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Abstract. In the paper we generalize sufficient and necessary op-
timality conditions obtained by Ginchev, Guerraggio, Rocca, and by
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1. Introduction, notations and preliminaries

Generalized second-order optimality conditions has been extensively studied
since 80’s of last century (see e.g. [2,3,7–11,15,16,21,25–27] and references therein).

Recently there appeared a number of interesting papers dealing with con-
strained and unconstrained vector optimization problems. Let us mention for
example [12–14,18–20,22–24]. We were mainly inspired by the first one.

Moreover, we wish to continue our research done in our previous article [4],
where we have proved a generalized sufficient condition for scalar case with the
use of the generalized second-order directional derivative of the Peano type.
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More precisely, we would like to replace the assumption that the objective
function f must be of class C1,1 (recall that f is of class C1,1 if it has locally
Lipschitz derivative) by weakened assumptions, i.e. f is assumed to be �-stable
at x. Here the �-stability substitutes the lipschitzness of first derivative on a
neighbourhood of the point x.

Let us get some needed notations and definitions together before we will pro-
ceed. Throughout all of this text we will work with functions f : R

m → R
n where

m, n ∈ N. If X is an Euclidean space endowed with the Euclidean norm, then
SX = {x ∈ X : ‖x‖ = 1}, BX = {x ∈ X : ‖x‖ < 1} denote a unit sphere and
an open unit ball of X respectively. 〈·, ·〉 denotes a standard scalar product on
X . Further, if Y ⊂ X , then int Y , Y denote a topological interior and topological
closure of Y respectively. Symbols conv Y , conv Y stand for the convex hull and
closed convex hull of a subset Y of X respectively. L(Rm, Rn) will denote the
space of all continuous linear operators L : R

m → R
n. f ′(x) denotes the Fréchet

derivative of the function f : R
m → R

n at x ∈ R
m, i.e. f ′(x) ∈ L(Rm, Rn).

By a cone C ⊂ R
n we will always mean a nonempty, closed, convex and pointed

cone with int C �= ∅. For definitions see e.g. [17,28,29]. The (positive) polar cone
we denote by C′ and define as follows: C′ := {ξ ∈ R

n : 〈ξ, y〉 ≥ 0, y ∈ C}. The
bipolar cone is defined C′′ := (C′)′ = {y ∈ R

n : 〈ξ, y〉 ≥ 0, ξ ∈ C′}. From now we
always put Γ := C′∩SRn . Under assumptions set out above, it is well known that:

(a) C′ is also nonempty, closed, convex and pointed cone with int C′ �= ∅;
(b) for each y ∈ C \ {0}, ξ ∈ int C′, it holds 〈ξ, y〉 > 0;
(c) C = C′′.

Definition 1.1. Let C ⊂ R
n be a cone, f : R

m → R
n be a function.

(a) A point x0 ∈ R
m is said to be a weakly efficient point (or simply w-

minimizer) for f , if there is a neighbourhood U of x0 such that

x ∈ U =⇒ f(x) − f(x0) �∈ −int C.

(b) A point x0 ∈ R
m is said to be an efficient point (or e-minimizer) for f if

there is a neighbourhood U of x0 such that

x ∈ U =⇒ f(x) − f(x0) �∈ −(C \ {0}).

(c) A point x0 ∈ R
m is said to be an isolated minimizer of second-order for f

if there is a neighbourhood U of x0 and a constant A > 0 such that

x ∈ U =⇒ sup
ξ∈Γ

(〈ξ, f(x) − f(x0)〉) ≥ A‖x − x0‖2.

For more informations about isolated minimizer see for instance [13],where Ginchev
et al. stated the following optimality conditions. They used a notion of the gen-
eralized second-order directional derivative f ′′

D(x; u) defined for a function
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f : R
m → R

n at x ∈ R
m in the direction u ∈ R

m as follows:

f ′′
D(x; u) := Limsupt↓0{(2/t2)(f(x + tu) − f(x) − tf ′(x)u)}

:= {y ∈ R
n : ∃{tk}∞k=1 such that tk ↓ 0 and

(2/t2k)(f(x + tku) − f(x) − tkf ′(x)u) → y
}

.

