensional case of [6] where μt is
a measure on R

d.
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The proof of Theorem 1.2 consists in writing this coupling argument for pairs of paths and comparing

μ[0,T ] ⊗ μ[0,T ] and ν̂N,2
[0,T ] :=

1
N(N − 1)

∑
i�=j

δ(Y i,Y j) by means of
1

N2

∑
i,j

δ(Y i,Y j).

Let us finally note that it would be desirable to relax the assumptions made on the drift terms b and c: first
of all to include the interesting case of the cubic potential W (z) = |z|3/3 on R in the case of equation (1.3),
which models the interaction among one-dimensional granular media (see [2] for instance); then to treat the
fundamental cases of the Coulomb and gravitational potentials in the diffusive Newton’s equations (1.2) (see
[11] for instance).

It would also be interesting to consider the whole trajectories (Xt)t≥0 on [0, +∞), and derive concentration
bounds on functionals such as hitting times for instance.

Before turning to the proofs we briefly give the plan of the paper. In the coming section we reduce our
concentration issue on interacting particles to the same issue for independent variables by a coupling argument.
In Section 3 we prove a general concentration result for C-valued independent variables and in Section 4 we
check that it applies to our framework. An example of error bounds implied by Theorem 1.1 is finally discussed
in Section 5.

2. Coupling

Let us recall that we want to measure the distance between the law μ[0,T ] of the solution X = (Xt)0≤t≤T on
[0, T ] to (1.1) and the empirical measure μ̂N

[0,T ] of the N solutions X i = (X i
t)0≤t≤T on [0, T ] to (1.6).

In the following proposition we reduce this issue to measuring the distance between μ[0,T ] and the empirical
measure

ν̂N
[0,T ] :=

1
N

N∑
i=1

δY i (2.1)

of the N independent solutions Y i = (Y i
t )0≤t≤T to (1.9) on [0, T ]:

Proposition 2.1. Let us assume that there exist real numbers β, γ and Γ such that

(b(x) − b(y)) · (x − y) ≥ β |x − y|2, (c(x) − c(y)) · (x − y) ≥ γ |x − y|2, |c(x) − c(y)| ≤ Γ|x − y|

for all x and y in R
d. Then there exists a constant C depending only on β, γ, Γ and T such that

W1,[0,T ]

(
μ[0,T ], μ̂

N
[0,T ]

)
≤ C W1,[0,T ]

(
μ[0,T ], ν̂

N
[0,T ]

)
almost surely in the above notation.

Proof. We first follow the lines of the proof of [6] or [16] in the case when b = ∇V and c = ∇W , but in the end
we want an estimate on the paths. Since for each i both processes X i and Y i are driven by the same Brownian
motion Bi, the process X i − Y i satisfies

d(X i
t − Y i

t ) = −(b(X i
t) − b(Y i

t )
)
dt − (

c ∗ μ̂N
t (X i

t) − c ∗ μt(Y i
t )
)
dt.

In particular

1
2

d
dt

|X i
t − Y i

t |2 = − (b(X i
t) − b(Y i

t )
) · (X i

t − Y i
t ) − (

c ∗ μ̂N
t (X i

t) − c ∗ μt(Y i
t )
) · (X i

t − Y i
t ). (2.2)

We decompose the last term according to

c ∗ μ̂N
t (X i

t ) − c ∗ μt(Y i
t ) = (c ∗ μ̂N

t − c ∗ μt)(X i
t ) +

(
c ∗ μt(X i

t) − c ∗ μt(Y i
t )
)
.
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Then the map c(X i
t − · ) is Γ-Lipschitz, so the Kantorovich-Rubinstein formulation (1.7) of the Wasserstein

distance of order 1 ensures that

∣∣∣c ∗ (μ̂N
t − μt)(X i

t)
∣∣∣ =

∣∣∣∣
∫

Rd

c(X i
t − y) d(μ̂N

t − μt)(y)
∣∣∣∣ ≤ Γ w1(μ̂N

t , μt)

where wp is the Wasserstein distance of order p ≥ 1 between measures on R
d equipped with the Euclidean

distance | · |. Then (2.2) and the assumptions on b and c imply

1
2

d
dt

|X i
t − Y i

t |2 ≤ Γ w1(μ̂N
t , μt) |X i

t − Y i
t | − (β + γ) |X i

t − Y i
t |2. (2.3)

In particular, by integration,

|X i
s − Y i

s | ≤ Γ
∫ s

0

w1(μ̂N
u , μu) du − (β + γ)

∫ s

0

|X i
u − Y i

u | du (2.4)

since initially X i
0 = Y i

0 . But

w1(μ̂N
u , μu) ≤ W1,[0,u]

(
μ̂N

[0,u], μ[0,u]

