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PERFECTLY MATCHABLE SUBGRAPH PROBLEM
ON A BIPARTITE GRAPH

Firdovsi Sharifov1

Abstract. We consider the maximum weight perfectly matchable sub-
graph problem on a bipartite graph G = (UV, E) with respect to given
nonnegative weights of its edges. We show that G has a perfect match-
ing if and only if some vector indexed by the nodes in UV is a base of an
extended polymatroid associated with a submodular function defined
on the subsets of UV . The dual problem of the separation problem for
the extended polymatroid is transformed to the special maximum flow
problem on G. In this paper, we give a linear programming formula-
tion for the maximum weight perfectly matchable subgraph problem
and propose an O(n3) algorithm to solve it.
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ing, perfectly matchable subgraph.
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1. Introduction

Cornaz and Mahjoub investigated the maximum induced bipartite subgraph
problem on a given graph with nonnegative edge weights [6]. They gave an integer
linear programming formulation for this problem and proved that it is NP -hard
even for the unit case of edge weights. Here we consider a special case of this
problem in a given bipartite graph with nonnegative weights on the edges, which
is to find a maximum weight induced subgraph having a perfect matching. We give
a polynomial time algorithm for this problem. We use standard graph terminology
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and begin by introducing some necessary additional notations. In any graph G =
(V, E), the set of edges with one end in S and other end in T is denoted by [S, T ]
for S, T ⊆ V . We use γ(S) and δ(S) to denote the sets [S, S] and [S, V \ S],
respectively. For a set L ⊆ V or L ⊆ E and a vector y ∈ RV or y ∈ RE ,
we use y(L) for

∑
(yv, v ∈ L). A subgraph with the edge set δ(w) is called a

star and the node w ∈ V is called center of the star. We define γ(∅) = ∅ and
δ(∅) = ∅. A node set S induces the subgraph G(S, γ(S)) of G, and if G(S, γ(S))
has a perfect matching, then the subset S is a matchable set and G(S, γ(S)) is a
perfectly matchable subgraph of G. We denote by PMS(G) the convex hull of
incidence vectors of matchable sets of G.

Balas and Pulleyblank gave the linear description of PMS(G) with respect to
any graph G [3,4]. Cunningham and Green-Krotki in [7] showed that PMS(G) =
{Bz : z ∈ MP (G)}, where MP (G) is the convex hull of incidence vectors of
matchings of the graph G and B is the |V | × |E| incidence matrix of G. It maens
that for any vector c′ = (c′v : v ∈ V ) of node weights

max
{
c′x : x ∈ PMS(G)

}
= max

{
(c′B)z : z ∈ MP (G)

}
.

So, with respect to any node weights c′v, a maximum matchable set of G can be
found by solving the well known maximum weight matching problem on G with the
weights c′uv = c′u +c′v on the edges (u, v) ∈ E. Cunningham and Green-Krotki also
proposed an polynomial time algorithm for the separation problem for PMS(G)
and a given |V |-vector x. This algorithm maintains feasibility z (z ∈ MP (G))
for x = Bz. Moreover the vector z satisfies certain additional conditions that are
required in the separation problem. It is not necessary that a solution of the right-
hand side of the above equality defines a perfect matching. Hence, it makes us
unable to find a matchable set inducing a maximum weight matchable subgraph
required in the following closely related problem by setting c′ = 1 in the right-hand
side of the above equality.

In a given bipartite graph G = (UV, E) (UV = U ∪ V ) with nonnegative edge
weights ce for e ∈ E, it is required to find a matchable set S such that c(γ(S)) is
maximum and the subgraph G(S, γ(S)) is perfectly matchable. We call this the
maximum weight perfectly matchable subgraph problem (PMSM). We propose
an O(n3) algorithm for this problem. Our algorithm first finds UV0 ⊆ UV such
that any maximum cardinality matching covers all nodes of UV0. It allows us to
modify the edge weights so that we can use the above linear relationship to find
an optimal matchable set to the PMSM. That is, the nodes covered by maximum
weight bipartite matching constitute an optimal matchable set. Notice that the
set UV0 cannot be found by solving the right-hand side of the above equality when
c′ = 1 since there is a maximum cardinality matching covering a node w /∈ UV0.

