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Abstract. This paper investigates the problem of maximizing the
revenue of a telecommunications operator by simultaneously pricing
point-to-point services and allocating bandwidth in its network, while
facing competition. Customers are distributed into market segments,
i.e., groups of customers with a similar preference for the services. This
preference is expressed using utility functions, and customers choose
between the offers of the operator and of the competition according to
their utility. We model the problem as a leader-follower game between
the operator and the customers. This kind of problem has classically
been modeled as a bilevel program. A market segmentation is usually
defined by a discrete distribution function of the total demand for a
service; in this case, the problem can be modeled as a combinatorial
optimization problem. In this paper, however, we motivate the use of
a continuous distribution function and investigate the nonlinear con-
tinuous optimization problem obtained in this case. We analyze the
mathematical properties of the problem, and in particular we give a
necessary and sufficient condition for its convexity. We introduce meth-
ods to solve the problem and we provide encouraging numerical results
on realistic telecommunications instances of the problem, showing that
it can be solved efficiently.
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1. Introduction

Revenue management techniques have had such a successful application in the
airline industry that various other industries have been borrowing ideas to apply
to their field. For example, there were successful adaptations to car rental or hotels
(e.g., see McGill and van Ryzin [23] for more details).

Lately, various applications to the telecommunications industry have been pro-
posed. Nair and Bapna [24] defined an application for Internet Service Providers
to manage their revenue by controlling the connections to their modem pool so
that quality of service is ensured to their highest paying customers. Keon and
Anandalingam [18] proposed a dynamic pricing scheme for multi-service networks
by offering a discount as an incentive for a customer to shift its demand from
a congested period to another (less congested) period. In [17] they also pro-
posed a pricing and resource allocation model to guarantee quality of service in a
multi-service network. Bouhtou et al. [4,5] introduced a framework to optimize
telecommunication link prices using shadow pricing. Bouhtou et al. [8,15] studied
a bilevel model for pricing arcs in a network.

In this paper, we consider a telecommunications operator willing to allocate
bandwidth in its network based on the revenue generated by the services it sells,
while taking into account the competition. The telecommunications services pro-
vided, which use the available bandwidth, are defined by their price and their
characteristics (data rate, network type, etc.). For example, these services could
be leased lines or virtual private networks. In order to take into account the com-
petition, we model the behavior of the customers in the market by their utility for
a service. Using statistical tools, the customers can be classified in various groups
having similar needs and behavior, called market segments. The operator wants
to define the price of its offers on each of the targeted markets and determine the
bandwidth to allocate to each offer in its network. The customers want to get the
best offer, choosing between the operator and the competitors, according to their
preferences. A model for this problem was introduced by Côté et al. [11] in the
context of the airline industry. Bouhtou et al. [6,7] extended it to the telecom-
munications industry. Fortin et al. [13] also proposed a model for dealing with
congestion in the network, which is also a way of modelling capacity.

This kind of problems, a Stackelberg game, has traditionally been modeled as
a bilevel program (see for instance Labbé et al. [19,20], Brotcorne et al. [9,10],
Côté et al. [11]). Bouhtou et al. [7] showed that in the case of one offer on
each market it can be reformulated as a non-concave resource allocation whose
objective function is continuous and piecewise linear. In this formulation, the
decision variables are the capacities, and the prices are computed implicitly. The
problem results in finding which market segments to target on each market and
allocating resources accordingly. The model can then solved efficiently using mixed
integer linear programming techniques.
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An issue in the studies cited before is that the market segmentation is supposed
to be discrete, that is the demand of each market is distributed over a discrete
number of market segments. This implies an unrealistic behavior of the clients:
they choose to buy (or not) bandwidth according to the price and thus a small
change in the price of a product can make an entire market segment choose the
competition, while in reality not all the customers of a market segment have exactly
the same utility. One way of dealing with such a behavior would be to use a
random utility model, which leads to the use of discrete choice models (e.g., see
Ben-Akiva and Bierlaire [2] for the use of such models in transportation). This
leads to interesting and difficult problems [14], but this is out of the scope of
this paper. Another issue is the lack of precision of the data resulting from the
statistical studies that give the market segmentation; indeed, this data gives a
discrete distribution function, while a continuous distribution function might give
a better approximation of the real situation (although it might not be as intuitively
interpreted). In this paper, we address these problems by studying the case of a
continuous demand distribution. Moreover, there is a mathematical interest in
using continuous distributions. In the discrete case, the problem is combinatorial,
while in the continuous case, we show that under some conditions the problem is
convex, and thus “easy” to solve using nonlinear solvers.

A continuous model for classes of customers was previously used by Marcotte
and Zhu [22] to model traffic equilibria. Marcotte et al. [21] also recently studied
a continuous model for a bilevel programming approach to a Stackelberg game.
The context of their work is a problem of pricing the legs of a flight. They consider
a continuous market segmentation and study the mathematical properties of the
bilevel programming model they obtain. They propose a descent method to solve
the problem. Our study differs on two aspects: our model sets a price on a path of
the network, and not its arcs; furthermore, we use a different modeling approach
for a similar problem.

The objective of this paper is to study the feasibility of solving this problem
using a continuous demand distribution. Our contribution is a mathematical study
of the model that leads to a necessary and sufficient condition on the distribution
function for convexity of the problem. Using a distribution function satisfying this
condition, we also provide numerical experiments on realistic networks connecting
major French cities.

This paper is organized as follows. In Section 2 the problem is introduced. In
Section 3, two bilevel programming models are given for the problem, one with
a continuous demand distribution, the other with a discrete demand distribution.
In Section 4, we recall two solving methods for the discrete case, using mixed
integer formulations of the problem [6,7]. In Section 5, the resource allocation
formulation [7] is adapted to the continuous case. Mathematical properties of the
objective function in this case are given, and a necessary and sufficient condition
for convexity of the problem is obtained. In Section 6, the Weibull distribution,
which satisfies the necessary and sufficient condition, is studied as an example. In
Section 7, algorithmic aspects are presented. A solution method for the continuous
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case using the Weibull function is given. Finally, in Section 7.3, numerical results
and comparisons between both models are presented.

2. The joint pricing and resource allocation problem

The problem we study here was largely introduced in [7]. It considers the
optimization of the revenue of an operator who, using its own network, wants to
provide competitive offers for point to point telecommunication services in a set
of markets where the competition is active. A market is defined by one origin-
destination pair in the network.