)
since μ̂N

u and μu are the respective image measures of μ̂N
[0,u] and μ[0,u] by the 1-Lipschitz projection πu from

C([0, u], Rd) into R
d defined by πu(f) = f(u). Moreover

W1,[0,u]

(
μ̂N

[0,u], μ[0,u]

)
≤ 1

N

N∑
i=1

sup
0≤s≤u

|X i
s − Y i

s | + W1,[0,u]

(
ν̂N
[0,u], μ[0,u]

)
.

by triangular inequality. Hence, by averaging (2.4) over i, and by Gronwall’s lemma,

1
N

N∑
i=1

sup
0≤s≤t

|X i
s − Y i

s | ≤ Γ
∫ t

0

e(Γ+m)(t−u)W1,[0,u]

(
ν̂N
[0,u], μ[0,u]

)
du (2.5)

where m := max
(
0,−(β + γ)

)
. On the other hand, for 0 ≤ u ≤ t,

W1,[0,u]

(
ν̂N
[0,u], μ[0,u]

)
≤ W1,[0,t]

(
ν̂N
[0,t], μ[0,t]

)

since ν̂N
[0,u] and μ[0,u] are the respective image measures of ν̂N

[0,t] and μ[0,t] by the 1-Lipschitz map defined from
C([0, t], Rd) into C([0, u], Rd) as the restriction to [0, u]. Hence

W1,[0,t]

(
μ̂N

[0,t], ν̂
N
[0,t]

)
≤ 1

N

N∑
i=1

sup
0≤s≤t

|X i
s − Y i

s | ≤ Γ(Γ + m)−1(e(Γ+m)T − 1)W1,[0,t]

(
ν̂N
[0,t], μ[0,t]

)

by (2.5). This concludes the argument by triangular inequality. �

Remark 2.1. In the case of the granular media equation (1.4), and under convexity assumptions on V and
W , such as β > 0, β + 2 γ > 0, it has been proven in [7,8,16] that the time marginal μt converges, as t goes to
infinity, to the stationary solution to (1.5); one can also prove that in expectation observables of the particle
system are bounded in time.

Hence, under this kind of assumptions, one can hope for uniform in time constants in this coupling argument.
This was obtained in [6] for the time marginals of the granular media equation; here, for the whole processes,
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if β + γ > Γ, then we can let C be (β + γ) (β + γ − Γ)−1 in Proposition 2.1, independently of T . Indeed, if
β + γ > 0, then (2.3) leads to

|X i
s − Y i

s | ≤ Γ
∫ s

0

e−(β+γ)(s−u) w1(μ̂N
u , μu) du

by integration. Consequently

W1,[0,t]

(
μ̂N

[0,t], ν̂
N
[0,t]

)
≤ Γ sup

0≤s≤t

∫ s

0

e−(β+γ)(s−u) du sup
0≤u≤t

w1(μ̂N
u , μu) ≤ Γ

β + γ
W1,[0,t]

(
μ̂N

[0,t], μ[0,t]

)
.

If moreover β + γ > Γ, then by triangular inequality

W1,[0,t]

(
μ̂N

[0,t], μ[0,t]

)
≤ β + γ

β + γ − Γ
W1,[0,t]

(
ν̂N
[0,t], μ[0,t]

)
.

3. A preliminary result on independent variables

Our main theorem on the particle approximation is based on a general concentration result for the empirical
measure of C-valued independent and identically distributed random variables. In this section we state this
result in a more general formulation and for this purpose we first introduce some notation.

If μ and ν are two measures on C, the relative entropy of ν with respect to μ is defined by

H(ν|μ) =
∫

C

dν

dμ
ln

dν

dμ
dμ

if ν is absolutely continuous with respect to μ, and H(ν|μ) = +∞ otherwise.
This notion is linked with the Wasserstein distances by the family of transportation inequalities: given p ≥ 1

and λ > 0, a probability measure μ on C satisfies the inequality Tp(λ) if

Wp(μ, ν) ≤
√

2
λ

H(ν|μ)

holds true for any measure ν.

Moreover, given a Borel probability measure μ on C and N independent random variables (X i)1≤i≤N with
law μ, we let μ̂N denote their empirical measure, defined as

μ̂N :=
1
N

N∑
i=1

δXi .