Theorem 1.1. [[13], Thm. 5 (Necessary conditions)] Assume that f : R
m → R

n

is a C1,1 function and let �(x) := {ξ ∈ R
n : ξf ′(x) = 0, ‖ξ‖ = 1}. Let x ∈ R

m

be a w–minimizer for f . Then for every u ∈ SRm the following two conditions are
satisfied:

(i) �(x) ∩ C′ �= ∅;
(ii) if f ′(x)u ∈ −(C \ int C) then

miny∈f ′′
D(x;u) max{〈ξ, y〉 : ξ ∈ �(x) ∩ C′} ≥ 0.

Theorem 1.2. [[13] Thm. 5 (Sufficient conditions)] Let f : R
m → R

n be a function
of class C1,1, x ∈ R

m, �(x) = {ξ ∈ R
n : ξf ′(x) = 0, ‖ξ‖ = 1}. Suppose that

�(x) ∩ C′ �= ∅ and that for every u ∈ SRm one of the following two conditions is
satisfied:

(a) f ′(x)u �∈ −C;
(b) f ′(x)u ∈ −(C \ int C) and

miny∈f ′′
D(x;u) max{〈ξ, y〉 : ξ ∈ �(x) ∩ C′} > 0.

Then x is an isolated minimizer of second-order for f .

Both previously mentioned theorems has been stated also for the constrained
optimization problems in [12] again with the C1,1 assumption.

Later, Khanh and Tuan showed [20] that for Theorems 1.1 and 1.2 the local
Lipschitz assumption of derivatives is not needed.

Recall that the Fréchet derivative of f : R
m → R

n is said to be calm at x0 ∈ R
m

if there are L > 0 and a neighbourhood U of x0 such that

‖f ′(x) − f ′(x0)‖ ≤ L‖x − x0‖, ∀x ∈ U.

Further, we recall the definition of second-order Hadamard directional derivative
of f : R

m → R at x ∈ R
m in the direction u ∈ R

m:

d2f(x; u) = lim
t↓0,v→u

f(x + tv) − f(x) − tdf(x; u)
t2/2

,

where

df(x; u) = lim
t↓0,v→u

f(x + tv) − f(x)
t

·
For a scalar function f : R

m → R we define lower second-order Hadamard direc-
tional derivative at x ∈ R

m in the direction u ∈ R
m by the following way:

d2f(x; u) = lim inf
t↓0,v→u

f(x + tv) − f(x) − tdf(x; u)
t2/2

·
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The second-order Hadamard directional derivative is closely connected with an-
other generalized second-order derivative which is defined for a function f : R

m →
R

n at x ∈ R
m in the direction u ∈ R

m as follows (we suppose that f is Fréchet
differentiable at x):

f ′′
H(x; u) := Limsupt↓0,v→u{(2/t2)(f(x + tv) − f(x) − tf ′(x)u)}

:= {y ∈ R
n : ∃{tk}∞k=1, {vk}∞k=1 such that tk ↓ 0, vk → u and

(2/t2k)(f(x + tkvk) − f(x) − tkf ′(x)u) → y
} ·

It follows immediately from the definitions that f ′′
D(x; u) ⊂ f ′′

H(x; u). The following
two theorems are unconstrained versions of Theorems 4.1 and 4.2 from [20]. Thus
we state them without proofs.

Theorem 1.3. Assume that f : R
m → R

n is a continuously differentiable function
near x ∈ R

m and let �(x) := {ξ ∈ R
n : ξf ′(x) = 0, ‖ξ‖ = 1}. Let x be a

w-minimizer for f . Then for every u ∈ SRm the following two conditions are
satisfied:

(i) �(x) ∩ C′ �= ∅;
(ii) if f ′(x)u ∈ −(C \ int C) then

miny∈f ′′
H(x;u) max{〈ξ, y〉 : ξ ∈ �(x) ∩ C′} ≥ 0.