In each market, the operator and the competition have one offer each (thus, we
will refer indifferently to markets or offers). With each offer is associated one path
on the network along which the traffic of the clients is sent. Each offer k we consider
is characterized by two parameters: its tariff Tk and an aggregated value of its
features Dk (data rate, type of network, network availability and reliability, etc.).
For the competition, these parameters are assumed to be publicly available, and
they are static, i.e., the competition does not change its offers when the operator
sets its tariffs. We suppose that the arc capacities in the operator network are
limited. If there is not enough capacity to meet the total demand, we assume
that a competitor will want to offer services on this market. This implies that the
competition can be supposed to have infinite capacity on its network. The clients
have different perceptions of the services offered. Hence, groups of customers with
similar needs and perceptions of the offers can be identified, and form what we
refer to as market segments. In our model, to define how valuable the features
of an offer are for a segment s, a unit price αs is used and a money valuation is
introduced as a linear function: αs ×Dk.

To model the perception of the global cost of an offer by the clients, the “ap-
parent price” concept is used. It is a compromise between the nominal price (tariff
of the offer) and the client’s money valuation of the features of the offer. Our ap-
parent price model is simply obtained by adding the nominal tariff to the client’s
money valuation function. Hence, the clients make their decision according to
the apparent price of each offer, and choose the lowest one. We assume that the
clients can split their demand between the operator and the competition. This
might happen if the operator provides a lowest apparent price but has not enough
capacity to satisfy the demand. We also suppose that we have a forecast of the de-
mand for each market, and a distribution function of this demand over the market
segments.

In order to model the problem, we represent the telecommunication network of
the operator as a directed graph N = (V,A) with a transmission capacity on each
arc; A is the set of indices of the arcs of the network. We denote by M the set of
indices of the markets and S the set of indices of the market segments.
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The input data defining the problem are:

dk total demand of all clients on market k;
φk(s) demand of segment s on market k;

φk(.) is the distribution function of the demand on market k;
T c

k competition tariff on market k;
T k maximum tariff that can be set on market k (supposed greater than

T c
k );

Dk value of features of the operator offer on market k;
Dc

k value of features of the competition offer on market k;
αs unit price for the features of an offer associated with a segment s,
Πs(T,D) apparent price function of segment s;

where T is the tariff of the offer and D the value of its features;
Πs(T,D) = T + αs ×D;

A(k) routing path used for the offer k of the operator;
ca resource capacity of arc a in the network.

Before introducing the model, let v1
k(s) (resp. v2

k(s)) be the traffic which will
be induced by segment s on the path corresponding to the offer of the operator
(resp. the competition) on market k (one must have v1

k(s) + v2
k(s) = φk(s)). Let

Tk denotes the operator tariff to set on market k and qk denotes the amount
of capacity to allocate to the routing path used on market k. The components
v1

k(s), v2
k(s), Tk and qk are the main variables of the optimization problem we will

deal with.

3. Bilevel optimization models

The problem is a Stackelberg game that is classically modeled using a bilevel
program (Labbé et al. [19,20], Brotcorne et al. [9,10], Côté et al. [11]). Two
similar models can be written, using a continuous demand distribution, or by
discretizing this distribution.

3.1. Model Based on a continuous demand distribution

To define a continuous model, without loss of generality, we suppose the set
of the segments S is represented by the interval [0,+∞[ in the real set R and we
will confuse each s in S with αs its unit price valuation related to the features of
an offer (i.e., αs = s). We also suppose that the demand distribution φk(.) is a
positive continuous function. In this case, the joint pricing and allocation resource
optimization model is given as follows:

(Pc) max
Tk,v1

k(s),qk

∑
k∈M

Tk

∫
s∈S

v1
k(s)ds (1)

s.t.
∑

k∈M|a∈A(k)

qk ≤ ca ∀a ∈ A (2)
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T̄k ≥ Tk ≥ 0 ∀k ∈ M (3)

min
v1

k(s),v2
k(s)

∑
k∈M

∫
s∈S

Πs(Tk, Dk)v1
k(s)ds+

∑
k∈M

∫
s∈S

Πs(T c
k , D

c
k)v2

k(s)ds (4)

s.t. v1
k(s) + v2

k(s) = φk(s) ∀k ∈ M, ∀s ∈ S. (5)∫
s∈S

v1
k(s)ds ≤ qk ∀k ∈ M (6)

v1
k(s), v2

k(s) ≥ 0 ∀k ∈ M, ∀s ∈ S (7)

From the operator’s point of view, the objective is to maximize its revenue (Eq. (1))
while allocating capacities for each service that do not exceed physical (or already
pre-allocated) capacities of each link (constraint (2)). The tariffs are non-negative
and bounded (constraint (3)).

From the clients’ point of view, the objective is to minimize the price they pay to
either the operator or the competition (Eq. (4)), considering the apparent prices
corresponding to the features offered. The clients want all their demand to be
satisfied (constraint (5)), while it can only be met up to the allocated capacity on
the operator’s network (constraint (6)). The traffic is non-negative (constraint (7)).

3.2. Model based on a discrete demand distribution

By sampling the demand distribution, one can obtain a discrete model for the
problem:

(Pd) max
Tk,v1

k(s)

∑
k∈M

Tk

∑
s∈S

v1
k(s)

s.t.
∑

k∈M|a∈A(k)

qk ≤ ca ∀a ∈ A

T̄k ≥ Tk ≥ 0 ∀k ∈ M
min

v1
k(s),v2

k(s)

∑
k∈M

∑
s∈S

Πs(Tk, Dk)v1
k(s) + Πs(T c

k , D
c
k)v2

k(s)

s.t. v1
k(s) + v2

k(s) = φk(s) ∀k ∈ M, ∀s ∈ S∑
s∈S

v1
k(s) ≤ qk ∀k ∈ M

v1
k(s), v2

k(s) ≥ 0 ∀k ∈ M, ∀s ∈ S.

4. Solving the model based on a discrete demand

distribution

4.1. Classical approach

As shown for instance in [6,9,10,19,20], using the Karush-Kuhn-Tucker con-
ditions for the lower level linear program, the problem can be reformulated as
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a single level nonlinear mathematical program with complementarity constraints.
The complementarity constraints can be linearized using binary variables and “big
M” constants in order to obtain a mixed integer linear program (MILP). Using this
approach, Côté et al. [11] made experiments on airline networks; Bouhtou et al. [6]
made similar experiments on telecommunications networks. With both types of
networks, this approach is able to solve only small instances. The solver cannot
handle the large number of binary variables that this problem induces. Another
difficulty is induced by the capacity constraints, that couple the markets. On a
telecommunications network, many routes can share a link, and thus this makes
the problem highly combinatorial in nature.