Given a real number α ∈ (0, 1], we let Cα := Cα([0, T ], Rd) be the space of functions in C which moreover are
Hölder of order α, equipped with the Hölder norm

‖f‖α := sup (‖f‖∞, [f ]α)

where

[f ]α := sup
0≤t,s≤T

|f(t) − f(s)|
|t − s|α ·
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Cα is a Borel set of the space C equipped with the topology induced by the uniform norm, and for Borel measures
on C, concentrated on Cα, we have in the above notation:

Proposition 3.1. Let μ be a Borel probability measure on C satisfying a Tp(λ) inequality for some λ > 0 and

p ∈ [1, 2], and such that
∫
C

ea‖x‖2
α dμ(x) be finite for some a > 0 and α ∈ (0, 1]. Then, for any α′ < α and

λ′ < λ, there exists a constant N0 such that

P
[
Wp,[0,T ](μ, μ̂N ) > ε

] ≤ e−βp
λ′
2 N ε2

(3.1)

for any ε > 0 and N ≥ N0 ε−2 exp (N0 ε−1/α′
), where

βp =

{
1 if 1 ≤ p < 2(

1 +
√

λ/a
)−2

if p = 2.

Here the constant N0 depends on μ only through λ, a, α and
∫
C

ea‖x‖2
α dμ(x).

This proposition will be applied with p = 1 to the distribution μ[0,T ] of the process X . For p = 1, a T1(λ)

inequality is equivalent to the existence of a > 0 such that
∫
C

ea ‖x‖2
∞ dμ(x) be finite (see [10]). Numerical

relations between such a and λ are given in [5,13]. In particular this condition if fulfilled if
∫
C

ea ‖x‖2
α dμ(x) is

finite, as will be the case for μ[0,T ].

For p = 1 again, a result by Bobkov and Götze [3], based on (1.7), ensures that a T1(λ) inequality for μ is
equivalent to the following precise version of the central limit theorem:

sup
[ϕ]1≤1

P

[
1
N

N∑
i=1

ϕ(X i) −
∫

C

ϕdμ > ε

]
≤ e−

λ
2 Nε2

, N ≥ 1 .

By comparison, the bound given in Proposition 3.1 implies

P

[
sup

[ϕ]1≤1

{
1
N

N∑
i=1

ϕ(X i) −
∫
C

ϕdμ

}
> ε

]
≤ e−

λ′
2 Nε2

, λ′ < λ , N large enough

by (1.7), but a modification of the proof would also lead to

P

[
sup

[ϕ]1≤1

{
1
N

N∑
i=1

ϕ(X i) −
∫
C

ϕdμ

}
> ε

]
≤ C(ε) e−

λ′
2 Nε2

, λ′ < λ , N ≥ 1

for some computable large constant C(ε). Thus we control a much stronger quantity, up to some loss on the
constant in the right-hand side or some condition on the sample size.

This result is reasonable in view of Sanov’s theorem (stated in [9] for instance). Indeed, by this theorem, one
can hope for an upper bound like

P [Wp,[0,T ](μ, μ̂N ) > ε] ≤ exp (−N inf{H(ν|μ); ν ∈ A})
for large N , where A := {ν; Wp,[0,T ](ν, μ) > ε}. But μ satisfies Tp(λ), so that

inf{H(ν|μ); ν ∈ A} ≥ λ

2
ε2,
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and one indeed obtains an upper bound like (3.1), but only asymptotically, whereas Proposition 3.1 gives a
sufficient size of the sample for the deviation bound to hold. Sanov’s theorem does not actually give such
an upper bound here: indeed, the space C being unbounded, the closure A of A (for the narrow topology)
contains μ itself; in particular inf{H(ν|μ); ν ∈ A} = 0 and Sanov’s theorem only gives the trivial bound
P[μ̂N∈A]≤exp(−N inf{H(ν|μ); ν ∈ A})= 1.

Finally this result can be seen as an extension of the following similar concentration result given in [6],
Theorem 2.1 in the case of measures on R

d: if m satisfies Tp(λ), then

P [wp(m, m̂N ) > ε] ≤ e−γp
λ′
2 N ε2

, ε > 0 , N ≥ N0 max(ε−(d′+2), 1). (3.2)

Let indeed m be such a measure on R
d. Then the law μ of a constant process on [0, T ] initially distributed

according to m satisfies the assumptions of Proposition 3.1 (one can take any a < λ/2), and the bound (3.2)
follows by (3.1) with the constant γp obtained in [6]. Note however that the required size of the sample is here
larger for small ε.

Proof. The proof goes in four steps: we first reduce the problem to a ball Bα
R of Cα, compact in C, which has

almost full μ measure by the integrability assumption on μ; then we cover Bα
R and then P(Bα

R) by small balls on
which we develop Sanov’s argument as in [14] and [9], exercises 4.4.5 and 6.2.19; we estimate the cardinality of
these covering balls; then we conclude the proof by optimizing the introduced parameters. The argument has
the same plan as in the finite dimensional case of [6], Section 3.1, so we shall only sketch it, stressing only on
the bounds specific to the present infinite dimensional case. We refer to [6] for further details.