Theorem 1.4. Let the Fréchet derivative of a function f : R
m → R

n be calm at
x ∈ R

m, �(x) = {ξ ∈ R
n : ξf ′(x) = 0, ‖ξ‖ = 1}. Suppose that �(x) ∩ C′ �= ∅ and

that for every u ∈ SRm one of the following two conditions is satisfied:
(a) f ′(x)u �∈ −C;
(b) f ′(x)u ∈ −(C \ int C) and

miny∈f ′′
D(x;u) max{〈ξ, y〉 : ξ ∈ �(x) ∩ C′} > 0.

Then x is an isolated minimizer of second-order for f .

Now, Theorems 1.3 and 1.4 generalize Theorems 1.1 and 1.2 respectively. In
the sequel we will show another generalization of Theorem 1.1 (see Thm. 3.2) and
we will generalize Theorem 1.4 (see Thm. 3.4).

We say that f : R
m → R is �–stable at x ∈ R

m if there is a neighbourhood U of
x and a constant K > 0 such that

|f �(y; h) − f �(x; h)| ≤ K‖y − x‖, ∀y ∈ U, ∀h ∈ SRm ,

where f �(y; h) = lim inft↓0{(f(y + th) − f(y))/t}.
The properties of the scalar functions that are �-stable at some point were

studied in [4–6].

Theorem 1.5. [[6] Thm. 2)] Let f : R
m → R be an �-stable function at x ∈ R

m.
Then f is continuous near x.

The following theorem was originally proved in [4], Theorem 6 for the functions
that are �-stable at some point and continuous near this point.
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Theorem 1.6. [[6] Thm. 3] Let a function f : R
m → R be �-stable at x ∈ R

m. If
f �(x; h) = 0 and

lim inf
t↓0

f(x + th) − f(x) − tf �(x; h)
t2/2

> 0,

for every h ∈ SRm , then x is an isolated minimizer of second-order for f . Con-
versely, each isolated minimizer of second-order satisfies these sufficient conditions.

2. �-stability for vector functions

Let us generalize the notion of �-stability for vector functions.

Definition 2.1. Let f : R
m → R

n, x, u ∈ R
m, ξ ∈ R

n. We define a lower Dini
derivative at x in the direction u with respect to ξ by

f �(x; u)(ξ) := lim inf
t↓0

(〈ξ, f(x + tu) − f(x)〉)/t.

The function f is said to be �-stable at x if there are a neighbourhood U of x and
a constant K > 0 such that

y ∈ U, u ∈ SRm , ξ ∈ Γ =⇒ |f �(y; u)(ξ) − f �(x; u)(ξ)| ≤ K‖y − x‖. (2.1)

It follows immediately from Definition 2.1 that f �(y; u)(ξ) is finite for every y
sufficiently near x, for every u ∈ SRm , and for every ξ ∈ Γ. In fact, we can say
more, see formula (2.4).

It is not difficult to observe that each function f which is of class C1,1 on a
neighbourhood of a point x is also �-stable at x. The reverse implication is not
true (see Ex. 3.1). The rest of Section 2 is devoted to some properties of functions
which are �-stable at some point. We will show that each such function is strictly
differentiable at this point (Prop. 2.2) and that a certain inequality holds (see the
inequality (2.10)).

At first, we will generalize Theorem 1.5 for vector functions.

Theorem 2.1. Let f : R
m → R

n be a function that is �-stable at x ∈ R
m. Then

f is continuous near x.

Proof. For an arbitrary ξ ∈ Γ we can consider a function gξ : R
m → R given by

gξ(y) = 〈ξ, f(y)〉, ∀y ∈ R
m.

We can calculate that for every y ∈ R
m, and for every h ∈ R

m we have

f �(y; h)(ξ) = g�
ξ(y; h).