4.2. Approach based on a resource allocation model

To address the main difficulties due to the MILP approach to the bilevel pro-
gram, Bouhtou et al. [7] introduce an alternative approach where the optimization
problem is considered as a resource allocation problem with a particular objective
function. In this new model, the decision variables are restricted to the allocated
capacities qk for each offer while the tariff variables are handled implicitly. As
shown in [7], the problem (Pd) can be reformulated as follows:

(P̃ )

max
qk≥0

∑
k∈M

Rk(qk)

s.t.
∑

k∈M|a∈A(k)

qk ≤ ca ∀a ∈ A

where Rk(qk) is the optimal value of the revenue that could be provided by the
market k when its allocation capacity is set to qk; it is given by:

Rk(qk) = max
Tk,v1

k(s)
Tk

∑
s∈S

v1
k(s)

s.t. T̄k ≥ Tk ≥ 0

min
v1

k(s),v2
k(s)

∑
s∈S

Πs(Tk, Dk)v1
k(s) +

∑
s∈S

Πs(T c
k , D

c
k)v2

k(s)

s.t. v1
k(s) + v2

k(s) = φk(s) ∀s ∈ S∑
s∈S

v1
k(s) ≤ qk

v1
k(s), v2

k(s) ≥ 0 ∀s ∈ S.

In [7], it is shown that in the discrete case the value function Rk(.) is well defined
as a continuous, non-decreasing, piecewise linear function, with alternating linear
and constant pieces (see Fig. 1).
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qk

Rk(qk)

Figure 1. Example of an objective function Rk(qk).

In [7], this model is also formulated as a MILP, using the so-called multiple
choice formulation: binary variables are introduced in order to select the linear
pieces of the function on each market, and one must choose exactly one of the
linear pieces for each market.

This MILP was solved using the branch-and-cut algorithm from CPLEX. The
results obtained and reported in [7] show great improvements compared to the
MILP approach for the bilevel model, and optimal solutions to instances that
could not be solved before are found.

5. Study of the model with a continuous demand

distribution function

In the case where the demand distribution functions φk(.) are continuous, as
in the previous section, the problem can also be reduced to a resource allocation
optimization model.

The same optimization problem formulation (P̃ )

(P̃ )

max
qk≥0

∑
k∈M

Rk(qk)

s.t.
∑

k∈M|a∈A(k)

qk ≤ ca ∀a ∈ A
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can naturally be used but the objective components Rk(qk) are defined by

Rk(qk) = max
Tk,v1

k(s)
Tk

∫
s∈S

v1
k(s)ds

s.t. T̄k ≥ Tk ≥ 0

min
v1

k(s),v2
k(s)

∫
s∈S

Πs(Tk, Dk)v1
k(s)ds+

∫
s∈S

Πs(T c
k , D

c
k)v2

k(s)ds

s.t. v1
k(s) + v2

k(s) = φk(s) ∀s ∈ S∫
s∈S

v1
k(s)ds ≤ qk

v1
k(s), v2

k(s) ≥ 0 ∀s ∈ S.

In this case, the optimization model (P̃ ) obtained belongs to a set of nonlin-
ear continuous optimization problems: the objective is continuous but nonlinear
and the constraints are linear. Also note that the objective to maximize remains
non-smooth since its components Rk(qk) represent value functions of optimiza-
tion problems which are non-smooth in general. In this section we will analyze
some mathematical properties of this nonlinear model and deduce conditions un-
der which the optimization problem may be easy to solve. In particular, we will
give the necessary and sufficient convexity conditions of the problem.

We introduce the following notation:
• ak = Dc

k −Dk the gap between the values of the features offered by the
operator and the competition on market k;

• Γk(T ) = {α ≥ 0/T ≤ T c
k + α× ak} the set of segments the operator

could capture on market k when setting the tariff to T ;
• q̄k =

∫
α∈Γk(0) φk(α)dα the potential maximum demand the operator

could capture on market k when the tariff is set to zero;
• q

k
=

∫
α∈Γk(T̄k)

φk(α)dα the potential maximum demand the operator
could capture on market k when the tariff is set to T̄k;

• Rk(q, T ) the revenue value on market k when the capacity allocation and
the tariff are respectively set to q and T ;

• ᾱk =

{
T̄k−T c

k

ak
if ak > 0

−T c

ak
if ak < 0

this parameter gives an upper bound on the set

{
α ≥ 0 : 0 ≤ T c

k + αak ≤ T̄k

}
.

Remark 5.1. In the case where ak = 0 on market k, it is easy to see that an
optimal tariff is simply given by Tk = T c

k . Thus, we will not consider this trivial
case and then, in what follows, we will assume that ∀k, ak �= 0.

Using the definition of Rk(q), one can easily see that:

Rk(q) = max
T̄k≥T≥0

Rk(q, T ).
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Lemma 5.1. If T ∗
k is an optimal value of the tariff on market k such that Γk(T ∗

k )
is not empty then there exists αk > 0 such that T ∗

k = T c
k + αk × ak.

Proof. Assume that Γk(T ) is not empty. Hence, if ak < 0, we have T ∗
k ≤ T c

k and
then ∃αk > 0 such that T ∗

k = T c
k + αk × ak.

Let q∗k be the optimal allocated capacity. If ak > 0, we necessarily have T ∗
k ≥ T c

k ;
otherwise, one can easily see that (T c

k , q
∗
k) would remain a feasible solution and

would provide more revenue. Finally, ak > 0 and T ∗
k ≥ T c

k ensure that ∃αk > 0
such that T ∗

k = T c
k + αk × ak. �

The previous result means that one may work directly with variables α instead
of tariff variables; hence, the following result is immediate.

Lemma 5.2.
Rk(q) = max

ᾱk≥α≥0
Rk(q, T c

k + α× ak).

The next result gives more specification about Rk(q, T ).

Lemma 5.3. The revenue function Rk(q, T ) verifies:
(1) Rk(q, T ) = Tq if q ≤ ∫γ∈Γk(T ) φk(γ)dγ;
(2) Rk(q, T ) = T

∫
γ∈Γk(T ) φk(γ)dγ otherwise.

Proof. Let
(
v1

k(γ), v2
k(γ)

)
be an optimal solution of the clients minimization prob-

lem (lower level). Seeing that v2
k(γ) = φk(γ) − v1

k(γ), the clients optimization
problem is actually just a linear maximization problem on variables v1

k(γ).
Therefore, if q ≤ ∫

γ∈Γk(T )
φk(γ)dγ, we have

∫
γ∈Γk(T )

v1
k(γ)dγ ≤ q ≤

∫
γ∈Γ(T )

φk(γ)dγ

and the maximization necessarily gives:

q =
∫

γ∈Γk(T )

v1
k(γ)dγ.

Similarly, if q >
∫

γ∈Γk(T ) φk(γ)dγ, we have

∫
γ∈Γk(T )

v1
k(γ)dγ ≤

∫
γ∈Γk(T )

φk(γ)dγ < q

and again the maximization necessarily gives:∫
γ∈Γk(T )

v1
k(γ)dγ =

∫
γ∈Γ(T )

φk(γk)dγ. �

Assumptions on the distribution function φk(.)