We define the functions f∗(S) = |γ(S)∪δ(S)| and f(S) = |γ(S)| for all S ⊆ UV .
It is known that f∗(S) is a submodular and f(S) is a supermodular function [8]. In
Section 2, we show that the bipartite graph G = (UV, E) has a perfect matching if
and only if the vector σ = (−bu1 , . . . ,−bun , bv1 , . . . , bvn) is a base of the extended
polymatroid P (f∗−f) associated with the submodular function f∗(S)−f(S) where
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bui = dui − 1, bvi = dvi − 1 and dui , dvj are degrees of nodes ui ∈ U and vi ∈ V .
Moreover, this can be regarded as a generalization of the following result due to
Balinski [5]. A spanning tree T of a bipartite graph G has a perfect matching if
t = (tu1 , . . . , tun) is any vector of the form (2, . . . , 2, 1, 2, . . . , 2), where tui is the
degree of a node ui ∈ U with respect to a spanning tree T . The vector t is called a
signature of the tree T . We also call the vector σ a signature of the bipartite graph
G. The problem of the testing whether σ is a base of P (f∗−f) is equivalent to the
separation problem; whether σ belong to P (f∗−f) or not (see the proof of Thm. 1).
A dual problem of the optimization problem is transformed to the maximum flow
problem on the network with unit capacity of its edges. In Section 3, we describe
the Breadth-First Search simple augmentation path algorithm for this maximum
flow problem.

In Section 4, we consider the PMSP for which Sections 2 and 3 contain back-
ground materials. We formulate the PMSP as a linear programming problem and
show that the set UV0 can be found by solving the maximum flow problem. It
allows us to modify the edge weights so that we can apply any maximum weight
matching algorithm to find maximum weight matchable subgraph in a bipartite
graph G = (UV, E) with nonnegative weight on the edges.

2. Perfect matching and extended polymatroid

In this section, we prove some new results on the existence of a perfect matching
in a bipartite graph. The perfect bipartite matching problem is a maximum car-
dinality matching problem on a bipartite graph G = (UV, E) for which |U | = |V |.
The problem of finding a maximum cardinality matching on any bipartite graph
G′ = (UV ′, E′) (UV ′ = U ′ ∪ V ′) can be reduced to the same problem on the
graph G = (UV, E) for which |U | = |V |. Suppose that |U ′| < |V ′|. Then we add
|V ′|−|U ′| new nodes to U ′ and connect each new node with each node in V ′ by new
edges. For the graph G = (UV, E) with U = U ′ and V = V ′ we have |U | = |V |.
Let MG be a maximum cardinality matching in G and M be a submatching of
MG such that the endpoints of its edges are new nodes.

Proposition 2.1. If MG is a maximum cardinality matching in G, then MG \M
is a maximum cardinality matching in G′.

Proof. Let M ′ be a maximum cardinality matching in G′ and |M ′| > |MG \ M |.
Since each new node is connected with each node v ∈ V , we can find the matching
M0 in G, so that M0 contains M ′ and some submatching covering all new nodes.
Then |M ′| > |MG \ M | implies |M0| > |MG|. This contradicts the assumption
that MG is a maximum cardinality matching in G. �

Thus, in Sections 2 and 3, without loss of generality, we assume that |U | =
|V | = n for the bipartite graph G = (UV, E). Consider the polytope

P (f∗ − f) =
{
x ∈ RUV : x(S) ≤ f∗(S) − f(S), S ⊆ UV

}
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which is called an extended polymatroid in [8] associated by the submodular func-
tion f∗ − f . Any vector x ∈ RUV is called a base of P (f∗ − f) if x(UV ) =
f∗(UV )−f(UV ) and x(S) ≤ f∗(S)−f(S) for all S ⊆ UV . Since f∗(UV ) = f(UV )
by the definitions of f∗ and f , then x(UV ) = 0 for any base x of P (f∗ − f).
For the linear order {w1, . . . , w2n} of nodes wi in UV , the corresponding base
x0 = (x0

w1
, . . . , x0

w2n
) can be found by the greedy algorithm [8]:

x0
wi

= f∗(Li) − f(Li) − f∗(Li−1) + f(Li−1), i = 1, . . . , 2n (1)

where L0 = ∅ and Li = {w1, . . . , wi} for all i = 1, . . . , 2n. For the linear orders
{u1, . . . , un, v1, . . . , vn} and {v1, . . . , vn, u1, . . . , un} of the nodes ui ∈ U and vi ∈
V , formula (1) defines the vectors

xd = (du1 , . . . , dun ,−dv1 , . . . ,−dvn)

and −xd which are bases of P (f∗ − f).

