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FRANCE TELECOM WORKFORCE SCHEDULING
PROBLEM: A CHALLENGE
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Abstract. In this paper, we describe the methodology used to tackle
France Telecom workforce scheduling problem (the subject of the
Roadef Challenge 2007) and we report the results obtained on the dif-
ferent data sets provided for the competition. Since the problem at
hand appears to be NP-hard and due to the high dimensions of the
instance sets, we use a two-step heuristical approach. We first devise
a problem-tailored heuristic that provides good feasible solutions and
then we use a meta-heuristic scheme to improve the current results.
The tailored heuristic makes use of sophisticated integer programming
models and the corresponding sub-problems are solved using CPLEX
while the meta-heuristic framework is a randomized local search algo-
rithm. The approach herein described allowed us to rank 5th in this
challenge.
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1. Introduction

One of the keys to success in project management, from the organization of a
dinner with class-mates to planning space expeditions, is the right distribution of
responsibilities among the members of the team. People are not interchangeable
and some are clearly more talented than others when it comes to organizational
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tasks, marketing aspects or human relationships. Thus the central problem is how
one should efficiently use the available resources (skills) to ensure the best possible
outcome. These problems, often referred to as workforce scheduling problems,
have received more and more attention in the last years. With the development
of highly competitive markets, nowadays it is not only a question of maximizing
the profit of a company but in addition also to ensure its survival.

France Telecom (FT) is one of Europe’s leading provider for telecommunication
services. It employs a huge amount of technicians to maintain, repair and develop
its infrastructure and to provide services to its customers. With the introduction
of more and more new technologies, such as voice-over-IP or TV-on-demand and
the liberalization of the french market, it is crucial for FT to efficiently manage
its pool of technicians. The resulting dispatching problem (which in fact is a
scheduling problem) is the basis for the Roadef Challenge 2007 [11].

The aim of the challenge is to provide a solution to this problem that could serve
two goals: at an operational level, to efficiently schedule the different interventions
with the current pool of technicians available; at a strategical level, to decide when
the resources become critical and what kind of training or hiring could improve
the flexibility and efficiency of the pool of technicians.

Problem description

In this section we want to give a brief, yet more detailed description of this
workforce scheduling problem posed by France Telecom (FTWFSP). The problem
is defined by a list of interventions I to be scheduled and a set of technicians
E that should resolve the interventions. Each technician has N different skills
{1, ..., N} and L different levels of competence {1, ..., L} for each skill. Moreover
the days where employees are off, due to vacations or work conventions, are given.
We denote by De ⊆ Z+ the set of days where employee e is available. Each day
is subdivided into 120 time units. Each intervention i ∈ I is characterized by a
duration di ∈ {1, ..., 120} and a list of requirements i.e. for each skill n ∈ {1, ..., N}
and each level l ∈ {1, ..., L}, we are given the number of people R(n, l) of level
≥ l needed for skill n (note that overqualified technicians can be used for simple
tasks). Interventions are related by precedence constraints. For convenience, we
define the precedence graph of a set of interventions I as the graph with vertex set
I and arc set A = {(i, j) : i, j ∈ I and i is a predecessor of j}. Each intervention
i can be outsourced at a certain cost ci but if intervention i is outsourced, all the
successors of i have to be outsourced too i.e. for all j such that (i, j) ∈ A, j has to
be outsourced. FT has a budget B for outsourcing the interventions i.e. a feasible
set of outsourced interventions O must satisfy

∑
i∈O ci ≤ B. Many interventions

require several employees to be combined into teams to meet the skill requirements.
Since the members of a team usually share a vehicle, they cannot be split during
a day. Each intervention i ∈ I that is not outsourced has to be scheduled at time
ti ∈ {0, ..., 120 − di} of day Di. Technician cannot process multiple tasks at the
same time.

The goal is to minimize the reaction time i.e. the schedule horizon but since
the interventions have different priorities p from 1 to 4, the formal objective is
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to minimize a weighted makespan of the tasks with priority 1, 2, 3 plus the total
makespan i.e. if tp denotes the completion time of the last task of priority p, the
objective is to minimize 28.t1 + 14.t2 + 4.t3 + maxp=1,...,4 tp. Note that France
Telecom imposed a time limit of 1200 seconds for the computation.