Since φk(.) represents the demand function, we assume that ∀γ > 0, φk(γ) > 0. It
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is reasonable to assume that the more γ (the unit price valuation) increases, the
smaller the demand becomes, hence that φk(γ) → 0 when γ → ∞.

For q ∈ ]0, q̄k], let’s consider the following equation with variable α:

q =
∫

γ∈Γk(T c
k+α×ak)

φk(γ)dγ.

Under the assumptions on φk(.), using the well known theorem on implicit func-
tions, one can easily show that this equation has a unique solution α; we will
denote it αk(q) and it is simply given by:

• if ak > 0:

q =
∫ +∞

αk(q)

φk(γ)dγ ∀q ∈ ]0, q̄k] ;

• if ak < 0:

q =
∫ αk(q)

0

φk(γ)dγ ∀q ∈ [0, q̄k] .

Thus, the function αk(.) is well defined on the interval [0, q̄k] if ak < 0 and on
]0, q̄k] if ak > 0, with αk(q) → ∞ when q → 0.

Proposition 5.1. For q ∈ ]0, q̄k], the revenue function value Rk(q) is given as
follows

(1) if αk(q) > ᾱk:
Rk(q) = (T c

k + ᾱkak) × q;
(2) if αk(q) ≤ ᾱk:

Rk(q) = max
0≤α≤ᾱk

(T c
k + αak)

∫
γ∈Γk(T c

k +α×ak)
φk(γ)dγ

s.t. α ∈ Γk(T c
k + αk(q) × ak).

Proof. The case αk(q) > ᾱk may happen only when ak > 0. In this case, ∀α ∈
[0, ᾱk] we necessarily have q <

∫
γ∈Γk(T c

k
+α×ak) φk(γ)dγ and by Lemma 5.3:

Rk(q, T c
k + α× ak) = (T c

k + α× ak) q.

Therefore, in this case, Rk(q) = max
0≤α≤ᾱk

(T c
k + αak) × q = (T c

k + ᾱkak) × q.

From Lemma 5.3 and the definition of α(q), we have, ∀α /∈ Γk(T c
k +αk(q)×ak):

Rk(q, T c
k+α×ak) = (T c

k + α× ak) q ≤ (T c
k + αk(q) × ak) q = Rk(q, T c

k+αk(q)×ak).

Therefore, we can deduce that if α(q) ≤ ᾱ:

Rk(q) = max
0≤α≤ᾱk

Rk(q, T c
k + α× ak)

s.t. α ∈ Γk(T c
k + αk(q) × ak)
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and the result is deduced from Lemma 5.3. �
Remark 5.2. If ak > 0, the revenue function remains linear with slope T c

k + ᾱkak

on the interval
[
0,
∫ +∞

ᾱk
φk(γ)dγ

]
.

Lemma 5.4. The revenue function value Rk(q) remains constant on the interval
[q̄k,+∞[.

Proof. Indeed, ∀q ≥ q̄k, we have q ≥ ∫
γ∈Γk(T ) φk(γ)dγ ∀T ≥ 0 and using

Lemma 5.3 we obtain Rk(q, T ) = T
∫

γ∈Γk(T ) φk(γ)dγ. Hence, Rk(q, T ) and then
Rk(q) remains constant on [q̄k,+∞[. �
Remark 5.3. It is also easy to prove that Rk(q) is a non-decreasing function on
the interval [0, q̄k].

For q ∈ [0, q̄k] such that αk(q) ≤ ᾱk, let’s introduce the following differentiable
function:

θk(q) = (T c
k + αk(q)ak)q.

Recall that the set of q such that q ∈ [0, q̄k] and αk(q) ≤ ᾱk is just the interval[
q

k
, q̄k

]
where q

k
=
∫ +∞

ᾱk
φk(γ)dγ if ak > 0 and q

k
= 0 if ak < 0.

Lemma 5.5. The function θk(q) is a lower bound function for the revenue function
Rk(q):

θk(q) ≤ Rk(q) ∀ q ∈
[
q

k
, q̄k

]
.

Proof. This result can be simply obtained by observing that θk(q) = Rk(q, T c
k +

αk(q) × ak). �
Lemma 5.6. The two following equalities are valid:

∀ q ∈
[
q

k
, q̄k

]
, Rk(q) = max

q
k
≤q′≤q

θk(q′)

max
0≤q≤∞

Rk(q) = max
q

k
≤q≤q̄k

θk(q).

Proof. From Proposition 5.1, we obtain

∀q ∈
[
q

k
, q̄k

]
, Rk(q) = max

0≤q′
(T c

k + αk(q′)ak)q′

s.t. αk(q′) ∈ Γk(T c
k + αk(q) × ak).

According to the definition of θk(q) and using the fact that αk(q′) ∈ Γk(T c
k +

αk(q) × ak) is equivalent to q′ ≤ q, we obtain Rk(q) = max
q≤q′≤q

θk(q′).

The second equality is an immediate consequence of the first one. �
In the sequel, we will study the concavity properties of the revenue func-

tion Rk(q).
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Figure 2. θk(q) and Rk(q) concave.

Figure 3. θk(q) and Rk(q) non-concave.

Proposition 5.2. If the function θk(q) is concave on
[
q

k
, q̄k

]
then the revenue

function Rk(q) is also concave on [0,+∞[.

Proof. Using the previous lemma, Rk(q) is the optimal value function of a concave
maximization problem and then Rk(q) is necessarily concave on

[
q

k
, q̄k

]
. If q

k
> 0

we have shown (Rem. 5.2) that Rk(q) is linear on
[
0, q

k

]
with slope T c

k + ᾱkak. In
this case we also have:

Rk(q
k
) = θk(q

k
)

and
θ′k(q) < T c

k + ᾱkak ∀q > q
k

Thus, Rk(q) is concave on [0,+∞[. �
Remark 5.4. Assume here that θk(.) is concave and let’s note q̂k its maximum
on
[
q

k
, q̄k

]
.

• We necessarily have Rk(q) = θk(q) if q
k
≤ q ≤ q̂k and Rk(q) = θk(q̂k) if

q > q̂k (see Figs. 2, 3).
• If θ′k(q̄k) ≤ 0 then Rk(q) is necessarily differentiable on

]
q

k
,+∞

[
. Indeed,

we have q̂k ≤ q̄k and θ′k(q̂k) = 0.
• If θ′k(q̄k) > 0 then q̂k = q̄k and Rk(q) remains non-differentiable on q̂k.
• If ak > 0, Rk(q) also remains non-differentiable on q

k
.