Since f is �-stable at x, the function gξ is also �-stable at x. It follows from
Theorem 1.5 that the function gξ is continuous on some neighbourhood of x. The
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well known facts from convex analysis imply that span Γ = R
n (consult e.g. [17],

p. 11). Then, for every k ∈ {1, 2, . . . , n}, there exist vectors ξ1, ξ2, . . . ξr ∈ Γ, and
α1, α2, . . . , αr, r ≤ n such that

(0, . . . , 1︸︷︷︸
k−th

, . . . , 0}) =
r∑

l=1

αlξ
l.

We suppose that f1, f2, . . . , fn are the components of f , i.e. f = (f1, f2, . . . , fn).
Then

fk(y) = 〈(0, . . . , 1︸︷︷︸
k−th

, . . . , 0), f(y)〉 = 〈
r∑

l=1

αlξ
�, f(y)〉

=
r∑

l=1

αl〈ξl, f(y)〉 =
r∑

l=1

αlgξl
(y).

The function fk is continuous as a linear combination of continuous functions for
every k ∈ {1, 2, . . . , n}. Therefore the function f = (f1, f2, . . . , fn) is continuous
on some neighbourhood of x. �

From the result [4], Lemma 4, we can easily derive the following lemma.

Lemma 2.1. Let f : R
m → R

n be a continuous function on an open subset
U ⊂ R

m containing a segment [a, b] := {x ∈ R
m : x = λa+(1−λ)b, λ ∈ [0, 1]} and

let ξ ∈ R
n. Then there are points γ1, γ2 ∈ (a, b) := {x ∈ R

m : x = λa+(1−λ)b, λ ∈
(0, 1)} such that

f �(γ1; b − a)(ξ) ≤ 〈ξ, f(b) − f(a)〉 ≤ f �(γ2; b − a)(ξ). (2.2)

Lemma 2.2. Let
L := min

c∈SRn

max
ξ∈Γ

|〈ξ, c〉|.
Then L > 0 and for each a, b ∈ R

n there is ξ ∈ Γ such that

‖a− b‖ ≤ (1/L)|〈ξ, a − b〉|. (2.3)

Proof. To prove the result, let us introduce a sublinear functional defined by

p(c) := max
ξ∈Γ

|〈ξ, c〉|, c ∈ R
n.

Now it is clear that p is continuous and p(c) > 0 for every c ∈ SRn because the
interior of C′ is nonempty. Since SRn is compact, one deduces L > 0. �
Proposition 2.1. Let a function f : R

m → R
n be �-stable at x ∈ R

m. Then f is
Lipschitz on a neighbourhood of x.
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Proof.
Step 1. In the first step we will show that

α := sup{|f �(x; u)(ξ)| : u ∈ SRm , ξ ∈ Γ} < +∞. (2.4)

Suppose on the contrary that there are sequences {ξk}∞k=1 ⊂ Γ and {uk}∞k=1 ⊂ SRm

with the property:

lim
k→∞

|f �(x; uk)(ξk)| = +∞. (2.5)

When passing to subsequences we may assume that uk → u0, ξk → ξ0 as k → +∞,
where u0 ∈ SRm , ξ0 ∈ Γ. In accordance with (2.5) we may assume without loss of
generality that

lim
k→∞

f �(x; uk)(ξk) = −∞.

