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BRANCHING RANDOM WALKS ON BINARY SEARCH TREES:
CONVERGENCE OF THE OCCUPATION MEASURE

Eric Fekete1

Abstract. We consider branching random walks with binary search trees as underlying trees. We
show that the occupation measure of the branching random walk, up to some scaling factors, converges
weakly to a deterministic measure. The limit depends on the stable law whose domain of attraction
contains the law of the increments. The existence of such stable law is our fundamental hypothesis.
As a consequence, using a one-to-one correspondence between binary trees and plane trees, we give a
description of the asymptotics of the profile of recursive trees. The main result is also applied to the
study of the size of the fragments of some homogeneous fragmentations.
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1. Introduction

The purpose of this paper is to study the asymptotics of the occupation measure of branching random walks
(BRWs) when the underlying tree is a binary search tree. This work is motivated by the large number of
results on the occupation measure of BRWs on conditioned Galton-Watson trees which limit is ISE (Integrated
Super-Brownian Excursion), and also by some applications in term of fragmentation processes and in term of
the profile of recursive trees discussed later.

Informally, a branching walk is a random object owning two levels of randomness. First an underlying tree
is picked up under a certain law and then, on each of its edges, a random variable is attached and is used as
the increment of a random walk. Hence, a BRW is a family of dependent random walks indexed by the nodes
of the underlying tree (it is formally defined below). Many results on BRWs can be found in the literature.

During the last thirty years, Biggins obtained many different results when the underlying tree is a supercritical
Galton-Watson tree. For instance, in [3], he studied the convergence of a martingale associated to the BRW.

More recently, Aldous [1] introduced a model of BRW on trees of size n: the underlying tree T is the family
tree of a Galton-Watson process conditioned to have n nodes (with offspring distribution having mean 1 and
variance σ2) and the increments are independent, centered, with variance θ2 and having moments of order 4+ ε.
With each node u of T , he associates the variable Yu which is the sum of the increments associated with the
ancestors of u. Aldous stated that the normalized occupation measure converges to a random measure called
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ISE, that is
1

n + 1

∑
u∈T

δσ1/2Yu

θn1/4

D−−−−→
n→∞

μISE ,

where δ stands for the Dirac measure, in the space of probability measures. The measure μISE owns a repre-
sentation in term of Gaussian process and appears as the natural limit of many different random phenomena,
see e.g. [1,7,12,20,21] and references therein. In particular, Chassaing and Schaeffer [7] have shown that it is
closely related to the limit of the profile of uniform quadrangulations.

By contrast with μISE , which is a random measure, we will see that things are very different on a binary search
tree, as the limiting occupation measure is deterministic and equal to the stable distribution corresponding to
the spatial displacements (except in the non-centered Gaussian case where variance is different).

The paper is organized as follows. In the continuation of Section 1 we define our model of branching random
walk. Then we give our main results on the convergence of the occupation measure in Section 2, according to
whether the increments are identically distributed or not. The proof of Theorem 2.1 is relegated to Section 4.
Section 3 provides two applications of Corollary 2.1 in term of homogeneous fragmentations and in term of the
profile of recursive trees.

1.1. Binary search trees (BSTs) and finite branching random walks

Let us introduce our model of branching random walk. For this, we begin with a formal description of trees.
Let

U := {∅} ∪
⋃

n∈{1,2,··· }
N

n

be the set of the finite words on the alphabet N := {0, 1, 2, · · · } (with ∅ as the empty word). We write uv the
word formed by the concatenation of u and v. A plane tree τ is a finite subset of U such that⎧⎨

⎩
∅ ∈ T ,
∀(u, v) ∈ U

2, if uv ∈ T then u ∈ T ,
∀u ∈ U , ∀d ∈ N

∗ := {1, 2, · · · }, if ud ∈ T then u(d − 1) ∈ T .
(1.1)

The elements of T are called nodes, and ∅ is called the root. The number of letters in u, denoted by |u|, is called
the depth of u (with |∅| = 0). We say that v is an ancestor of u when v is a prefix of u (∃w ∈ U; vw = u),
we denote it by v � u. We write P the set of plane trees. Remark that the above definition of a plane tree
fits with the usual one: a plane tree is a finite rooted unlabeled loop free connected graph in which the set of
children of every vertex is endowed with a total order.