Now, we will analyze conditions under which the function θk(.) is concave.
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Lemma 5.7.
1. If the distribution function φk(α) is Cn (i.e., n-times differentiable) then

the function θk(.) is Cn+1.
2. The derivative of the function αk(q) is given by:

∂αk(q)
∂q

=
−εk

φk(αk(q))

where εk = 1 if ak > 0 and εk = −1 otherwise.
3. The function αk(q) is decreasing if ak > 0 and increasing otherwise.
4. If φk(q) is differentiable then the second derivative of θk(q) is given by:

θ′′k (q) = −εk ak

φk(αk(q))

(
2 + εkq

φ′k(αk(q))
(φk(αk(q)))2

)
·

Proof. If φk(α) is Cn, the function αk(q) will be Cn+1 and hence, θk(.) is also Cn+1.
The remaining results can be simply deduced by computing the first and second
derivatives of the equation

q =
∫

γ∈Γk(T c
k
+α(q)×ak)

φk(γ)dγ

to obtain:
∂αk(q)
∂q

φk(αk(q)) = −εk

φ′k(αk(q))
(
∂αk(q)
∂q

)2

+ φk(αk(q))
∂2αk(q)
∂2q

= 0

and using that:

θ′k(q) = (T c
k + αk(q)ak) + q

∂αk(q)
∂q

ak

θ′′k(q) = 2ak
∂αk(q)
∂q

+ q
∂2αk(q)
∂2q

ak. �

Proposition 5.3. The function θk(q) remains concave over each interval [q1, q2]
such that, on the interval αk ([q1, q2]), the distribution function is increasing (re-
spectively decreasing) if ak > 0 (respectively ak < 0)

Proof. From the previous lemma, one can easily see that θ′′k (q) ≤ 0∀q ∈ [q1, q2] �
Now let:

qk(α) =
∫

γ∈Γk(T c
k+α×ak)

φk(γ)dγ

Δk
1(α) =

φ′k(α)
φk(α)

Δk
2(α) =

q′k(α)
qk(α)

·
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The quantities Δk
1(α) and Δk

2(α) respectively represent the relative variations of
φk(α) and qk(α). Note that in fact qk(α) is independent of data T c

k and ak since
Γk(T c

k + α× ak) is either [α,+∞[ or [0, α].

Theorem 5.1. If the distribution function φk(α) is differentiable, then the func-
tion θk(.) is concave if and only if:

Δk
1(α)

Δk
2(α)

≤ 2 ∀ α ∈ [0, ᾱk] . (8)

Proof. Being twice differentiable, the function θk(.) is concave if and only if θ′′k (q) ≤
0 ∀q ≥ 0. The result is then directly obtained using the previous lemma, remarking
that q′k(α) = −εkφk(α) and using definitions of Δk

1(α) and Δk
2(α). �

Using this result and Proposition 5.2 we obtain:

Corollary 5.1. The function Rk(.) is concave if Δk
1(α)

Δk
2(α)

≤ 2 ∀ α ∈ [0, ᾱk].

Remark 5.5 (elasticity condition). The ratio Δk
1(α)

Δk
2(α)

may be interpreted as what
is commonly called the elasticity coefficient of the quantity qk(α) related to φk(α).
The concavity property of the revenue function is then ensured when this elasticity
is less than 2. Recall that φk(α) represents the demand of the clients that could
pay at most T c

k + αak. The quantity qk(α) is the total demand of the clients that
could pay at least T c

k + αak.

Remark 5.6. In economic theory, demand distribution functions are generally
supposed to be concave, or less restrictively log-concave [3]. One can observe that
if qk(α) is supposed log-concave (i.e., log qk(α) is concave), then Δk

1(α)

Δk
2(α)

≤ 1 and
the necessary and sufficient condition (8) on the concavity of θk(.) is satisfied. This
necessary and sufficient condition is thus less restrictive than log-concavity.

Bergstrom and Bagnoli [3] show that if a probability density function (pdf) is
log-concave, then its cumulative distribution function (cdf) is also log-concave. In
our model, qk(α) can be defined as the cdf of the pdf φk(α); thus, if φk(α) is
log-concave, then qk(α) is also log-concave and the function θk(.) is concave.

Remark 5.7. It is very interesting to observe that this ratio and then the con-
cavity condition remain completely independent of the values of data parameters
T c and ak. This advantage comes from the fact that we work with the capac-
ity allocations as decision variables. Indeed, instead of optimizing function θk(q),
for instance, using α as a decision variable, one could work with the equivalent
function ψk(α) given by

ψk(α) = (T c
k + αak)

∫ ∞

α

φk(γ)dγ.

It is easy to show that, contrarily to θk(q), the concavity condition of ψk(α) remains
data (T c

k , ak) dependent: for instance, it may not hold when T c
k is large.
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Figure 4. Weibull β = 1, η = 5.

6. Weibull distribution function case study

The Weibull distribution is a widely used lifetime distribution. Its historical use
is in engineering, where it is used to forecast machine failures over time. It has also
been used in climatology (wind speed statistical modeling [16]), finance (option
pricing [26]), or economics (reservation price distribution [1]). This distribution
has two main advantages: it is easy to work with analytically (its integral can
be written in closed form), and it can fit different distributions with adequately
chosen parameters and thus is very versatile.

The probability density function of the Weibull distribution is:

W (α, β, η) =
β

η
×
(
α

η

)(β−1)

× e− ( α
η )β

where β > 0 and η > 0 are respectively the shape and the scale parameter.
Figures 4 to 7 show how the curve of the function W (α, β, η) looks like when one
increases the shape parameter β starting from 1 (the parameter η is kept constant).

Before giving the main result of this section, let’s state the following lemma:

Lemma 6.1. Let 0 ≤ t < 1. Then

et ≤ 1 + t

1 − t
·

Proof. Let’s consider the function f(t) = (1 − t)et − (1 + t). We have f(0) = 0
and f(1) = −2. The derivative of this function is −1 − tet < 0, i.e., the function
is decreasing between 0 and −2. Hence, f(t) ≤ 0 for 0 ≤ t ≤ 1 and the result
follows. �
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Figure 5. Weibull β = 1.1, η = 5.
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Figure 6. Weibull β = 2, η = 5.

Theorem 6.1. If the demand distribution functions φk(α) are of Weibull type,
i.e., φk(α) = W (α, βk, ηk) where βk ≥ 1 and ηk ≥ 0, then the resource allocation
optimization problem (P̃ ) (defined in Sect. 5) is concave.