The second case (i.e., limk→+∞ f �(x; uk)(ξk) = +∞) can be treated similarly.
Using Theorem 2.1, we can find an open neighbourhood U of x, δ > 0, and K > 0
such that f is continuous on U , x + δBRm ⊂ U and

|f �(y; u)(ξ) − f �(x; u)(ξ)| ≤ K‖y − x‖ (2.6)

for any y ∈ U , u ∈ SRm and ξ ∈ Γ.
By Lemma 2.1 and (2.6) for every k ∈ N there is γk ∈ (x, x + δuk) such that

〈ξk, f(x + δuk) − f(x)〉 ≤ δf �(γk; uk)(ξk) ≤ δ(f �(x; uk)(ξk) + K‖x− γk‖)
≤ δ(f �(x; uk)(ξk) + Kδ). (2.7)

Letting k → ∞ in (2.7), we get

〈ξ0, f(x + δu0) − f(x)〉 ≤ δ lim
k→∞

(f �(x; uk)(ξk) + Kδ) = −∞,

a contradiction, because 〈ξ0, f(x+δu0)−f(x)〉 ∈ R. This proves the property (2.4).

Step 2. Now we will attempt to show that f is Lipschitz on an open ball x+δBRm .
Let a, b ∈ x+ δBRm be arbitrary, then using Lemmas 2.1 and 2.2 we get γ ∈ (a, b),
ξ ∈ Γ such that

‖f(b)−f(a)‖ ≤ (1/L)|f �(γ; b − a)(ξ)| ≤ (1/L)(K‖γ−x‖‖b−a‖+|f �(x; b − a)(ξ)|)
≤ {(Kδ+α)/L}‖b− a‖.

This completes the proof. �

Recall that if Fréchet differentiable at x function f : R
m → R

n satisfies

f ′(x)u = lim
y→x,t↓0

{(f(y + tu) − f(y))/t}, ∀u ∈ SRm ,
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and this convergence is uniform for u ∈ SRm , then f is said to be strictly differen-
tiable at x.

Proposition 2.2. Let a function f : R
m → R

n be �-stable at x ∈ R
m. Then f is

strictly differentiable at x.

Proof. It follows that f is Lipschitz on a neighbourhood of x and thus by the
famous Rademacher theorem there is a sequence {xi}+∞

i=1 in R
m such that xi → x

as i → +∞ and for every i ∈ N there exists the Fréchet derivative f ′(xi).
We will show that for arbitrary u ∈ R

m, {f ′(xi)u}∞i=1 is Cauchy sequence.
Using Lemma 2.2 and the �-stability of f at x we can find for every j, k ∈ N a
ξj,k ∈ Γ such that

0 ≤ ‖f ′(xj)u − f ′(xk)u‖ ≤ (1/L)|〈ξj,k, f ′(xj)u − f ′(xk)u〉|
≤ (1/L)|〈ξj,k, f ′(xj)u〉 − f �(x; u)(ξj,k)|

+(1/L)|f �(x; u)(ξj,k) − 〈ξj,k, f ′(xk)u〉|
≤ (K/L)‖u‖(‖xj − x‖ + ‖xk − x‖).

The last expression converges to zero as j, k → +∞, whence {f ′(xi)u}∞i=1 is Cauchy
sequence for each fixed u ∈ R

m.
Then we can put Tu = limi→∞ f ′(xi)u for each u ∈ R

m. Note that the last
formula defines T as an element of L(Rm, Rn) and the definition of Tu does not
depend on the choice of the sequence {xi}.

Now, for any ξ ∈ Γ, u ∈ R
m, and for any i ∈ N, we have:

|〈ξ, Tu〉 − f �(x; u)(ξ)| ≤ |〈ξ, Tu − f ′(xi)u〉| + |〈ξ, f ′(xi)u〉 − f �(x; u)(ξ)|
≤ ‖Tu− f ′(xi)u‖ + K‖xi − x‖‖u‖.

Letting i → ∞, we arrive at 〈ξ, Tu〉 = f �(x; u)(ξ) for any ξ ∈ Γ and u ∈ R
m.

In what follows we show the strict differentiability of f at x. If y lies sufficiently
close to the point x, t > 0 is sufficiently close to 0 and u ∈ SRm , then due to
Lemma 2.1 for every ξ ∈ Γ there exist two points γ1,ξ, γ2,ξ ∈ (y, y + tu) such that

(1/t)f �(γ1,ξ; tu)(ξ) ≤ 〈ξ, (f(y + tu) − f(y))/t〉 ≤ (1/t)f �(γ2,ξ; tu)(ξ).