3.1. Truncation

Given R > 0, to be chosen later on, we let Bα
R denote the ball {f ∈ Cα; ‖f‖α ≤ R} of center 0 and radius R

in Cα. This set Bα
R is a compact subset of C for the topology induced by the uniform norm ‖ · ‖∞. Letting 1Bα

R

be the indicator function of Bα
R, we truncate μ into a probability measure μR on the ball Bα

R, defined as

μR := 1Bα
R

μ/μ[Bα
R].

Note that μ[Bα
R] is positive for R larger than some R0 depending only on E :=

∫
C

ea‖x‖2
α dμ(x) and a. In this

step we reduce the concentration issue for C to the same issue for the compact ball Bα
R, by bounding the quantity

P
[
Wp,[0,T ](μ, μ̂N ) > ε

]
in terms of μR and an associated empirical measure μ̂N

R :=
1
N

N∑
k=1

δXk
R

where the Xk
R are

independent variables with law μR.
Bounding by above the ‖ · ‖∞ norms by ‖ · ‖α norms when necessary, we obtain the bound

P
[
Wp,[0,T ](μ, μ̂N ) > ε

] ≤ P

[
Wp,[0,T ](μR, μ̂N

R ) > η ε − 2 E
1
p R e−

a
p R2

]
+ exp

(
− N

(
θ(1 − η)pεp − E e(a1−a) R2

))
; (3.3)

here p is any real number in [1, 2), η in (0, 1), ε, θ > 0, a1 < a and R is constrained to be larger than
R2 max(1, θ

1
2−p ) for some constant R2 depending only on E, a, a1 and p.

In the case when p = 2, we obtain

P
[
W2,[0,T ](μ, μ̂N ) > ε

] ≤ P

[
W2,[0,T ](μR, μ̂N

R ) > η ε − 2 E
1
2 R e−

a
2 R2

]
+ exp

(
− N

(a1

2
(1 − η)2ε2 − 2E2 e(a1−a) R2

))
. (3.4)
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3.2. Sanov’s argument on small balls

In view of (3.3) for p < 2 or (3.4) for p = 2, we now aim at bounding P [μ̂N
R ∈ A] where

A :=
{

ν ∈ P(Bα
R); Wp,[0,T ](μR, ν) ≥ η ε − 2 E

1
p R e−

a
p R2

}
.

For this we let δ > 0 and cover A with Np(A, δ) balls Bi with radius δ/2 in Wp,[0,T ] distance. Then we develop
Sanov’s argument on each of these compact and convex balls to obtain

P
[
μ̂N

R ∈ A] ≤ P

[
μ̂N

R ∈
Np(A,δ)⋃

i=1

Bi

]
≤

Np(A,δ)∑
i=1

P
[
μ̂N

R ∈ Bi

] ≤ Np(A,δ)∑
i=1

exp
(
− N inf

ν∈Bi

H(ν|μR)
)
. (3.5)

Then, from the Tp(λ) inequality for μ, one establishes an approximate Tp(λ) inequality for μR: namely, for any
λ1 < λ there exists K1 such that

H(ν, μR) ≥ λ1

2
Wp,[0,T ](ν, μR)2 − K1 R2 e−a R2

for any measure ν on Bα
R. With this inequality in hand, given 1 ≤ p < 2 and λ2 < λ1 < λ, one deduces

from (3.5) the existence of positive constants δ1, η1 and K1 such that

P

[
Wp,[0,T ](μR, μ̂N

R ) > η ε − 2 E
1
p Re−

a
p R2

]
≤ Np(A, δ) exp

(
− N

(λ2

2
ε2 − K1R

2e−aR2
))

(3.6)

where we have chosen δ := δ1ε and η := η1.
In the case when p = 2, we do not choose η at this stage, and simply obtain

P

[
W2,[,T ](μR, μ̂N

R ) > η ε − 2 E
1
2 R e−

a
2 R2

]
≤ Np(A, δ) exp

(
− N

(λ2

2
η2ε2 − K1R

2e−aR2
))

where δ := δ1ε.

3.3. Estimate on the covering number Np(A, δ)

Given r > 0, the covering number N (S, r) of a compact metric space (S, d) is the smallest integer n such that
S can be covered by n balls centered in S and of radius r in d metric. On N (Bα

R, r) we have the following bound:

Lemma 3.1. Given the space R
d with d ≥ 1, some positive numbers T , R, r and α with r < R and α ≤ 1, the

covering number N (Bα
R, r) of Bα

R, equipped with the uniform norm, satisfies

N (Bα
R, r) ≤

(
10

√
d

R

r

)d

35
1
α d1+ 1

2α T ( R
r )

1
α .

The proof and a lower bound of the same order are given in detail in [4]; in our case these bounds make more
precise those given in [13,15] or [19].

