
ESAIM: PS October 2010, Vol. 14, p. 338–342 ESAIM: Probability and Statistics

DOI: 10.1051/ps:2008038 www.esaim-ps.org

ALMOST SURE FUNCTIONAL LIMIT THEOREM FOR THE PRODUCT
OF PARTIAL SUMS
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Abstract. We prove an almost sure functional limit theorem for the product of partial sums of i.i.d.
positive random variables with finite second moment.
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1. Introduction and main result

Limiting distributions of the product of partial sums of positive random variables have been widely studied in
recent years. Arnold and Villaseñor [1] proved the limit theorem for the partial sum of a sequence of exponential
random variables. Rempa�la and Weso�lowski [4] proved it for any independent and identically distributed (i.i.d.)
random variables with finite variance. Later, Qi [5] considered a sequence of random variables with α-stable
distribution and established the limit distribution of the product of the partial sums when 1 < α ≤ 2.

Recently, Zhang and Huang [6] proved the following invariance principle of the product of partial sums of
i.i.d. positive random variables with mean μ > 0 and variance σ2:
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The goal of this paper is to obtain an almost sure version of the above invariance principle which can also be
a functional version of the almost sure limit theorem obtained by Gonchigdanzan and Rempa�la [3]. Here is the
result:

Theorem 1.1. Let (Xk)k≥1 be a sequence of i.i.d. positive random variables with mean μ > 0 and variance σ2

and let Sn = X1 + · · · + Xn. Define a process {ξn(t) : 0 ≤ t ≤ 1} by
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Let Ft be the distribution function of the random variable on the right-hand side of (1.1). Then
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P (ξk(t) ≤ x) −→ Ft(x) as n → ∞. (1.3)

Corollary 1.1. Let (Xk)k≥1 be a sequence of i.i.d. positive random variables with mean μ > 0 and variance
σ2. Then we have
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2. Auxiliary results and proofs

Throughout the paper log x and log log x stand for ln(e∨n) and ln ln(n∨ ee) respectively, and “�” is meant
for the big “O” notation.

2.1. Auxiliary results

Lemma 2.1. Let (Yn)n≥1 be a sequence of random variables. Set Sn = Y1 + · · · + Yn. Then we have
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Lemma 2.2. Let (Xk)k≥1 be a sequence of i.i.d. positive random variables with mean μ and variance σ2. Then
setting Sn = X1 + · · · + Xn we have
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Proof. Note that log(x + 1) = x − r(x) where r(x)/x2 → 1
2 as x → 0. By the strong law of large numbers we

have Sk/k − μ
a.s.−→ 0 as k → ∞.

Thus by the law of iterated logarithm we get
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2.2. Proof of Theorem 1.1

We use Berkes and Dehling’s [2] technique to prove our theorem. Observe that
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where ŝn =
∑[nt]

i=1 bi,[nt](Xi − μ). From Berkes and Dehling [2] (p. 1647), to prove (2.1) it suffices to show that
for any bounded Lipschitz function f on D[0, 1] we have
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√

k) −Ef(ŝk/σ
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By the Lipschitz property of f
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Now applying Lemma 2.1 to M1 we obtain
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where 0 < γ′ < 1/2 − γ.
On the other hand E(ζkζl) � 1 because ζk is bounded . Hence we have the following estimate for E(ζkζl):
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Thus (2.4) and (2.5) immediately imply (2.3) which completes the proof of Theorem 1.1. �
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