In the present paper we are concerned with complete binary trees. Let U
b := {∅} ∪

⋃
n≥1{0, 1}n , be the

subset of U of the finite words on the alphabet {0, 1}. A complete binary tree T is a plane tree such that
every node has zero or two children (in other words T is a finite subset of U

b satisfying (1.1) and such that
u1 ∈ T ⇔ u0 ∈ T ). We write B for the set of complete binary trees. A tree T can be described by giving the
set ∂T of its leaves (the nodes with no descendants also called external nodes). The nodes of T \∂T are called
internal nodes.

As said above a branching random walk is a random object having two levels of randomness: the underlying
tree and the increments. We first introduce our model of random underlying tree, the binary search tree (BST).

1.2. The underlying tree model

Random BSTs are fundamental data structures associated with quicksort, one of the most used sorting
algorithms. We present a recursive construction of BSTs, or we should say labeled BSTs: (Ui)i≥1 is a sequence
of independent random variables uniformly distributed on [0, 1]. With the n first terms (Ui)i=1···n we associate
a labeled BST of size n, that is a complete binary tree in which each of the n internal nodes contains one of the
values (Ui)i=1···n: the root contains U1, the left subtree is the labeled BST associated with the sequence of the
Ui’s smaller than U1 and the right subtree is the labeled BST associated with the sequence of the Ui’s larger
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Figure 1. First, second and last steps of the construction of the labeled BST
associated with (0.4, 0.2, 0.5, 0.7, 0.1, 0.6). The associated BST is obtained by deleting the
labels on the last picture.

than U1. The labeled BST associated with an empty list is reduced to a leaf. See Figure 1 for an example. This
construction induces a law on Bn := {T ∈ B, #T = 2n + 1}, the trees where the labels are deleted (a complete
binary tree with n internal nodes always has n + 1 external nodes).

This BST model can also be obtained by a sequential construction without the Ui’s: T0 is reduced to a leaf.
Assume Tn is a BST with n+1 leaves, then we construct Tn+1 by choosing equally likely one of the n+1 leaves
of Tn and by replacing it by an internal node. The replacement creates two new leaves.

Many properties of BSTs, like the height or the profile, have been studied in the literature: we refer to
Mahmoud [17], Chauvin et al. [8], Drmota [10] and Devroye and Hwang [9] and references therein for an
overview of the subject.

1.3. The increments model

We endow the elements of U
b with random variables, that is we define (cu)u∈Ub a family of independent

random variables on R
2; cu := (Xu0, Xu1) may be seen as a variable associated with the two edges from u to

its children (Xu0 can be seen to be associated with the edge (u, u0) and Xu1 with (u, u1)); X∅ := 0. The Xu

will be taken as the increments of our branching random walk. We assume the two families (Ui) and (cu) to
be independent. Moreover, we first assume the marginal distributions of all the cu (that is the laws of Xu0 and
Xu1) to be equal. Notice that the variables Xu0 and Xu1 are not necessarily independent.

Following the above description we construct Tn, the BST associated with (Ui)i=1···n, and with each u ∈ Tn

we associate a trajectory of the killed random walk Yu = (Yu(j))j∈{0,··· ,|u|} defined by

Yu(0) = 0, Yu(j) =
∑

v � u;
|v| ≤ j

Xv ∀j ∈ {1, · · · , |u|}. (1.2)

Each Yu(j) is the sum of the j’s increments associated with the j’s first edges of the path from the root to u;
with the above assumptions on the cu’s, Yu(j) is a sum of i.i.d. random variables. The finite branching random
walk with underlying tree T is the family of all the trajectories Yu, that is (Yu, u ∈ T ). See Figure 2 for an
example.

We are interested in the occupation measure
∑

δYu(|u|) of these random walks, suitably rescaled.
Knowing the height of the node u, the variable Yu(|u|) is a sum of i.i.d. random variables, and thus the

asymptotics behavior of Yu(|u|), when |u| is large, depends on the stable law, whenever it exists, that contains
the distribution of the marginals of the cu’s in its domain of attraction.
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Figure 2. BST with the associated (cu), branching random walk and cumulative function
associated with the empirical measure.