We refer to the official subject description [4] and the FAQ of the Roadef
Challenge 2007 for a more detailed/exact description and for the precise char-
acteristics of the different instances of the challenge. In order for the reader to get
a flavor of the dimension of the problem, let us mention that the typical instances
have between 100 and 1000 jobs, between 20 and 150 technicians, between 15 and
120 requirements, and between 50 and 500 precedence constraints.

2. Methodology

In this section we want to discuss our approach for solving the problem for-
mulated by France Telecom. It is easy to see that FTWFSP can be formulated
as a Resource-Constrained Project-Scheduling Problem (RCPSP) (cf. [8]). Un-
fortunately, RCPSP is well known to be NP-hard and even worse, it is NP-hard
to approximate within a factor n(1−ε) for any ε > 0, where n is the number of
interventions. One can easily (and näıvely) formulate the FTWFSP as an integer
program. Nevertheless, as for most scheduling problems, the natural formulations
lead to intractable problems for state-of-the-art solvers (given the dimensionality
of the FT instances). Other exact approaches based on constrained programming
for instance suffer from the high dimension of the problem as well. We therefore
decided to concentrate on heuristics in view of the mentioned bad approximation
properties. Regardless of this we do believe that some of the characteristics of the
actual instances could lead to interesting approximation results for large subclasses
of FTWFSP (e.g. limited number of intervention durations). We did not inves-
tigate this aspect in detail yet but we believe that some of our heuristics might
be good candidates for approximation algorithms in this respect. For a detailed
discussion of Resource-Constrained Project-Scheduling Problems and Workforce
Scheduling Problems we refer the reader to [1,7,8,10,12].

Kolisch and Hartmann [8] have investigated different heuristics for Resource-
Constrained Project-Scheduling Problem. Following their findings we decided to
apply a meta-heuristic strategy (described in Sect. 2.2) that builds upon the con-
cept of activity list representation and schedule generation schemes (described in
Sect. 2.1). The activities we consider are daily tasks that we generate upfront
by aggregation of interventions to so called intervention packs (see Sect. 2.3). In
order to incorporate the possibility of outsourcing interventions we apply a very
simple heuristic right at the beginning and remove outsourced tasks from the list
of interventions which have to be scheduled (see Sect. 2.4).

2.1. Activity list representation and schedule generation scheme

(SGS)

Each schedule is encoded as an ordered list of tasks (the activity list) and the
schedule generation scheme is the decoder function which then transcribes this
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activity list into a feasible schedule. We use a sequential SGS to decrypt our
activitiy list i.e. we traverse the activity list and greedily insert the tasks into the
schedule as early as possible i.e. when all precedence constraints are satisfied and
resources (technicians), that satisfy the task’s requirements, are available.

In order to transcribe the activity list into a valid schedule we have to satisfy
certain constraints for every insertion. These constraints and their satisfaction
(checks) are explained in the following. Checking that the predecessor of a task
have already been scheduled is easy. If teams have already been defined, we check
if one satisfies the requirements of the new task and its daily capacity is not
reached yet. Otherwise in order to assign a new team to a task on day D ∈ Z+,
we solve a very simple set covering problem (nevertheless we have to solve a lot
of them). Let E be the set of employees still available on day D i.e. E = {e ∈
E : D ∈ De}. For each employee e we denote by Se ∈ {0, 1}N×L the characteristic
vector of the skills of employee e i.e. for every skill n ∈ {1, . . . , N} and every level
l ∈ {1, . . . , L}, Se(n, l) = 0 if the level for skill n of employee e is less than l and
Se(n, l) = 1 otherwise. By R ∈ {0, 1}N×L we denote the characteristic matrix of
the intervention’s requirements i.e. for all n ∈ {1, . . . , N} and all l ∈ {1, . . . , L},
R(n, l) is the number of people of level ≥ l required for skill n. Now, for each
employee e we define a boolean variable xe to decide if employee e will be part of
the team. A first intuitive approach is to minimize the number of people used for
this intervention. This problem can be formulated as:

min
∑

e∈E xe
∑

e∈E Se(n, l) xe ≥ R(n, l), ∀n ∈ {1, ..., N}, ∀l ∈ {1, ..., L}
xe ∈ {0, 1}, ∀e ∈ E.