Then

f �(γ1,ξ; u)(ξ) − f �(x; u)(ξ) ≤ 〈ξ, (f(y + tu) − f(y))/t〉 − f �(x; u)(ξ)

≤ f �(γ2,ξ; u)(ξ) − f �(x; u)(ξ). (2.8)

Furthermore, due to the �-stability at the point x we infer

|f �(γi,ξ; u)(ξ) − f �(x; u)(ξ)| ≤ K‖γi,ξ − x‖, (2.9)

for i = 1, 2 and for each u ∈ SRm .
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Using inequalities (2.8), (2.9), and the fact that 〈ξ, Tu〉 = f �(x; u)(ξ) for any
ξ ∈ Γ and u ∈ R

m, we obtain

−K‖γ1,ξ − x‖ ≤ 〈ξ, [(f(y + tu) − f(y))/t] − Tu〉 ≤ K‖γ2,ξ − x‖,

for any ξ ∈ Γ, y sufficiently close to x, u ∈ SRm , and for any t > 0 sufficiently
close to 0, where γ1,ξ, γ2,ξ ∈ (y, y + tu). Therefore if t → 0+, y → x, then due to
Lemma 2.2, we have that

‖[(f(y + tu) − f(y))/t] − Tu‖ ≤ (1/L) sup
ξ∈Γ

〈ξ, [(f(y + tu) − f(y))/t] − Tu〉 → 0,

as t → 0+ uniformly for u ∈ SRm . The previous formula yields

lim
y→x,t↓0

{(f(y + tu) − f(y))/t} = Tu = f ′(x)u,

and this limit is uniform for u ∈ SRm . �

The following lemma plays a very important role in optimality conditions pre-
sented in Section 3. It has been already shown in [13] that inequality (2.10) holds
for C1,1 functions, but here we generalize it also for �-stable functions.

Lemma 2.3. Let a function f : R
m → R

n be �-stable at x ∈ R
m. Then there is

α > 0 such that

∀u, w ∈ R
m ∃δ > 0 ∀t ∈ (0, δ) :‖(2/t2)(f(x + tu) − f(x) − tf ′(x)u)

− (2/t2)(f(x + tw) − f(x) − tf ′(x)w)‖
≤ α(‖u‖ + ‖w‖)‖u − w‖. (2.10)

Proof. Note that by Proposition 2.2 f is strictly differentiable at x. Having in
mind Theorem 2.1, we suppose that U denotes a neighbourhood of x on which f
is continuous and (2.1) is true. Let us consider an auxiliary function g : R

m → R
n

defined by g(z) := f(z)−f ′(x)z, z ∈ R
m. If we fix u, w ∈ R

m, then there are δ > 0,
τ > 0 such that x + τBRm ⊂ U and δu ∈ τBRm , δw ∈ τBRm . So that for every
t ∈ (0, δ) we have x + tu ∈ x + τBRm , x + tw ∈ x + τBRm . Due to Lemmas 2.1,
2.2 and �-stability there exist γt ∈ (x + tu, x + tw) and ξt ∈ Γ such that

‖(2/t2)(f(x + tu) − f(x) − tf ′(x)u) − (2/t2)(f(x + tw) − f(x) − tf ′(x)w)‖
= (2/t2)‖g(x + tu) − g(x + tw)‖
≤ (2/Lt2)|〈ξt, g(x + tu) − g(x + tw)〉|
≤ (2/Lt)|g�(γt; u − w)(ξt)|
= (2/Lt)|f �(γt; u − w)(ξt)−〈ξt, f

′(x)(u−w)〉|
≤ (2K/Lt)‖γt − x‖‖u − w‖.
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Since for some μ ∈ (0, 1) we have γt = μ(x + tu) + (1 − μ)(x + tw), then we can
derive:

‖γt − x‖ = ‖μ(x + tu) + (1 − μ)(x + tw) − x‖
= t‖μu + (1 − μ)w‖
≤ t(μ‖u‖ + (1 − μ)‖w‖)
≤ t(‖u‖ + ‖w‖).