Moreover, given a compact metric space (S, d), p ≥ 1 and δ > 0, the following result of [6] (see also [9,14])
gives an upper bound on the covering number Np(P(S), δ) of the compact metric space (P(S), Wp) of probability
measures on S:

Lemma 3.2. Let (S, d) be a compact metric space with finite diameter D, and p and δ be positive numbers with
p ≥ 1. Then the covering numbers of S and P(S) satisfy

Np(P(S), δ) ≤ (
8 e D

δ

)pN (S, δ
2 ) if 0 < δ < D

Np(P(S), δ) = 1 if δ ≥ D.
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Since Bα
R equipped with the metric defined by the uniform norm is a compact metric space with finite diameter

2R, it follows that the space P(Bα
R) of probability measures on Bα

R can be covered by Np(P(Bα
R), δ) balls of

radius δ in Wasserstein distance Wp, with

Np(P(Bα
R), δ) ≤ (

16 e Rδ−1
)p (20

√
d R δ−1)d 310

1
α d

1+ 1
2δ T (Rδ−1)

1
α

if 0 < δ < 2R
Np(P(Bα

R), δ) = 1 if δ ≥ 2R.

Then A is a subset of P(Bα
R), so, for a constant K2 depending neither on ε nor on R,

Np(A, δ1 ε) ≤ exp
(
K2(R ε−1)d 3K2(R ε−1)1/α

ln
(
max(1, K2 R ε−1)

))
. (3.7)

Remark 3.1. The order of magnitude of this covering number in an infinite dimensional setting constitutes a
main change by comparison with the finite dimensional setting of [6], and will influence the final condition on
the size N of the sample.

3.4. Conclusion of the argument

We first focus on the case when p ∈ [1, 2). By estimates (3.3), (3.6) and (3.7), and given λ2 < λ and a1 < a,
we obtain the existence of positive constants K1, K2, K3 and R3 depending on E, a, a1, α, λ and λ2 such that

P
[
Wp,[0,T ](μ, μ̂N ) > ε

] ≤ exp
(
−N

(
K3 θ εp − K4e(a1−a) R2))

+ exp
(

K2(R ε−1)d 3K2(R ε−1)1/α

ln
(
max(1, K2 R ε−1)

)− N
(λ2

2
ε2 − K1R

2e−αR2
))

(3.8)

for all ε, θ > 0 and R ≥ R3 max(1, θ
1

2−p ), and for a constant K4 = K4(θ, a1).
Then let λ3 < λ2. One can prove that the second term in the right-hand side in (3.8) is bounded by

exp
(−λ3

2 N ε2
)

provided

R2 ≥ Amax(1, ε2, ln(ε−2)) , Nε2 ≥ B 3C(Rε−1)1/α

(3.9)

for positive constants A, B and C depending also on λ3. Moreover, for θ =
ε2−p λ3

2 K3

, also the first term in the

right-hand side in (3.8) is bounded by exp
(−λ3

2 N ε2
)

as soon as R2 ≥ R4 max(1, ln(ε−2)), for a constant R4

depending on λ3.

Letting R = ε
(

1
C ln 3 ln Nε2

B

)α

if ε ∈ (0, 1) and R =
√

Aε otherwise, and α′ < α, both conditions in (3.9)

hold true as soon as N ≥ N0 ε−2 exp(N0 ε−1/α′
) for a constant N0 depending on E, a, λ, λ3, α and α′. Finally,

given λ′ < λ3 < λ, this condition ensures that

P
[
Wp,[0,T ](μ, μ̂N ) > ε

] ≤ 2 exp
(
− λ3

2
N ε2

)
≤ exp

(
− λ′

2
N ε2

)
,

for a possibly larger N0. This concludes the argument in the case when p ∈ [1, 2).

In the case when p = 2, given 0 < η < 1, λ3 < λ2 and a2 < a1, the same condition on N and ε (for some N0)
is sufficient for the bound

P
[
W2,[0,T ](μ, μ̂N ) > ε

] ≤ exp
(
−λ3

2
η2 N ε2

)
+ exp

(
−a2

2
(1 − η)2 N ε2

)
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to hold (by (3.4)). One optimizes this bound by letting

a2 = a
λ3

λ
(∈ (0, a)) and η =

√
a2√

a2 +
√

λ3

·

Given λ′ < λ3 < λ, this ensures the existence of N0 such that

P
[
W2,[0,T ](μ, μ̂N ) > ε

] ≤ 2 exp
(
−λ3

2
a

(
√

a +
√

λ)2
N ε2

)
≤ exp

(
−λ′

2
1

(1 +
√

λ/a)2
N ε2

)
.

for any ε > 0 and N ≥ N0 ε−2 exp(N0 ε−1/α′
). This concludes the proof of Proposition 3.1 in this second and

last case. �

4. Integrability in Hölder norm

In Section 2 we have reduced the issue of measuring the distance between μ[0,T ] and μ̂N
[0,T ] to measuring the

distance between μ[0,T ] and the empirical measure ν̂N
[0,T ] of N independent random variables drawn according

to μ[0,T ].
We now solve the latter issue by proving that the measure μ[0,T ] fulfills the hypotheses of Proposition 3.1

with p = 1, namely, that there exist α ∈ (0, 1] and a > 0 such that

E exp(a‖X‖2
α) :=

∫
C

ea‖x‖2
α dμ[0,T ](x) < +∞.