Proof. The proof of the result is based on Corollary 5.1. Thus, we will calculate
the quantities Δk

1(α) and Δk
2(α). To simplify, we will miss out the indices k in the

parameters βk, ηk. Exploiting exponential function properties, one can obtain:

φ′k(α) = φk(α)

(
β − 1
α

− β

η

(
α

η

)β−1
)
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Figure 7. Weibull β = 5, η = 5.

and then:

Δk
1(α) =

φ′k(α)
φk(α)

=
β − 1
α

− β

η

(
α

η

)β−1

·
We also have ∫ +∞

α

φk(α)dα = e− ( α
η )β

and ∫ α

0

φk(γ)dγ = 1 − e− (α
η )β

.

Therefore:
• if ak > 0:

qk(α) = e− (α
η )β

q′k(α) = −φk(α)

and

Δk
2(α) =

q′k(α)
qk(α)

= −β
η
×
(
α

η

)(β−1)

·
In this case, we obtain:

Δk
1(α) − 2Δk

2(α) =
β − 1
α

+
β

η

(
α

η

)β−1

≥ 0 ∀α ≥ 0.

Since Δk
2(α) ≤ 0 we deduce that

Δk
1(α)

Δk
2(α)

≤ 2;
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• if ak < 0

qk(α) = 1 − e− (α
η )β

q′k(α) = φk(α)

and

Δk
2(α) =

q′k(α)
qk(α)

=
β
η ×

(
α
η

)(β−1)

× e− (α
η )β

1 − e− (α
η )β ·

Let t =
(

α
η

)β

and u = (β−1)
β × η.

In this case, one can easily deduce that:

η

β
× α× (et − 1

)× (Δk
1 (α) − 2Δk

2 (α)
)

= et (u− ηt) − (u+ ηt)

= u
(
et (1 − ω) − (1 + ω)

) ·
where ω = ηt

u .
If ω ≥ 1, we directly obtain that Δk

1(α) − 2Δk
2(α) ≤ 0.

Otherwise, if ω < 1, using the previous lemma and remarking that
t ≤ ω, we obtain:

et ≤ eω ≤ 1 + ω

1 − ω
·

Thus, we also obtain

Δk
1(α) − 2Δk

2(α) ≤ 0.

Since Δk
2(α) ≤ 0, finally, we deduce that

Δk
1(α)

Δk
2(α)

≤ 2. �

As an example, Figure 8 illustrates the concavity of θk(q), and thus Rk(q), w.r.t.
the capacity variable q. For this example, in Figure 9 the revenue function ψk(α)
w.r.t. the variable α, defined in Remark 5.7, is drawn. One can observe that, un-
like Rk(q), the revenue function represented by ψk(α) is not concave everywhere.
Indeed, in Figure 9 ψk(α) is nearly convex in the second part of the curve. As
mentioned before, this shows that it will be more convenient to work with Rk(q)
rather than ψk(α) since the resource allocation optimization problem remains con-
cave and might be efficiently solved with classical convex nonlinear mathematical
programming algorithms.

7. Solution methods

Based on the results obtained in the previous sections and in previous work [7],
we investigate two solution methods to solve the joint pricing and resource alloca-
tion problem.
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Figure 8. θk(q) (β = 2, η = 5).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  2  4  6  8  10

Figure 9. ψk(α) (β = 2, η = 5).

On the one hand, the problem (Pc) can be handled directly using nonlinear
continuous optimization techniques and solvers. On the other hand, for marketing
practitioners, it might be more natural to consider discrete market segments; in
this case, a good discretization of the continuous distribution function must be
found so that the model can be well approximated. The resulting model can then
be solved using the methods described in Section 4.2 and [7].

In the next sections, we introduce methodologies to solve the problem, first
in the nonlinear continuous context, then using the discretization approach. We
finally give numerical results on telecommunications networks instances.
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7.1. Nonlinear continuous optimization approach

According to the results obtained in the previous sections, the joint pricing and
resource allocation optimization problem (Pc) can be solved in two steps:

(1) Computing capacities to allocate to each market by solving

(P̃ )

max
qk

∑
k∈K

Rk(qk)

s.t.
∑
k∈K

∑
k|a∈A(k)

qk ≤ ca ∀a ∈ A

qk ≥ 0.

(2) Recovering the optimal tariffs associated with these optimal capacities.

Functions Rk(.) are non-smooth and non-concave in the general case. We have
shown in Proposition 5.2 that when θk(.) is concave on

[
q

k
, q̄k

]
, Rk(.) is also

concave on [0,+∞[ and its curve is formed with linear and nonlinear concave
pieces (see Fig. 2).

More precisely, in this case, the objective function to consider is as follows:

Rk(qk) =

⎧⎪⎨
⎪⎩
T k · qk 0 ≤ qk ≤ q

k

θk(qk) q
k
≤ qk ≤ q̂k

θk(q̂k) q̂k ≤ qk.

We recall that T k is the bound on the possible prices; q
k

is the potential demand
captured when the tariff is T k; q̂k is the capacity for which θk(qk) is maximum
on [q

k
, qk]. Of course, the latter must be computed, which can be easily done for

example by a Newton-like method when θk(.) is concave.
Therefore, in this case, this typical problem (P̃ ) could be simply formulated as

a concave and differentiable problem.
The nonlinear optimization problem that we obtain can thus be solved using

classical nonlinear optimization methods. In Section 7.3, we present numerical
results obtained with an interior point methods, using the IPOPT software pack-
age [27].

When θk(.) is concave, we have Rk(qk) = (T c
k + αk(qk)ak)qk, and then the

optimal tariffs can simply be recovered by setting Tk = T c
k + αk(qk)ak.

Remark 7.1. If the demand distribution function φk(.) is a Weibull distribution
function, the first and second derivatives of the function θk(.) can be easily com-
puted, if needed by the solution algorithm, as is the case with an interior point
method for example. To recover optimal tariffs, αk(qk) is also easy to compute in
this case.
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7.2. Demand function discretization and mixed integer linear

optimization approach

In order to solve the problem (Pc) using the discrete approach presented in
Section 4.2, a discretization of the distribution function φk(.) must be defined.
The following questions must be answered: what interval should we sample?; which
sample values should we choose?; which values of the demand should we assign to
these values?

Let’s recall that φk(.) is defined in the unbounded interval [0,+∞[. However,
we show that we can work only in a bounded interval.

Property 7.1. In the continuous optimization problem (Pc), the function φk(.)
can be replaced with the following distribution function φ̂k(.) which is only defined
in the bounded interval [0, ᾱk]:

if ak < 0 φ̂k(γ) = φk(γ) 0 ≤ γ ≤ ᾱk

if ak > 0 φ̂k(γ) = φk(γ) 0 ≤ γ < ᾱk

φ̂k(ᾱk) =
∫ +∞

ᾱk

φk(γ)dγ.