Now, letting α := (2K/L) > 0 we come to our inequality (2.10). �

3. Optimality conditions

In the final paragraph, we will state some results from the article [13] in a more
general form with the use of the �-stability notion. We have omitted proofs of these
results because they can be proved by similar methods as in the above mentioned
papers. In [13], Theorem 4, the authors proved a result giving second-order neces-
sary conditions for weak efficiency where the objective function f was assumed to
be of class C1,1. The proof of this result mainly relies on a certain inequality like
the inequality (2.10) in Lemma 2.3. Thus, it is not surprising that the following
version of that theorem also holds.

Theorem 3.1. Let a function f : R
m → R

n be �-stable at x ∈ R
m. Let x be

a w–minimizer for f . Then the following two conditions are satisfied for each
u ∈ SRm :

(i) f ′(x)u �∈ −int C;
(ii) if f ′(x)u ∈ −(C \ int C) then for all y ∈ f ′′

D(x; u) it holds
conv{y, Imf ′(x)} ∩ (−int C) = ∅.

The proof of Theorem 1.1 is based on Theorem 3.1 which was originally proved
for C1,1 functions in [13]. In view of current assumptions of Theorem 3.1, we can
reformulate Theorem 1.1 in a more general fashion.

Theorem 3.2. Let a function f : R
m → R

n be �-stable at x ∈ R
m. Let x be a

w-minimizer of f . Then if we put

�(x) := {ξ ∈ R
n : ξf ′(x) = 0, ‖ξ‖ = 1},

for every u ∈ R
m, the following two conditions are satisfied:

(i) �(x) ∩ C′ �= ∅;
(ii) if f ′(x)u ∈ −(C \ int C) then

miny∈f ′′
D(x;u) max{〈ξ, y〉 : ξ ∈ �(x) ∩ C′} ≥ 0.

In the next theorem we provide a similar generalization of another necessary con-
dition formulated in [13].
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Theorem 3.3. Let a function f : R
m → R

n be �-stable at x ∈ R
m. Let x be

an isolated minimizer of second-order for f . Then �(x) ∩ C′ �= ∅, and for every
u ∈ SRm one of the following two conditions is satisfied:

(i) f ′(x)u �∈ −C;
(ii) f ′(x)u ∈ −(C \ int C) and

miny∈f ′′
D(x;u) max{〈ξ, y〉 : ξ ∈ �(x) ∩ C′} > 0.

The second-order sufficient condition given in Theorems 1.2 and 1.4 can also be
proven under an �-stability assumption. With respect to Proposition 2.2, Theo-
rem 1.6 is a special (scalar) case of Theorems 3.4 and 3.3.

Theorem 3.4. Let a function f : R
m → R

n be �-stable at x ∈ R
m. Let �(x) :=

{ξ ∈ R
n : ξf ′(x) = 0, ‖ξ‖ = 1} ∩ C′ �= ∅ and suppose that for every u ∈ SRm one

of the following two conditions is satisfied:
(i) f ′(x)u �∈ −C;
(ii) f ′(x)u ∈ −(C \ int C) and

miny∈f ′′
D(x;u) max{〈ξ, y〉 : ξ ∈ �(x) ∩ C′} > 0.

Then x is an isolated minimizer of second-order for f .

The following example shows a function which satisfies the assumptions of The-
orem 3.4 but it is not of class C1 and thus we cannot use neither Theorem 1.2 nor
Theorem 1.4.

Example 3.1. Consider a function f : R → R
2 minimized with respect to a cone

C := R
2
+ and defined by

f(x) := (g(x), 0), ∀x ∈ R,

where g(x) :=
∫ |x|
0

ϕ(u)du, x ∈ R, and

ϕ(u) :=

⎧⎨
⎩

1, if u > 1,
1/(k + 1), if 1/(k + 1) < u ≤ 1/k, k = 1, 2, . . . ,
0, if u = 0.