2. Convergence of the occupation measure

2.1. The identically distributed case

Let ν be a distribution on R with finite mean mν ∈ R
+ ∪ {+∞} and variance σ2

ν ∈ R
+ ∪ {+∞}. We assume

that ν belongs to the domain of attraction of a non-degenerate stable law μ with characteristic exponent
α ∈ (0, 2] \ {1} (for sake of simplicity we restrict our study to the case α 
= 1), which means that there exist
two deterministic sequences (an) and (bn) such that

(
∑n

i=1 Xi) − bn

an

D−−−−→
n→∞

μ, (2.1)

for any family (Xi) of i.i.d. random variables with law ν. The characteristic function of any stable law μ is of
the form

φ(t) = exp
{

iγt − c|t|α
[
1 + iβ

t

|t| tan
(π

2
α
)]}

,

where α ∈ (0, 2] \ {1}, γ ∈ R, |β| ≤ 1 and c ≥ 0. Moreover

– The sequence (an) is regularly varying of index 1/α, that is

an = Ln × n1/α,

where (Ln) is a nonnegative sequence satisfying L�nt�/Ln −−−−→
n→∞

1, for every t > 0 ((Ln) is slowly

varying).

– The sequence (bn) will be taken as bn = nm′
ν , where m′

ν = mν if α > 1 and m′
ν = 0 if α < 1 (this is

possible, see the proof of Thm. 9.34 of [5]).

When bn is fixed, there exist several choices for ((an), μ) in order to get (2.1) but, given ν, all non-degenerate
μ have the same characteristic exponent α.

• If α = 2, ν is in the domain of attraction of the normal distribution. For bn = nmν , μ can be
shown to be centered (using the comparison between ((

∑n
i=1 Xi) − bn)/an + ((

∑n
i=1 X̃i) − bn)/an and

((
∑2n

i=1 Xi) − b2n)/a2n).
– If σ2

ν < +∞ we take an =
√

n (that is Ln ≡ 1) and thus μ is N (0, σ2
ν), according to the central

limit theorem.
– If σ2

ν = +∞ then an = Ln
√

n for some Ln → +∞ (as one can check in the proof of [13] Thm. 5.17).
• If α ∈ (0, 2) \ {1}, the choice of (an) determines μ.
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From now on, we assume (an), (bn), and μ are fixed.

Let Tn be a BST. Taking u uniformly at random in Tn or Tn\∂Tn, the value |u| is “close” to 2 log n (see (4.1)
and [6]). Thus, if we assume that both marginals of the cu’s equal distribution ν, this incites us to set

αn := a2 log n = L2 log n × (2 log n)1/α and βn := b2 log n = 2m′
ν log n

as normalizing constants in the internal and global occupation measures of the branching random walks de-
fined by

μn =
1
n

∑
u∈Tn\∂Tn

δYu(|u|)−βn
αn

and μn =
1

2n + 1

∑
u∈Tn

δYu(|u|)−βn
αn

.

Theorem 2.1. If the marginals of the cu’s belong to the domain of attraction of μ, then

if α ∈ (0, 2) \ {1} or if α = 2 and σ2
ν = +∞ we have

μn
proba−−−−→
n→∞

μ and μn
proba−−−−→
n→∞

μ,

and if α = 2 and σ2
ν < +∞ we have

μn
proba−−−−→
n→∞

N (0, σ2
ν + m2

ν) and μn
proba−−−−→
n→∞

N (0, σ2
ν + m2

ν),

in the set of probability measures on R endowed with the weak topology.

In the following, we denote by μ∞,ν the limit measure. Notice that μ∞,ν is always deterministic and that its
characteristic exponent is the same as that of μ. The proof of Theorem 2.1 is relegated to Section 4.

2.2. The non-identically distributed case

We are now going to show that Theorem 2.1 holds true even if the marginals of the cu’s are not the same.
Let Λ� be a distribution on R

2 and ν0 and ν1 its two marginals. We assume that ν0 and ν1 are different. We
denote by Λ the distribution on R

2 defined by

Λ :=
1
2
(Λ� + Λ′), (2.2)

where Λ′ is the image of Λ� by (x, y) �→ (y, x). Let Y � and Y be the two branching random walks with
underlying tree Tn and with increments c�

u and cu having distribution Λ� and Λ. The construction of Y can be
seen as follows: for any u in Tn, we toss a fair coin, if it is tail then cu is distributed as Λ� and if it is head then
cu is distributed as Λ′.