Proof. For ak < 0, every market segment γ > ᾱk perceives the competition offer
as cheaper (to obtain market segment γ > ᾱk, the operator should set the tariff
of offer k to T c

k + γak < 0, but we impose the constraint Tk ≥ 0). For ak > 0,
every market segment γ > ᾱk perceives the operator offer as cheaper (γ > ᾱk ⇒
T c

k + γDc
k > T c

k + ᾱkD
c
k = T̄k + ᾱkDk). Thus, in this case, one can aggregate

the demand of market segments γ ≥ ᾱk as the demand value to assign to the
segment αk. �

Hence, we will discretize the function whose value is φk(γ) for γ ∈ [0, ᾱk] if
ak < 0, φk(γ) for γ ∈ [0, ᾱk[ and

∫ +∞
ᾱk

φk(γ)dγ in ᾱk if ak > 0.
We choose to take a uniform sampling of [0, ᾱk] as {γ0 = 0, . . . , γN = ᾱk}

(γi’s should also be indexed by k; we omit these indices here for simplicity of the
notation).

We choose to assign all the demand
∫ γi+1

γi

φk(γ)dγ of segments between γi and

γi+1 to the segment γi (respectively γi+1) when ak > 0 (respectively ak < 0).
More specifically, we define the discrete distribution function φ̃(.) as follows:

if ak < 0 φ̃k(γ0) = 0

φ̃k(γi) =
∫ γi

γi−1

φk(γ)dγ 0 < i ≤ N ;
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if ak > 0 φ̃k(γi) =
∫ γi+1

γi

φk(γ)dγ 0 ≤ i < N

φ̃k(γN ) =
∫ +∞

ᾱk

φk(γ)dγ.

Remark 7.2. These choices are justified by the following remarks:
• If the value of the discretized function at each γi is defined as φk(γi),

not all the demand is taken into account and the discretized model is not
equivalent to the continuous one.

• If the integral
∫ γi+1

γi

φk(γ)dγ is rather assigned to some segment in the

interval ]γi, γi+1[ (γi+γi+1
2 for example), the corresponding discrete model

will not be equivalent to the continuous one. Indeed, the same tariff should
not allow the operator to capture the same amount of demand in both
models.

We now analyze the links between the continuous and the discrete model obtained
using the discretized distribution function φ̃(.) defined above.

Property 7.2. In both models, the same potential demand qk(γj) could be captured
by the operator when targeting the segment γj by setting the tariff to T c

k + γjak.

Proof. For ak > 0, when targeting the segment γj , every market segment γ > γj

perceives the operator offer as cheaper (T c
k + γDc

k > T c
k + γjD

c
k). In this case,

the potential demand the operator could be captured is simply given by qk(γj) =∫ +∞
γj

φk(γ)dγ in the continuous model and by qdiscrete
k (γj) =

∑
γj≤γi

φ̃k(γi) in the
discrete one.

Hence, by definition, we obtain:

qdiscrete
k (γj) =

∑
γj≤γi

∫ γi+1

γi

φk(γ)dγ = qk(γj).

The same reasoning holds for ak < 0. �

Now, as in the Section 7.1, we assume that the function θk(.) defined in the
continuous model is concave in the interval

[
q

k
, q̄k

]
and we denote q̂k its maximum.

Let Rdiscrete
k (q) be the revenue function in the discrete model with respect to

the capacity variable q. We have the following results:

Property 7.3. Both models give the same revenue value Rk(qk(γj)) when target-
ing a segment γj such that qk(γj) ≤ q̂k:

Rdiscrete
k (qk(γj)) = Rk(qk(γj)).

Proof. We study the case ak > 0 (a similar reasoning holds for ak < 0).
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Figure 10. Objective functions for continuous model and dis-
crete model with 5 market segments.

Recall that, as shown in Section 4.2 and in [7], the revenue function Rdiscrete
k (q)

of the discrete model is a non-decreasing piecewise linear function with alternating
linear and constant pieces which are defined by

Rdiscrete
k (qk(γj)) = max

j≤i
((T c

k + γiak) qk(γi)) .

By definition of the continuous function θk(.), we have for all γi such that q
k
≤

qk(γi) ≤ q̂k
θk(qk(γi)) = (T c

k + γiak) qk(γi).
Observing that q

k
= qk(γN ) and ∀i, q

k
(γN ) ≤ qk(γi+1) ≤ qk(γi), we directly

deduce that

Rdiscrete
k (qk(γj)) = max

i≥j
θk(qk(γi)) ∀j : qk(γj) ≤ q̂k.

Concavity of the function θk(.) implies that θk(.) is necessarily non-decreasing in[
q

k
, q̂k

]
and ∀j : qk(γj) ≤ q̂k, Rk(qk(γj)) = θk(qk(γj)). Thus, we obtain:

Rdiscrete
k (qk(γj)) = θk(qk(γj)) = Rk(qk(γj)) ∀j : qk(γj) ≤ q̂k

and the result follows. �

This property is illustrated in Figures 10 and 11. These figures also show that,
using this discretization, the discrete problem that we have to solve approximates
the corresponding continuous problem. The approximation gets better as the
number of market segments (i.e., samplings) increases.

Property 7.4. The value of the revenue function Rk(q) given by the continuous
model is always over the one given by the discrete model.

Proof. By Property 7.3, for all γj such that qk(γj) ≤ q̂k, we haveRdiscrete
k (qk(γj)) =

Rk(qk(γj)). Now, let’s consider the concave envelope of the function Rdiscrete
k (.).
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Figure 11. Objective functions for continuous model and dis-
crete model with 50 market segments.

It is a piecewise linear function composed of the lines joining couples of points
(qk(γi), Rk(qk(γi)). On the one hand, by construction, this concave envelope is over
the function Rdiscrete

k (.). On the other hand, this concave envelope is necessarily
below the continuous concave function Rk(.). Hence the result. �

Finally, in this discrete model, the corresponding optimization problem (P̃ ),
defined in Section 4.2, can be formulated as a mixed integer linear program and
solved for example using a branch-and-cut algorithm (see [7] for more details).
However, as shown in [7], due to its combinatorial nature, this problem could be
difficult to solve in practice.

Nevertheless, an approximate solution value to the MILP formulation can be
satisfying. For example, the concave envelope of the functions Rdiscrete

k (.) can
be used to compute a satisfying approximate solution. Moreover, one can ob-
serve that, this concave envelope approximates the continuous model better than
Rdiscrete

k (.). Also, note that this approximate solution is the solution of the linear
programming relaxation of the mixed integer integer linear program [12].

7.3. Experimental results

In this section, we present some numerical results obtained on instances of the
problem. The objective is to estimate the feasibility of solving the problem on
realistic instances.

To solve the nonlinear continuous optimization model, we use the interior point
method implemented by the IPOPT software package [27] (version of 2005/06/10).
We consider a Weibull function for demand distribution on each market, i.e., the
optimization problem has a concave objective, and linear constraints.