Proposition 4.1. Let μ0 be a probability measure on R
d with a finite square exponential moment and let X0

be with law μ0. Given T ≥ 0, let X be the solution on [0, T ] to (1.1) starting at X0, where b and c are Lipschitz
on R

d. Then, for any α ∈ (0, 1/2), there exists a > 0, depending on μ0 only through a finite square exponential
moment, such that E exp(a‖X‖2

α) be finite.

Proof. Assuming this result for the moment we can now conclude the proof of Theorem 1.1. Let indeed α be
given in (0, 1/2) and α0 ∈ (α, 1/2). Then, by Propositions 3.1 and 4.1, applied with α = α0 and α′ = α, there
exist positive constants K̃ and Ñ0, depending on α0, α, T and a square exponential moment of μ0, such that

P [W1,[0,T ](μ[0,T ], ν̂
N
[0,T ]) > ε̃] ≤ e−K̃Nε̃2

for any ε̃ > 0 and N ≥ Ñ0 ε̃−2 exp(Ñ0 ε̃−1/α), where ν̂N
[0,T ] is defined by (1.9) and (2.1). Then, by Proposition 2.1,

there exist some constants C, depending only on T , and then K and N0, depending on α0, α, T and a finite
square exponential moment of μ0, such that

P [W1,[0,T ](μ[0,T ], μ̂
N
[0,T ]) > ε] ≤ P [W1,[0,T ](μ[0,T ], ν̂[0,T ]) > ε/C] ≤ e−KNε2

for any ε > 0 and N ≥ N0 ε−2 exp(N0 ε−1/α). This concludes the argument. �

Proof of Proposition 4.1. We separately prove the existence of positive constants a1 and a2 such that
E exp(a1‖ X‖2∞) and E exp(a2[X ]2α) be finite. We only sketch the proof for the uniform norm and give it
in detail for the Hölder seminorm, refering to [4] for further details.

1. For the expectation in uniform norm:
1.1. we first prove that E|Xt|2 is bounded on [0, T ] by applying Itô’s formula to (|Xt|2)t≥0;
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1.2. then we prove the existence of K > 0 such that E exp(K|Xt|2) be bounded on [0, T ]. In fact we prove
the existence of a positive and decreasing function k on [0, T ] such that E exp(k(t) |Xt|2) be finite and
bounded on [0, T ]; for that purpose we apply Itô’s formula to the process (exp k(t)|Xt|2)t≥0. Then we
let K = k(T ) > 0;

1.3. we finally use Doob’s inequalities to obtain the existence of a1 > 0, depending on μ0 only through a
square-exponential moment, such that E exp(a1‖X‖2

∞) be finite.

2. We now turn to the expectation in Hölder seminorm. We first write the solution as

Xt = X0 + σ Bt −
∫ t

0

(
b(Xs) + c ∗ μs(Xs)

)
ds,

so that

[X ]α ≤ [σ B]α +
[∫ .

0

(
b(Xs) + c ∗ μs(Xs)

)
ds

]
α

almost surely; here
∫ .

0

ϕ(s) ds is an antiderivative of ϕ. Hence, by Cauchy-Schwarz’ inequality,

E exp(a2[X ]2α) ≤ (
E exp(4 a2 ‖σ‖2 [B]2α)

)1/2

(
E exp 4 a2

[∫ .

0

(b(Xs) + c ∗ μs(Xs)) ds

]2

α

)1/2

.

But E exp(4 a2 ‖σ‖2 [B]2α) is finite for a2 small enough (see [12], Thm. 1.3.2 for instance). On the other hand,
by step 1.1 and assumption on b and c, there is a constant A such that

|b(x) + c ∗ μs(x)| ≤ A + (B + Γ)|x|

for all x ∈ R
d and s ∈ [0, T ]; here B and Γ are the Lipschitz seminorms of b and c. In particular

[∫ .

0

b(Xs) + c ∗ μs(Xs) ds

]
α

≤ sup
0≤s<t≤T

1
|t − s|α

∫ t

s

A + (B + Γ)|Xu| du ≤ T 1−α
(
A + (B + Γ)‖X‖∞

)

almost surely, and

E exp 4 a2

[∫ .