In the final algorithm we use a slight variation of this problem where among all
teams of minimum size, we take the one that is the least overqualified. For this
purpose we slightly change the formulation above by introducing slack variables
for each constraints and adding the sum of the slacks to the objective function
with a small cost guaranteeing that we first minimize the number of people. By
doing so we try to prevent the ‘waste of skills’.

2.2. Local Search on the activity list

The meta-heuristic strategy we use is a randomized local search. This strategy
works on the activity list rather than the actual schedule. In order to make this
meta-heuristic work efficiently, we need to provide good initial solutions i.e. good
initial activity lists. Since the characteristics of the Instance Sets itself are not a
priori clear and often of a mixed nature, we calculate a set of different activity
lists (i.e. initial solutions) emphasizing on different characteristics of the Instance
Sets. These lists are then passed to the local search. The current implementation
creates 3 different initial candidates:

1. Easy ordering by priority.
2. First order by priority and then by the size of team needed.
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3. Ordering derived from the critical paths in the precedence graph i.e. or-
der by earliest possible time when no resource constraints are taken into
account.

In general, local search techniques suffer from a lot of drawbacks. They neither
provide optimality criterions nor (lower) bounds for example. Nevertheless they
have proven to be a very effective for improving given (good) starting solutions.
Clearly, since we only search locally around a given solution it may be very well
that we run into a local optimum which is far away from the global optimum.
Especially, when no quality measures like lower bounds (e.g. from relaxations) are
known it is almost impossible to decide if a resulting solution is a good solution. Yet
worse, for the considered problem the search space is enormous which makes even
an exhaustive local search around a given feasible solution impossible. Therefore
the problem characteristics had to be carefully considered while designing the local
search.

As already mentioned, the designed local search algorithm performs a search
on the activity lists. Those lists are then transcribed into feasible schedules as
described in Section 2.1. We start from a given activity list and traverse its neigh-
bors. Two activity lists are considered to be neighbors if one can be obtained from
the other by a transposition i.e. we swap two interventions (or the corresponding
intervention packs, see Sect. 2.3). This transformation is motivated by the as-
sumption that a (very) good solution can be obtained by using the right activity
list and the fact that every bijection (i.e. permutation) of this list can be repre-
sented by a product of transpositions. Note that even using the activity list given
by the optimal solution would not guarantee that we can re-generate this optimal
schedule by our algorithm. This would be true only if we can guarantee to assign
optimally the technicians to the different tasks but the procedure we defined in
Section 2 is a heuristic. In a classical manner we try now to iteratively improve
the activity list. This iterative procedure may not generate an optimal solution
as it may be very well that the optimal solution may not be reached by moving
in the search space in a way that the objective function value is non-increasing.
Nevertheless, if the initial solution is already of a good quality this approach has
proven to be effective.

In order to design an effective local search algorithm for this workforce sched-
uling problem, we had to deal with different problems. One problem is to choose
the right amount of neighbors (i.e. candidates close to a given feasible activity
list) and the depth of the local search. Since the time is limited, testing too many
candidates may lead to too easy permutations. This then results in only minor
improvements of the activity list. On the contrary, if we check too few neighbors
it is possible that we create very complicated permutations (i.e. a product of a
huge number of transpositions) with only little impact on the actual activity list.
Again an improvement is rather unlikely. Our empirical experiments in this re-
spect have shown that the right trade-off between depth and breadth is essential
for the performance of the local search.

Another point is that it does not make sense to try an arbitrary transposition as
it is clear that a lot of those transpositions are unlikely to generate improvements.
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For example it only makes sense in very seldom cases to exchange an interven-
tion of priority 1 with an intervention of priority 4. Therefore we put effort in
understanding the transformations of the list which are more likely to improve the
quality. The following transformations have proven (by statistical analysis) to be
quite effective. Moreover, we add some random transpositions so that we use the
following neighborhood (transformation) types on the activity list:

1. Exchanging interventions of the same priority.
2. Exchanging interventions of priority difference at most 1.
3. Exchanging interventions that are not too far away from each other in the

list.
4. Exchanging 2 randomly chosen interventions.