Proposition 2.1. Let μ�
n, μ�

n, μn and μn be the internal and global occupation measures of Y � and Y . We have

μn
D= μ�

n and μn
D= μ�

n. (2.3)

Proposition 2.1 is an analogue of Proposition 7 in Marckert [20]. We give here the main arguments of his proof:
any binary tree Tn−1 marked with the cu’s corresponds, via a composition of transpositions, to a unique marked
tree obtained with the c�

u’s (the transposition around a node u is the map that exchanges the two subtrees rooted
in u). Two marked trees are said to be in the same equivalence class if and only if there exists a composition
of transpositions that associates one tree with the other one. Each class contains 2n−1 trees and one exactly
is marked with the c�

u’s. Moreover each binary tree Tn−1 can be marked with the cu’s in 2n−1 ways. Since
the underlying trees of a same class are equally likely BSTs and since the occupation measure is invariant by
transposition, the result (2.3) holds true.
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As a consequence of Proposition 2.1, the two rescaled occupation measures have the same limit (if any)
and thus we have the following result on the convergence of the occupation measure of the branching random
walk Y �.

Corollary 2.1. If the marginal distributions of Λ, defined in (2.2), belong to the domain of attraction of μ,
then

1
n

∑
u∈Tn\∂Tn

δY �
u (|u|)−βn

αn

proba−−−−→
n→∞

μ∞, 1
2 ν0+ 1

2 ν1
and

1
2n + 1

∑
u∈Tn

δY �
u (|u|)−βn

αn

proba−−−−→
n→∞

μ∞, 12 ν0+
1
2 ν1

.

in the set of probability measures endowed with the weak topology, where αn and βn are given in Section 2.

Remark 2.1. Using Corollary 2.1 for the case when c�
u = (−1, +1) a.s., we get

1
n

∑
u∈Tn\∂Tn

δ Y �
u (|u|)√
2 log n

proba−−−−−→
n→+∞

N (0, 1). (2.4)

Let un be a random node uniformly chosen in Tn\∂Tn, as a consequence of (2.4) we have

Y �
un

(|un|)√
2 logn

D−−−−−→
n→+∞

N (0, 1).

This particular case of cu’s have been recently studied by Kuba and Panholzer [15]; they show, among other
things, the above convergence. They also prove that the rate of convergence is of order O(1/

√
log n).

Sections 3.1 and 3.2 handle the study of the behavior of a random process named homogeneous fragmentation
and of the profile of another type of random trees named the recursive trees. The results we obtain on both
processes are direct consequences of Theorem 2.1 and Corollary 2.1.

3. Applications

3.1. Empirical measure of homogeneous fragmentations

Here we are interested in homogeneous fragmentations with no erosion, no loss of mass and where a fragment is
always divided, at random, into two parts. The homogeneous fragmentations (and more general fragmentations)
have been studied a lot these last years, particularly by Bertoin (see e.g. [2]). Following the steps in Chauvin
et al. [8], we give a definition of the fragmentation process (F(t))t≥0 of the interval (0, 1) we are interested in.
This model contains not only the state at time t but also the history of the process. Let F(0) := (0, 1) and
t1 ∼ Exp(1), an exponential random variable, associated with F(0), seen as the lifetime of the interval. At time
t1, the process F jumps, the interval F(0) splits into two parts I0 and I1 such that the size of the left fragment
is given by a random variable Z having distribution ν0 on (0, 1): F(t1) := (I0, I1) = ((0, Z), (Z, 1)). We denote
by ν1 the law of 1 − Z, the length of I1. After each jump time the fragments of F behave independently of
each other and each fragment splits after an Exp(1) distributed lifetime into two parts. When Iu splits, we
denote by Iu0 and Iu1 the left and right fragments and we call them the children of Iu. Conditionally on Iu, the
length of the left interval, denoted by |Iu0|, is |Iu|Zu where Zu is an independent copy of Z. Thanks to the lack
of memory of the exponential distribution, when n fragments are present, each of them will split first equally
likely. Of course the behavior of the process depends on ν0 and ν1, the laws of the dependent variables Zu and
1 − Zu. We call this fragmentation an homogeneous fragmentation with law ν0.

In this construction, the fragments are naturally indexed by the leaves of a binary tree that encodes the
history of the fragmentation. More formally, a continuous binary tree process (Tt)t≥0 on B can be associated
with (F(t))t≥0. We define Tt by the set of its leaves

∂Tt := {u, Iu ∈ F(t)}.
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Let tn be the nth jump time of the processes (Tt) and (F(t)). Thanks to [8] we have the following results:

tn
log n

n→+∞−−−−−→ 1 a.s.

and, for any n ≥ 1, Ttn is a BST of size n.