In Table 1, we give the results obtained. Three networks of different sizes are
used, based on networks of France Telecom between French cities. The network
topology and the routing are fixed, while arc capacities, offer qualities, demand and
competition tariffs are randomly generated. For each network size, ten instances
are generated this way. The table displays the minimum, the average and the
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Table 1. Numerical results using IPOPT on the nonlinear con-
tinuous model.

|A| |M| Iterations CPU time
min avg max min avg max

16 28 28 33 38 0.44 0.49 0.57
65 210 30 32 35 11.78 12.30 13.33
105 319 27 29 32 22.11 23.90 25.28

Table 2. CPU times and solution quality with 10 and 50 dis-
cretization steps, using CPLEX on the mixed integer linear model.

|A| |M| Instance Steps = 50 Steps = 10
CPU time Objective value CPU time Objective value

105 319 0 560 99.8468 531 98.6114
1 24875∗ 99.8750 2372 98.7873
2 3559 99.9032 75 98.7503
3 15664 99.9341 272 99.3892
4 3199 99.9022 50 99.0436
5 19641∗ 99.8886 2750 98.9394
6 20738 99.9077 723 98.9757
7 12737∗ 99.8907 93 98.8393
8 3216 99.8419 69 98.3283
9 2310 99.8885 48 98.5798

maximum number of iterations and CPU time taken by the interior point method
on a 400 MHz Sun UltraSparc II workstation.

As expected, the interior point method converges to an optimal solution and
there is little variation of the number of iterations as the size of the instances
increases. The optimal solution is obtained within a few seconds, even on the
largest of the instances, which is quite satisfactory. The number of variables and
constraints of the problem is small, which is an advantage of the continuous model.

As stated in Section 7.2, by discretizing the distribution function, the problem
can be solved as a mixed integer linear program. This program was solved using
the CPLEX software package (version 7.5) on the instances described before, using
different discretization steps. In Table 2, we only retain the results (CPU time and
solution quality in percentage of the continuous model solution value) obtained on
the largest instances, with discretization steps 10 and 50.

These results show that the solution quality on these instances is very good,
even with 10 discretization steps. However, this is at the cost of CPU time, which
varies greatly from instance to instance. On some of the instances it can take a
very long time to solve the problem, and sometimes even not to optimality before
exhausting the 512 Mb memory limit (these instances are denoted by ‘*’).

Furthermore, the accuracy of the discretization depends on the value of T̄k (that
gives ᾱk); for some values, there can be an important gap between the solutions
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Table 3. CPU times and solution quality with 50 discretization
steps, using CPLEX on the linear program for solving the concave
relaxation of the problem.

|A| |M| Steps = 50
CPU time Objective value

min avg max min avg max
105 319 0.90 0.95 1.01 99.9092 99.9560 99.9872

of the continuous and the discretized models. Indeed, if ᾱk is far in the tail of the
Weibull distribution, most of the discretization steps will be in the tail; thus, the
price associated with most of the demand will be much lower than it would be
with the continuous model. This is a practical limitation of this model.

As we showed in the previous section, it is not necessary to solve the MILP for
the discretized problem in order to obtain an approximate solution of the contin-
uous model. Indeed, the concave envelope of the objective function approximates
the continuous function better and can be formulated as a linear program. In Ta-
ble 3, the minimum, the average and the maximum CPU time and solution quality
for the largest instances are displayed, for 50 discretization steps.

We observe that the quality of the solution is very good, for very low CPU
time. However, the comments on the value of ᾱk apply again, and this can lead to
bad solution qualities. Moreover, even if on the instances considered the quality
of the solution is very good, this can only be confirmed by solving the continuous
model. As the continuous model can be solved efficiently, we might as well solve
it directly, unless tight solving time constraints are required.

8. Conclusion

This paper investigates a continuous optimization model for a revenue manage-
ment problem in the context of the competitive telecommunications industry. This
problem consists in simultaneously pricing point-to-point telecommunications ser-
vices and allocating resources in the network, in the presence of competition. The
market is segmented and each market segment has its own purchasing behavior.

This type of problems has classically been modeled as a bilevel program. We
used another formulation for the problem, as introduced in [7]. In the case where
the operator provides one offer on each market, we proved mathematical properties
of the problem, and notably we gave a necessary and sufficient condition on the
demand distribution function for convexity of the problem. We also gave numerical
results on realistic instances of telecommunications networks.

Using a Weibull model for the demand distribution function, we solved the
problem using an interior point method. As expected, the method converges to
an optimal solution in a few iterations. Using the existing models for the discrete
case, we analyzed the results obtained by discretizing the Weibull distribution
function and solving a mixed integer linear program. On the largest instances, the
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branch-and-bound algorithm of the solver can fail to find an optimal solution in
a reasonable time. The discrete model can also be approximated by taking the
concave envelope of its objective function. In this case, we showed that the solution
obtained is a good approximation of the solution of the continuous problem on
the instances that were considered. However this approach can have practical
limitations, depending on the values of the data of the problem, that the nonlinear
model does not have.

In further work, we intend to investigate the properties of the problem in the
case where the operator can provide several offers on each market. The above
mathematical analysis cannot be conducted in the same way in this case. Indeed,
in the present paper, the mathematical analysis of the problem is possible because
an analytical definition of an optimal tariff can be given; however, if the operator
provides several offers on each market, such an analytical definition is not easily
obtained, as the tariff for each offer depends on the other tariffs.
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[20] M. Labbé, P. Marcotte and G. Savard, On a class of bilevel programs, in Nonlinear optimiza-
tion and related topics, edited by G.D. Pillo and F. Giannessi, Kluwer Academic Publishers,
Dordrecht, Boston (1999) 183–206.

[21] P. Marcotte, G. Savard and D. Zhu, Mathematical structure of a bilevel strategic pricing
model. Eur. J. Oper. Res. (2006), (to appear).

[22] P. Marcotte and D. Zhu, Equilibria with infinitely many differentiated classes of customers.
In Complementarity and variational problems. State of the art, edited by J.-S. Pang and
M. Ferris, SIAM Publications, Philadelphia (1997) 234–258.

[23] J.I. McGill and G.J. van Ryzin, Revenue management: Research overview and prospects.
Transportation Science 33 (1999) 233–256.

[24] S.K. Nair and R. Bapna, An application of yield management for internet service providers.
Nav. Res. Logist. 48 (2001) 348–362.

[25] P. Reichl, D. Hausheer and B. Stiller, The cumulus pricing model as an adaptive framework
for feasible, efficient and user-friendly tariffing of internet services. Comput. Networks 43
(2003) 3–24.

[26] R. Savickas, A simple option-pricing formula. Financ. Rev. 37 (2002) 207–226.
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