Since the structure of the instances is quite diverse it is likely that different con-
figurations of neighborhoods and neighborhood sizes perform differently on the
different instances. This assumption is supported by empirical tests on the in-
stance sets. Therefore we decided to implement a local search algorithm which
dynamically adapts its behavior to the actual instance set with respect to the
neighborhood size and we generate candidates according to the distribution of the
improving neighborhood types similar to Polya’s urns [9] that ‘attract’ new balls
with probability proportional to their filling with balls; sometimes also referred as
‘more gains more’. More precisely, we select randomly a neighborhood type over
the 4 possible ones (initially with equal probability). Each time a neighborhood
types improves the solution we slightly increase its probability of being chosen
while slightly decreasing the probability of choosing the three other ones. Thus
when a neighborhood type performs better, it tends to be chosen more often. The
quality of every generated candidate is checked by actually transcribing the ac-
tivity list into the corresponding schedule using the SGS. This is one of the most
time consuming tasks in our algorithm. Having a quick estimator to reject bad
solutions right away might improve the performance significantly.

2.3. Pairing and packing of interventions to larger blocks

In order to generate good schedules it seems natural that teams do not waste
their time within their daily operations i.e. it would make no sense if in the
morning a team of, say four people, is fully involved in an intervention while in the
afternoon only one of the members works while the others play belote... Therefore
we considered the idea of initially aggregating the tasks by similarity. This has
two positive impacts. First, when critical resources are involved, we then tend to
use them more efficiently. Moreover, it removes a lot of symmetries and narrows
down the solution space which then makes the problem more tractable for the local
search. In order to do so, we need a good measure of similarity. It is clear that there
are different measures which emphasize on different aspects. After investigating
on the different measures we decided to use the following one. A pack of tasks is
considered to be similar when the number of people required to process the whole
intervention pack is not too different from the minimal number of technicians
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needed for the simplest one, i.e the overhead is small. We precisely define the
similarity measure sim(i, j) between two different tasks i and j as the overhead
in the intervention pack. Note that in the final version of the code, the overhead
used was the average number of extra persons over the period in consideration
i.e. if task i requires 2 persons and has duration 30; task j requires 3 persons
and has duration 90 and combining the 2 tasks requires 4 persons, sim(i, j) :=
30.(4−2)+90.(4−3)

120 = 5
4 . We would thus ideally like to aggregate interventions to

intervention packs by minimizing the total overhead. Unfortunately, the different
algorithms we had in mind to solve this problem were impracticable due to the
size of the problem and it is not clear if there are efficient algorithms. Nevertheless
we observed that the durations of the interventions are most of the time multiples
of 15 i.e. 15, 30, ..., 120. We use this property of the instance sets and we
round up the intervention durations to the closest multiple of 15. Even further
we exploit this structure in approximating the packing by iteratively pairing the
tasks by similarity. More precisely, we apply a pairing algorithm to the initial list
of intervention, we remove the daily tasks (i.e. of length 120) thereby created and
repeat this procedure twice with the newly created tasks. The reason for iterating
this procedure three times is that it is very likely that after each iteration we
get rid of the tasks of smallest duration and thus, after the first round mainly
tasks with duration ≥ 30 are likely to be left, after the second mainly tasks of
length ≥ 60 and finally mainly daily tasks at the end of the procedure.

The pairing problem can be formulated as a follows. Let 1, ..., n be the different
tasks under consideration. We can define a complete bipartite graph G with vertex
set V (G) = Vl ∪ Vr with Vl = {v1, ..., vn} and Vr = {v′1, ..., v′n}. A pairing of the
tasks will correspond to a perfect matching in G with the additional constraint
that if (vi, v

′
j) is an edge in the matching with i �= j, also (vj , v

′
i) has to be selected.

Observe that having edge (vi, v
′
i) in the perfect matching is interpreted as task i

not being matched to any other task. We aim to find the best possible pairing
with respect to minimizing the total overhead, or equivalently maximizing the
utilization. Thus we need to define a cost function c on the edges of G which
resembles this objective. For all i �= j ∈ {1, ..., n}, we put c(vi, v

′
j) = sim(i, j)

and for all i = 1, ..., n, we set c(vi, v
′
i) = p(i). The term p(i) is a penalty function

chosen to be big enough in order to ensure that i is paired with itself (i.e. not
paired with any another task) only when necessary. In the algorithm we used
the average overhead over the full day period as the penalty i.e. if task i requires
3 persons and has duration 90, pi = 0.90+3.30