0

(
b(Xs) + c ∗ μs(Xs)

)
ds

]2

α

≤ exp(8 a2 T 2−2αA2) E exp
(
8 a2 T 2−2α(B + Γ)2‖X‖2

∞
)

which by step 1 is finite as soon as 8 a2 T 2−2α(B + Γ)2 ≤ a1.

On the whole, E exp(a2[X ]2α) is indeed finite for a2 small enough, depending on μ0 only through a finite
square exponential moment, which concludes the argument. �

5. An example of application

In this section we give an instance of error bound in the approximation by
1
N

N∑
i=1

ϕ(X i) of the expectation

of a quantity ϕ(X) depending on the whole path of the considered process.
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Let 0 < t1 < · · · < tn ≤ T and for 1 ≤ j ≤ n let Bj be the (for instance closed) ball B(xj , rj) of center xj

and radius rj > 0 in the Euclidean space R
d. Then we can approximate the probability P

[
Xtj ∈ Bj ; 1 ≤ j ≤ n

]
for Xt to be in Bj at t = tj for each j as follows:

In the notation and assumptions of Theorem 1.1, assume moreover that all partial derivatives ∂mb and ∂mc
of b and c are continuous and bounded on R

d, for any multi-index m ∈ N
d with 1 ≤ |m| ≤ s where s is the

smallest integer number larger than d/2, and that the diffusion matrix σ is (for instance) a nonzero multiple of
the identity, as in the example (1.4). Then, for any α ∈ (0, 1/2), there exist positive constants K and N0 such
that

P

⎡
⎣
∣∣∣∣∣∣
1
N

N∑
i=1

n∏
j=1

χj(X i
tj

) − P
[
Xtj ∈ Bj ; 1 ≤ j ≤ n

]∣∣∣∣∣∣ > ε

⎤
⎦ ≤ e−K N ε4

for all ε ∈ (0, 1) and N ≥ N0 ε−4 exp (N0 ε−2/α).

Here χj is the indicator function of the ball Bj defined by χj(x) = 1 if x ∈ Bj and 0 otherwise, and let us
note that only the ε ∈ (0, 1) have to be considered.

Indeed

∣∣∣ 1
N

N∑
i=1

n∏
j=1

χj(X i
tj

) − P
[
Xtj ∈ Bj ; 1 ≤ j ≤ n

]∣∣∣ =
∣∣∣ ∫

C

n∏
j=1

χj(f(tj)) dμ̂N (f) −
∫
C

n∏
j=1

χj(f(tj)) dμ(f)
∣∣∣

≤
∫
C

∣∣∣ n∏
j=1

χj(f(tj)) −
n∏

j=1

ϕj(f(tj))
∣∣∣ dμ̂N (f)+

∣∣∣ ∫
C

n∏
j=1

ϕj(f(tj)) d(μ̂N −μ)(f)
∣∣∣

+
∫
C

∣∣∣ n∏
j=1

ϕj(f(tj)) −
n∏

j=1

χj(f(tj))
∣∣∣ dμ(f). (5.1)

Here ϕj is the R
d to R map defined by ϕj(x) =

(
1 − d(x, Bj)

δ

)
+

for some 0 < δ ≤ min
1≤j≤n

rj to be chosen later,

where d(x, A) is the distance of a point x to a set A and u+ = max(u, 0) for all real u. For simplicity we write
μ̂N , μ and W1 instead of μ̂N

[0,T ], μ[0,T ] and W1,[0,T ] respectively.
The second term in (5.1), which is the main term, will be bounded by the Kantorovich-Rubinstein formula-

tion (1.7). Indeed, if f and g are two functions in C, then∣∣∣∣∣∣
n∏

j=1

ϕj(f(tj)) −
n∏

j=1

ϕj(g(tj))

∣∣∣∣∣∣ ≤
n∑

j=1

|ϕj(f(tj)) − ϕj(g(tj))|

since the maps ϕj take values in [0, 1] and because of the following elementary bound:

Lemma 5.1. If aj and bj are real numbers in [0, 1] for 1 ≤ j ≤ n, then
∣∣∣∣∣∣

n∏
j=1

aj −
n∏

j=1

bj

∣∣∣∣∣∣ ≤
n∑

j=1

|aj − bj |.

Then the maps ϕj are δ−1-Lipschitz, so

n∑
j=1

|ϕj(f(tj)) − ϕj(g(tj))| ≤ nδ−1‖f − g‖∞.
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Consequently the map f �→
n∏

j=1

ϕj(f(tj)) is nδ−1-Lipschitz on C, and by (1.7) the second term in (5.1) is

bounded by nδ−1 W1(μ̂N , μ).