The function ϕ(u) is nondecreasing on [0,∞), hence we can consider that integral
in a Riemann sense. Note that g is even and convex. Also observe that f ′(0) =
(g′(0), 0) = (0, 0), and for the right and left derivative of g it holds respectively

g′+(1/k) = 1/k, g′−(1/k) = 1/(k + 1), k = 1, 2, . . .

Moreover, for each x ∈ R the following holds:

∫ |x|

0

ϕ(u)du ≥
∫ |x|

0

(u/(1 + u))du = |x| − ln(1 + |x|).

Further, we have:

〈ξ, f ′(0)u〉 = 〈(ξ1, ξ2), (0, 0)〉 = 0, ∀ξ ∈ R
2, ∀u ∈ R.
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This implies that

�(0) ∩ C′ = {ξ ∈ R
2 : ξ1 ≥ 0, ξ2 ≥ 0, ξ2

1 + ξ2
2 = 1} �= ∅.

If u ∈ SR1 = {−1, 1}, ξ ∈ Γ = {ξ ∈ R
2 : ξ1 ≥ 0, ξ2 ≥ 0, ξ2

1 + ξ2
2 = 1}, x > 0, then

|f �(x; u)(ξ) − f �(0; u)(ξ)| = |f �(x; u)(ξ)| = |ξ1g
′
±(x)| ≤ |g′±(x)| = lim

u→x±
ϕ(u) ≤ x.

Similarly, for x < 0 we have:

|f �(x; u)(ξ) − f �(0; u)(ξ)| = |f �(x; u)(ξ)| ≤ −x.

Thus f is continuous on R and �-stable at x0 = 0. Let u = +1 ∈ SR1 , ξ = (1, 0) ∈
�(0) ∩ C′, and let

y = lim
k→∞

(2/t2k) (f(0 + tk · 1) − f(0) − tkf ′(0) · 1) = lim
k→∞

(2/t2k)f(tk),

where tk ↓ 0. Then y ∈ f ′′
D(0; 1) and for every k ∈ N we have:

〈ξ, (2/t2k)f(tk)〉 = (2/t2k)g(tk) ≥ (2/t2k)(tk − ln(1 + tk)).

Letting k → +∞, we get

1 ≤ 〈ξ, y〉 ≤ max{〈ξ, y〉 : ξ ∈ �(0) ∩ C′},

where y ∈ f ′′
D(0; 1) was arbitrary and hence

0 < 1 ≤ min
y∈f ′′

D(0;1)
max{〈ξ, y〉 : ξ ∈ �(0) ∩ C′}.

In a similar fashion we can do this for u = −1 and hence the condition (ii) from
Theorem 3.4 is satisfied. Therefore x0 = 0 is an isolated minimizer of second-order
for f .

Finishing our paper, we would like to remark that in some papers published re-
cently (e.g. [11,18,19]) the authors stated optimality conditions under weaker regu-
larity of considered functions than �-stability at some point but in terms of general-
ized second-order derivative of Hadamard type as for example d2f(x; u), d2

�f(x; u)
or f ′′

H(x; u).
We note that second-order Hadamard derivative d2f(x; u) do not coincide with

the classical ones even in the case of C2 functions, for more details see considera-
tions in [13].

On the other hand, Theorem 3.4 can not be used to state that for example the
function f : R → R,

f(x) =
{ −x, for x < 0,

x2, for x ≥ 0,
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attains its strict local minimum at 0. In contrast to the following theorem which
is a special case of a result proved in [11].

Theorem 3.5. Let f : R
m → R be a function. If for each u ∈ SRm one of the

following condition holds
(i) df(x; u) > 0;
(ii) df(x; u) = 0 and d2

l f(x; u) > 0, then x is an isolated minimizer of second-
order.
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