120 = 3
4 . The problem can be formulated

as the integer program:

min
∑

u∈Vl,v∈Vr
c(u, v) x(u, v)
∑

v∈Vr
x(u, v) = 1, ∀u ∈ Vl

∑
u∈Vl

x(u, v) = 1, ∀v ∈ Vr

x(vi, v
′
j) − x(vj , v

′
i) = 0, ∀i �= j

x(u, v) ∈ {0, 1}, ∀u ∈ Vl, v ∈ Vr .
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We also realized that this problem could be formulated as a classical perfect match-
ing problem in the graph G′ = (V, E) with vertex set V = Vl ∪ Vr with again
Vl = {v1, ..., vn} and Vr = {v′1, ..., v′n}. In contrast to the formulation from above,
G′[Vl] and G′[Vr] are complete graphs now and {(u, v) ∈ E : u ∈ Vl, v ∈ Vr) =
{(vi, v

′
i), i = 1, ..., n}. We can define a cost function c on the edges of G′ as

c(vi, vj) = c(v′i, v
′
j) = sim(i,j)

2 for all i �= j ∈ {1, ..., n} and c(vi, v
′
i) = p(i) for

all i = 1, ..., n. It is easy to see that we can assume without loss of generality
that a minimum cost perfect matching M in G′ will have the property that if
(vi, vj) ∈ M , then (v′i, v

′
j) ∈ M . Thus a minimum cost perfect matching can di-

rectly be interpreted as a pairing. It follows that this simple pairing problem can
be solved in polynomial time.

Despite of this, the actual problem which has to be solved here is more com-
plicated and we thus keep the integer formulation presented above (for its nice
flow-like structure) to which we will add additional constraints. Indeed, not all
pairings are feasible since the given precedence constraints have to be satisfied.
Thus näıvly packing the interventions to intervention packs can easily lead to cy-
cles in the precedence graph which make the problem infeasible. We tackle this
with a branch-and-cut approach by dynamically checking whether the current best
solution contains precedence cycles or not. In order to detect cycles, we simply
create a new precedence graph with the current pairing as the set of interventions
(equivalently, we “shrink” the different pairs of interventions to pseudo-vertices in
the original precedence graph) and we use an adaptation of a deep first search
algorithm to detect cycles. If the pseudo-vertices 1, ..., k form a cycle, and pseudo-
vertex l ∈ {1, ..., k} corresponds to a pair of intervention {il, jl}, we simply add
the inequality

∑k
l=1 x(vil

, v′jl
) ≤ k−1 (those simple inequalities are closely related

to the so-called cover inequalities for the knapsack problem). This branch-and-
cut approach is implemented using Cplex and the concept of lazy constraints.
Moreover, due to the dimensionality and in order to satisfy the time limit im-
posed by the challenge (1200 s), we decided to go a step further and implement
an approximate algorithm for the above packing problem by subdividing the set
of interventions into smaller pools and using the pairing algorithm on those pools
separately. Although we restrict the possible pairing capabilities which, on the
one hand, may affect optimality, we guarantee on the other hand that the pair-
ing problems involved are practically tractable. The maximum size of the pairing
problem which is considered to be tractable was estimated by statistical analysis
and obviously depends on the performance of the machine.

Unfortunately, a packing that does not contain any cycles may nevertheless
be problematic: It may contain a very long precedence path which bounds the
makespan from below, e.g. if the longest path is of length 13 (with respect to a
daily measure) then we need at least 13 days to process all interventions. For an
example of a highly complicated precedence graph arising from a näıve packing
see Figure 1. The displayed precedence graph here is arising from instance set B6
and a näıve pairing of interventions.
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Figure 1. The precedence graph of Instance Set B6 for a näıve packing.

As one might guess, these complicated precedence graphs do impose two major
problems. First, as already mentioned, it may impose an artificial lower bound on
the makespan which in turn can result in bad schedules. On the other hand, it
is easy to imagine that such a complicated graph can also have severe impact on
the performance of the local search. Indeed, very specific transformations on the
activity list are needed to actually change the schedule and thus many changes to
the activity lists may remain useless as they violate a precedence constraint and
hence are cancelled by the SGS later (see Sect. 2.2). So there is a certain trade-off
between packing tasks together and not creating a too complicated precedence
graph. To get hold of this problem we evaluate, at each round of the iterative
pairing (remember we have three rounds of pairing), the quality of the current
packing by using the SGS procedure. We keep the best round of pairing obtained
as the starting point for our local search strategy.