Then the first term in (5.1) is bounded by

∫
C

n∑
j=1

|χj(f(tj)) − ϕj(f(tj))| dμ̂N (f)

by Lemma 5.1 again. Now, for all 1 ≤ j ≤ n and x ∈ R
d,

|χj(x) − ϕj(x)| = ϕj(x) − χj(x) ≤ γj(x)

where γj(x) =
(

1 − d(x, Bj) + d(x, Rd \ Bj)
δ

)
+

. The map x �→ d(x, Bj) + d(x, Rd \ Bj) is 1-Lipschitz, so γj is

δ−1-Lipschitz, and by (1.7) again the first term in (5.1) is bounded by

n∑
j=1

∫
C

γj(f(tj))dμ̂N (f) ≤
n∑

j=1

[
δ−1W1(μ̂N , μ) +

∫
C

γj(f(tj))dμ(f)
]
.

Moreover, if for any j we let μtj be the marginal at time tj of the distribution μ, then

∫
C

γj(f(tj))dμ(f) =
∫

Rd

γj(x) dμtj (x) ≤ μtj [Cj ]

where Cj = B(xj , rj + δ) \ B(xj , rj − δ), since γj is zero outside of Cj and bounded by 1 on Cj .

In the same way the third term in (5.1) is bounded by

n∑
j=1

μtj [Dj ]

where Dj = B(xj , rj + δ) \ B(xj , rj), since ϕj−χj is zero outside of Dj and bounded by 1 on Dj.

Now, under our assumptions, we can adapt the techniques in [6] Theorem B.1 to prove that for any t > 0
the time marginal μt belongs to the Sobolev space Hs(Rd), with s > d/2, whence to L∞(Rd). Moreover there
exists a constant K1, depending only on t1, tn, d, b, c, σ and a square exponential moment of μ0, such that

sup
t1≤t≤tn

‖μt‖L∞ ≤ K1.

In particular the first and third terms in (5.1) are together bounded by

nδ−1 W1(μ̂N , μ) + K1

n∑
j=1

Leb[Cj ] + Leb[Dj ]

where Leb[A] stands for the Lebesgue measure of a Borel set A in R
d.

Moreover
Leb[Cj ] = ωd

(
(rj + δ)d − (rj − δ)d

) ≤ 2d ωd rd−1
j δ
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and

Leb[Dj ] = ωd

(
(rj + δ)d − rd

j

) ≤ (2d − 1)ωd rd−1
j δ

for any 1 ≤ j ≤ n and 0 < δ ≤ rj , where ωd is the Lebesgue measure of the Euclidean unit ball in R
d. Hence it

follows from (5.1) that for a constant K2, independent of N and the rj ,

∣∣∣ 1
N

N∑
i=1

n∏
j=1

χj(X i
tj

) − P
[
Xtj ∈ Bj ; 1 ≤ j ≤ n

]∣∣∣ ≤ 2nδ−1W1(μ̂N , μ) + K2

n∑
j=1

rd−1
j δ

for any 0 < δ ≤ min
1≤j≤n

rj and in particular

P

[∣∣∣ 1
N

N∑
i=1

n∏
j=1

χj(X i
tj

) − P
[
Xtj ∈ Bj ; 1 ≤ j ≤ n

]∣∣∣ > ε
]
≤ P

[
W1(μ̂N , μ) >

δ

2n
(ε − K2Rδ)

]

for any 0 < δ ≤ r, in the notation r = min
1≤j≤n

rj and R =
n∑

j=1

rd−1
j .

In the case when ε ≤ 2K2Rr we choose δ =
ε

2K2R
∈ (0, r], so that, by Theorem 1.1, for any α ∈ (0, 1/2)

there exist some constants K and N0, independent of ε and N , such that

P

[
W1(μ̂N , μ) >

δ

2n
(ε − K2Rδ)

]
= P

[
W1(μ̂N , μ) >

ε2

8K2Rn

]
≤ exp

(
− KN

( ε2

8K2Rn

)2)

for all N ≥ N0

(
ε2

8K2Rn

)−2
exp

(
N0

(
ε2

8K2Rn

)−1/α
)
.

In the case when ε > 2K2Rr we choose δ = r, so that

P

[
W1(μ̂N , μ) >

δ

2n
(ε − K2Rδ)

]
≤ P

[
W1(μ̂N , μ) >

εr

4n

]
≤ exp

(
− KN

( εr

4n

)2)

for all N ≥ N0

(
εr
4n

)−2 exp
(
N0

(
εr
4n

)−1/α
)
.

As a conclusion, there exist two new constants K and N0, depending on μ0 only through a square exponential
moment, such that

P

[∣∣∣ 1
N

N∑
i=1

n∏
j=1

χj(X i
tj

) − P
[
Xtj ∈ Bj ; 1 ≤ j ≤ n

]∣∣∣ > ε
]
≤ e−KNε4

for all ε ∈ (0, 1) and N ≥ N0 ε−4 exp(N0ε
−2/α). This concludes the argument.
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