The size of the fragments in this fragmentation process can be described as an homogeneous fragmentation
with the formalism of Bertoin, that is giving the dislocation measure νd on S := {(x1, x2, . . .); s.t. x1 ≥ x2

≥ . . . ≥ 0,
∑

xi = 1}. Here, the measure νd is defined by

∫
S

f(x)νd(dx) =
∫ 1

0

f(s ∨ (1 − s), s ∧ (1 − s), 0, . . .)ν0(ds),

for every non-negative measurable f .
We are interested in the empirical measure of the logarithm of the size of the fragments of F defined by

ft :=
∑

u∈∂T(t)

δ− log |Iu|.

We thus have
ftn =

∑
u∈∂Ttn

δYu(|u|),

where Y is the branching random walk on the binary search tree Ttn , with increments having the following
distribution: for any u ∈ Ttn , Xu0 is distributed as − log(Zu) and Xu1 is distributed as − log(1 − Zu), where
(Zu) is a family of i.i.d. r.v. having law ν0. We denote by ν̂0 and ν̂1 the two distributions of the increments.

The study of fragmentation processes is concerned with the behavior of the fragment sizes. In [2], Bertoin
gives a result on

∑
|Iu|δ− log |Iu|, the empirical measure of the logarithm of the size of the fragments balanced by

their own size. He shows, under some assumptions on the dislocation measure of homogeneous fragmentations,
that the rescaled measure converges to a Gaussian law. Here we show, in a more general non-Gaussian case,
that the simple occupation measure ftn , suitably rescaled, converges weakly to a deterministic measure (as the
limiting distribution of Bertoin). The following result is a direct consequence of Corollary 2.1, used for the
external occupation measure.

Theorem 3.1. Let (F(t)) be an homogeneous fragmentation with law ν0. If 1
2 ν̂0 + 1

2 ν̂1 belongs to the domain
of attraction of μ, then

1
n + 1

∑
Iu∈F(tn)

δ− log |Iu|−βn
αn

proba−−−−−→
n→+∞

μ∞, 1
2 ν̂0+

1
2 ν̂1

(3.1)

in the set of probability measure on R endowed with the weak topology, where αn and βn are given in Section 2.

3.2. Profile of recursive trees

A recursive tree process is a random sequence (Tn, n ≥ 1) of plane trees, where Tn has n nodes, built
recursively under the following dynamics: T1 is reduced to a simple node; the tree Tn+1 is obtained from Tn

by adjoining a child to one of the nodes. The choice is uniform over the nodes and the new node is inserted as
the rightmost son. Notice that T2 is deterministic and that, for n ≥ 3, recursive trees of size n are not equally
likely. Let P̃n be the law on Pn := {T ∈ P , #T = n} induced by this construction (that is a recursive tree of
size n is a random element of Pn under P̃n). Figure 3 shows two recursive trees of size 4 with the possible ways
to construct them.

This process of plane trees has been first proposed to study the spread of epidemics (Moon, 1974) and many
parameters on that trees have been studied: the height, the depth of nodes, the path length, the maximal
degree... (see e.g. Smythe and Mahmoud [19]).
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Figure 3. Two possible recursive trees of size 4 with the different ways to obtain them (the
flags indicate where the nodes are inserted). Since T4 is obtained from two different recursive
trees of size 3, unlike T′

4, we have P̃4(T4) = 1
3 and P̃4(T′

4) = 1
6 .

We are interested in Xn(k), the number of nodes in the recursive tree Tn at level k. Let (pn(k))k be the
empirical distribution function of the profile of Tn defined by

pn(k) :=
k∑

i=1

Xn(i)
n

·

We define the rescaled cumulated profile qn by

qn(λ) := pn(�log n + λ
√

2 log n�) , ∀λ ∈ R. (3.2)

We have the following theorem.

Theorem 3.2.
(qn(λ))λ∈R

proba−−−−−→
n→+∞

(P(N ≤ λ))λ∈R

for the Skorohod topology, where N is a random variable with law N (0, 1
2 ).

The proof of Theorem 3.2 is relegated to Section 4.2.
Recently Fuchs et al. [11] have studied the profile of recursive trees; using the contraction method and the

method of moments they proved that Xn(k), normalized by its mean, converges in distribution to a random
variable which is the fixed point of an explicit equation (their results are of a different nature from Thm. 3.2).

4. Proofs

4.1. Proof of Theorem 2.1

The proof of Theorem 2.1 we detail below is a consequence of the convergences of the mean and of the
variance of the empirical distribution function associated with μn (see Lems. 4.1 and 4.2). This approach is
different from Janson and Marckert [12]’s one to show the convergence of the occupation measure of a branching
random walk on conditioned Galton-Watson (GW) trees to ISE, where the fact that normalized GW trees have
a limit (the Aldous continuum random tree) is crucial. There is no similar result for BSTs in the literature.