2.4. Outsourcing interventions

The current implementation handles the possibility of outsourcing tasks to ex-
ternal contractors only in a very rudimentary way and there is still room for
further improvements. In fact right at the beginning we calculate a certain cost-
measure, which relates the amount of resources (technicians) a job occupies, the
job’s priority and the costs of outsourcing the intervention. Afterwards the jobs
with the highest costs are outsourced which is done by removing them from the
list of interventions we have to schedule. This approach is inspired by the fact that
the optimal solution to the linear relaxation of a knapsack problem is obtained by
greedily selecting objects with maximum ratio profit

cost (note that a budget constraint
is a knapsack constraint). In the algorithm, we rank the interventions that are
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candidates for outsourcing with respect to their priority and then by the ratio
number of resources needed

cost of intervention . For the sake of simplicity, we only considered intervention
without successors as candidate for outsourcing.

It is clear that we could have improved this simple heuristic by outsourcing the
tasks on the fly but our time in view of the challenge deadline was limited so that
we could not implement such a solution.

3. Computational results

For the development of the graph-theoretical functions/framework in our algo-
rithm we used the very powerful Boost C++ framework [2]. The random numbers
for the local search were generated using a C++ implementation [3] of the famous
Mersenne-Twister-Generator which generates high quality random numbers. Both
libraries are freely available.

Since the performance of our algorithm is (for obvious reasons) subject to the
actual characteristics of the computer it is run on, we want to clarify that the
results presented in Section 3.1 were obtained on a machine with four Intel(R)
Xeon(TM) 3.00GHz processor, 4 gb of shared RAM memory and 512 kb of cache
memory (note that the machine was not dedicated and our algorithm is not multi-
processor aware). The results presented in Section 3.2 were computed on the server
provided by FT whose specifications are quite similar see FAQ of the Roadef 2007
Challenge for details.

All the experiments were run with a time limit of 1200 seconds. For details
about the different instance sets, the reader is referred to the Roadef Challenge
2007 webpage.

3.1. Qualification phase

In the following we want to present our computational results for the instance
sets A and B provided by FT for the qualification phase. We also report the
reference results originally released by FT. Due to the non-deterministic nature
of our algorithm the results may slightly vary. To pay attention to this fact, we
include the best and the worst result we obtained over 10 runs for every instance
sets. Moreover, we include a third column that gives the corresponding deviation
factor. The mean variation for the full Instance Set B is about 2.3% which is
acceptable in this context. The results for Instance Set A and Instance Set B can
be found in Table 1.

3.2. Final results

In Table 2, we report the final results officially announced by the head of the
Roadef Challenge 2007 for Instance Set X . We compare it to the overall best
solution obtained by the different teams and the solution obtained by the winner
of the challenge: Cor Hurkens.
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Table 1. Results for Instance Set A, Instance Set B and reference results.

IA best worst 	%
1 2340 2340 1.0000
2 4755 4755 1.0000
3 11880 11880 1.0000
4 14760 14760 1.0000
5 33480 34740 1.0367
6 22380 22575 1.0087
7 33360 33360 1.0000
8 21180 22320 1.0538
9 30000 30000 1.0000
10 42740 42740 1.0000
∑

216875 219470 1.0100

IB best worst 	%
1 44025 44160 1.0031
2 21240 21240 1.0000
3 20280 21135 1.0422
4 31815 34155 1.0736
5 122760 124320 1.0127
6 37965 38800 1.0220
7 38820 40680 1.0479
8 34440 35520 1.0314
9 33360 33360 1.0000
10 44640 44640 1.0000
∑

429345 438010 1.0233

Reference results
Instance A Instance B

1 2490 69960
2 4755 34065
3 15840 34095
4 14880 50340
5 41220 150360
6 30090 47595
7 38580 56940
8 26820 51720
9 35600 44640
10 51720 61560

Table 2. Final results for Instance Set X.

IX Our algorithm Hurkens Overall best
1 197550 151140 151140
2 15780 9120 7260
3 59160 50400 50040
4 75720 65400 65400
5 194700 147000 147000
6 13080 10320 9480
7 54120 33240 33240
8 33120 23640 23640
9 171480 134760 134760
10 173760 137040 137040
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Those results allowed us to rank 5th in the Roadef Challenge 2007. Although we
could have tried to work further on this problem to improve our approach and the
resulting performance we decided not to follow up since we believe the framework
proposed by the winner of the challenge [5] is better suited.
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