In this section, we first prove the convergence of μn. For the convergence of μn, the proof runs along the
same lines, see Remark 4.1 for some details.

Lemma 4.1. Under the assumptions of Theorem 2.1, we have ∀x ∈ R

E(μn((−∞, x]) −−−−→
n→∞

μ∞((−∞, x]).



294 E. FEKETE

Proof. Let un be chosen equally likely among the nodes of Tn\∂Tn. We get the equalities

E(μn((−∞, x]) = E

⎛
⎝ 1

n
×

∑
u∈Tn\∂Tn

δYu(|u|)−βn
αn

((−∞, x])

⎞
⎠

= E

(
1l(−∞,x]

(
Yun(|un|) − βn

αn

))
.

By (1.2), this is equal to Cn := P

((( ∑
v
un

Xv

)
− βn

)
/αn ≤ x

)
.

The sum contains |un| terms. In terms of quicksort the random variable |un| is the cost of a successful search
in a labeled binary search tree of size n. Louchard [16] shows that

|un| − 2 log(n)√
2 log(n)

D−→ N (0, 1). (4.1)

Let Hε,n be the event {||un| − 2 log(n)| ≤ (2 log(n))
1
2 +ε}, with ε ∈]0, 1

2 [. Since P(Hε,n) goes to 1, by (4.1), Cn

and P
(
((
∑

v
un

Xv) − βn)/αn ≤ x
∣∣Hε,n

)
have the same limit (if any).

The sum (
∑

v
un

Xv) − βn has the following representation

dn∑
i=1

(Xi − m′
ν) +

|un|−dn∑
i=1

(X̃i − m′
ν) + m′

ν(|un| − 2 logn), (4.2)

where dn = 2 logn − (2 log n)
1
2+ε and (Xi) and (X̃i) are two independent families of i.i.d. random variables

with common law ν. Recall that m′
ν is the mean of ν if it is finite, and zero otherwise. To end the proof of

Lemma 4.1 we study the asymptotics of the three terms in (4.2).

• The term
dn∑
i=1

(Xi−m′
ν)/αn converges in distribution to the stable law μ (recall that μ = N (0, σ2

ν) when α = 2

and σ2 < +∞).

• It is known (see Thm. 16.14 of [13]) that (2.1) implies the convergence of the process

(�ent�∑
i=1

(X̃i −m′
ν) /(fnt),

t ≥ 0

)
in the Skorohod space, to a stable Levy process of index α, if fn ∼ Ln × e1/α

n with en → +∞ and (Ln)

is slowly varying. Thus ⎛
⎝�cnt�∑

i=1

(X̃i − m′
ν) / αn, t ≥ 0

⎞
⎠ D−−−−→

n→∞
0,

where cn := 2(2 log n)
1
2+ε. Since, if Xn → X for the Skorohod topology then max(Xn) → max(X) in distribu-

tion, we get

max
1≤k≤cn

k∑
i=1

(X̃i − m′
ν) / αn

D−−−−→
n→∞

0.

On Hε,n, |un| − dn is smaller than cn. Hence, we have shown that
∑|un|−dn

i=1 (X̃i − m′
ν)/αn goes to zero in

probability.
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• For the third term in (4.2) normalized by αn, when σ2
ν < +∞ we have αn =

√
2 log n and m′

ν = mν . Thus,
by (4.1)

m′
ν

|un| − 2 logn

αn

D−−−−→
n→∞

N (0, m2
ν).

When α ∈ (0, 2)\{1} or when α = 2 and σ2
ν = +∞ (recall that in this case Ln → +∞), we have αn/

√
2 log n →

+∞, and then, by (4.1)

m′
ν

|un| − 2 logn

αn

proba−−−−→
n→∞

0.

Now, since the extremal terms in (4.2) are independent and the middle one vanishes in probability, the result

follows by using, for example, Theorem 25.4 of [4] (that is, if Xn
D−→ X and Yn

proba−−−→ 0 then Xn+Yn
D−→ X). �

In (4.2), the two terms that contribute to the limit are the first and the third one (corresponding to a centered
version of the law, and to a corrected term due to the mean of the increments). When σ2

ν < +∞, these two
terms have the same order. When σ2

ν = +∞ the first one dominates.

Lemma 4.2. Under the assumptions of Theorem 2.1, we have ∀x ∈ R

V(μn((−∞, x])) −−−−→
n→∞

0.

Proof. Let un and vn be two nodes uniformly and independently chosen on Tn\∂Tn. We get for any x ∈ R and
any n ∈ N

E(μn((−∞, x]))2 = E

(
1l(−∞,x]

(
Yun(|un|) − βn

αn

)
1l(−∞,x]

(
Yvn(|vn|) − βn

αn

))

= P

(
Yun(|un|) − βn

αn
≤ x,

Yvn(|vn|) − βn

αn
≤ x

)
. (4.3)

Let un ∧ vn be the deepest common ancestor of un and vn. To compute the limit in (4.3) we investigate the
dependence between Yun(|un|) and Yvn(|vn|). This dependence comes from the values of the ancestors of un∧vn

which contribute both to Yun(|un|) and to Yvn(|vn|) and can also come from the values of the children of un∧vn.
Let Δun,vn be the path distance between un and vn in Tn. Mahmoud and Neininger [18] have shown

Δun,vn − 4 log(n)√
4 log(n)

D−−−−→
n→∞

N (0, 1). (4.4)

Using the relation Δun,vn = |un| + |vn| − 2|un ∧ vn|, (4.4) and (4.1) one gets, for any ε > 0,

|un ∧ vn|
(2 log(n))

1
2+ε

proba−−−−→
n→∞

0. (4.5)

In order to get the limit in (4.3) we write

Yun(|un|) D= X̃1 +
|un∧vn|∑

i=1

Xi +
|un|−|un∧vn|∑

i=2

X̃i (4.6)

and

Yvn(|vn|) D= X̂1 +
|un∧vn|∑

i=1

Xi +
|vn|−|un∧vn|∑

i=2

X̂i, (4.7)
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where the random variables (Xi)i≥1, (X̃i)i≥2 and (X̂i)i≥2 are all i.i.d. with law ν; X̃1 and X̂1 are the values
attached to the children of un ∧ vn and may be dependent. Using (4.5) we prove, with the same arguments as
those in the proof of Lemma 4.1, that the common sum of (4.6) and (4.7), that is the sum of the Xi, normalized

by αn, goes to zero in probability. Moreover we have
X̃1

αn

proba−−−−−→
n→+∞

0 and
X̃1

αn

proba−−−−−→
n→+∞

0. Whence, using the

independence between the remaining sums of (4.6) and (4.7), that is the sum on the X̃i and the sum on the X̂i,
we get that the quantity (4.3) has the same limit (if any) as

P

⎛
⎝(−βn +

|un|−|un∧vn|∑
i=2

X̃i)/αn ≤ x

⎞
⎠P

⎛
⎝(−βn +

|vn|−|un∧vn|∑
i=2

X̂i)/αn ≤ x

⎞
⎠ .

Using the same methods as in Lemma 4.1, we finally find that E
[
(μn(] −∞, x]))2

]
has the same limit as

[E(μn(] −∞, x]))]2. �

Proof of Theorem 2.1. Thanks to Lemmas 4.1 and 4.2, for any x ∈ R, the sequence (Fn(x)) converges in
probability to F∞,ν(x), where Fn and F∞,ν are respectively the distribution functions of μn and of μ∞,ν (F∞,ν

and μ∞,ν are deterministic).
A well known result of analysis is the following: if a sequence of bounded increasing functions, having limits

zero at −∞ and one at +∞, converges pointwise to a continuous function then the convergence is uniform.
Thus, since the function F∞,ν is continuous, we deduce the uniform convergence of Fn to F∞,ν in probability.
This entails the weak convergence of μn to μ∞,ν in probability. �

Remark 4.1. We proved Theorem 2.1 for the internal occupation measure μn. To prove the result for μn it
suffices to find similar results to (4.1) and (4.5) for the external nodes. Brown and Shubert [6] have shown that
the asymptotics (4.1) is true for un uniform on ∂Tn and we obtain (4.5) for the leaves using (4.4), a proof runs
as follows: let CI and CE be the sets

CI := {(u, v) ∈ (Tn\∂Tn)2 such that |Δu,v − 4 logn| > (4 log n)
1
2+ε}.

and
CE := {(u, v) ∈ (∂Tn)2 such that |Δu,v − 4 log n| > (4 log n)

1
2+ε + 2}.

Using the projection from CE to CI , which returns the parent of each leaf, we get #CE ≤ 4 × #CI . Thus
#CE/n2 goes to zero in probability and, using the relation Δu,v = |u| + |v| − 2|(u ∧ v)| we get that (4.5) holds
for un and vn uniformly and independently chosen on ∂Tn.

Moreover, the main result is restricted here to α 
= 1, but the symmetric case for α = 1 also works, since we
can take bn ≡ 0 for the convergence (2.1).

4.2. Proof of Theorem 3.2

Let us see that Theorem 3.2 is a consequence of Corollary 2.1. Following the formalism of Marckert [20], we
define a map Φ, named rotation correspondence, from the set P of plane trees to the set B of complete binary
trees (this is referred to as the natural correspondence in Knuth [14]). With a plane tree Tn is associated a
binary tree Tn−1 such that Φ(Tn) = Tn−1. It means that to each node a of Tn corresponds an internal node of
Tn−1, denoted by Φ(a), verifying the following three points:

(a) If a is the leftmost son of the root of Tn then Φ(a) = ∅.
(b) ({a, b} ⊂ Tn, b = a0) ⇔ ({Φ(a), Φ(b)} ⊂ Tn−1, Φ(b) = Φ(a)0).
(c) ({a, b} ⊂ Tn, a = dc, b = d(c + 1)) ⇔ ({Φ(a), Φ(b)} ⊂ Tn−1, Φ(b) = Φ(a)1).
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Figure 4. The three steps of the map φ.

Tn−1 is obtained by adding the leaves to the internal nodes. (b) means that a relation father-leftmost son in Tn

corresponds to a relation father-left son in Tn−1. (c) means that a relation between a node and its first brother
on its right in Tn corresponds to a relation father-right son in Tn−1. Figure 4 illustrates why the correspondence
is called a rotation. To get Tn−1 from Tn, remove the root, keep the edges father-leftmost son and add an edge
between each node and its first brother on its right (if any). Make a π/4 rotation. This gives the internal nodes
of Tn−1. Add the leaves to obtain a complete binary tree.

Let Ψ := Φ−1. The replacement of a leaf by an internal node in a complete binary tree T results in the
addition of a node as a rightmost son in Ψ(T ). Thus, since the insertion in both processes is uniform, the
random process of complete binary trees (Φ(Tn), n ≥ 1) is a BST process: this implies that both processes
(Φ(Tn), n ≥ 1) and (Tn, n ≥ 0) have the same law. Hence the random variables on Pn+1 can be seen as random
variables on Bn through the map Ψ.

From now on we denote by Tn a recursive tree and by Tn−1 the BST Φ(Tn). For any u = d1d2 . . . dk ∈ Tn−1,
we denote by L(u) the left-depth of u, that is L(u) = #{i | di = 0} (L(u) is the number of left-steps from the
root to u). By the rotation correspondence the height of a node a in Tn−{∅} minus 1 is equal to the left-depth
of Φ(a) in Tn−1. In order to count the left-depth of each internal node, we construct a branching random walk
Y � with underlying tree Tn−1 and where the law of the increments is given by

P
(
c�
u = (1, 0)

)
= 1, ∀u ∈ U

b.

With these increments, Y �
u (|u|) is equal to L(u) and is also equal to |Ψ(u)| − 1. Thus we have

Xn(k) = #{a ∈ Tn, |a| = k}
= #{u ∈ Tn−1, L(u) = k − 1}
= #{u ∈ Tn−1, Y

�
u (|u|) = k − 1}.

The occupation measure associated with Y � is

μ�
n−1 =

1
n − 1

∑
u∈Tn−1\∂Tn−1

δY �
u (|u|)−log(n−1)√

2 log(n−1)

.

We thus have

pn(k) =
n − 1

n
μ�

n−1

((
−∞,

k − 1 − log(n − 1)√
2 log(n − 1)

])
.
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Using Corollary 2.1 for the distribution Λ given by

P(cu = (1, 0)) = P(cu = (0, 1)) =
1
2
, ∀u ∈ U

b,

we get

μ�
n−1

proba−−−−−→
n→+∞

N (0,
1
2
)

in the set of probability measures for the weak topology, which ends the proof of Theorem 3.2. �

5. Conclusion and perspectives

Two important tools of the proof of Theorem 2.1 are the properties of the stable laws and some asymptotics
properties of the BSTs. If we consider the branching random walk with another type of underlying trees that
still verify (4.1) and (4.5) then an analog of Theorem 2.1 can be proved. It seems to be the case of the recursive
trees studied in Section 3.2.
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