Theorem 2.2. A bipartite graph G has a perfect matching if and only if its sig-
nature σ is a base of the extended polymatroid P (f∗ − f).

Proof. By Proposition 2.1 we have |U | = |V |, from which it follows that σ(UV ) =
0. Hence, to prove the theorem, we need to show that if σ ∈ P (f∗ − f) then, G
has a perfect matching and conversely.

Let us show that if σ ∈ P (f∗ − f), then G has a perfect matching. From the
definition of the signature σ, it follows that

d(NA) − d(A) − |NA| − |A| = (b(NA) − b(A)) = σ(A ∪ NA)

for each A ⊆ U , where NA denotes the set of nodes adjacent to some node in A.
By the definitions of the functions f∗ and f , we have

d(NA) − d(A) = f∗(A ∪ NA) − f(A ∪ NA).

Since σ ∈ P (f∗ − f), then

f∗(A ∪ NA) − f(A ∪ NA) − σ(A ∪ NA) ≥ 0,

from which it follows that

|NA| − |A| = d(NA) − d(A) − (b(NA) − b(A))

= f∗(A ∪ NA) − f(A ∪ NA) − σ(A ∪ NA) ≥ 0.

Thus, |NA| ≥ |A| for any A ⊆ U . From |U | = |V | it follows that the graph G has
a perfect matching by the well known Frobenius Marriage theorem.

Now, let M be a perfect matching in G. We must show that σ ∈ P (f∗ − f).
Consider the bipartite graph G1 = (UV, E \M), that is G1 is the subgraph defined
by the edge set E \ M . We can define the submodular function f∗

1 (A) and the
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supermodular function f1(A) for the graph G1 as we have defined f∗(A) and
f(A) for the graph G. It is clear that f∗

1 (A) − f1(A) ≤ f∗(A) − f(A) for any
A ⊆ UV . Moreover, bw is the degree of a node w of the graph G1. Hence, the
vector −xb

1 = (−bu1 , . . . ,−bun , bv1 , . . . , bvn) similar to base −xd of P (f∗ − f), is
a base of the extended polymatroid P (f∗

1 − f1). From σ = −xb
1, it implies that

σ(A) ≤ f∗
1 (A) − f1(A) ≤ f∗(A) − f(A) for any A ⊆ UV and this completes the

proof of the theorem. �

Corollary 2.3. σ is a base of the extended polymatroid P (f∗ − f) if and only if
−σ is a base of it.

Theorem 2.2 states that the graph G has a perfect matching if and only if the
value

min
{
f∗(A) − f(A) − σ(A) : A ⊆ UV

}
(2)

is not negative. The minimum value of this problem can be found in O(|UV ||E|)
time by the algorithm in [9]. Here we propose a simpler algorithm than the one
in [9].

From the definitions of the functions f∗ and f , we have f∗(S)+f(S) = d(S) for
any S ⊆ UV , where d = (dw : w ∈ UV ) and dw is the degree of a node w ∈ UV .
Hence, problem (2) is transformed to find

min
{
2f∗(A) − [d(A) + σ(A)] : A ⊆ UV

}
.

Since dw + σv > 0 for all w ∈ UV and f∗(A) is a monotone submodular function,
then the dual problem of the latter one can be written as follows [8]:

max
{
x(UV ) : x(A) ≤ 2f∗(A), A ⊆ UV, 0 ≤ x ≤ d + σ

}

which is transformed to

max
{
y(UV ) : y ∈ P (f∗ − f),−d ≤ y ≤ σ

}
, (3)

for y = x−d. In (3), we can replace the inequalities −du ≤ yu ≤ bu by 0 ≤ yu ≤ bu

for the nodes u ∈ U since such replacing does not change an optimal solution to (3).
Now let

yu = z(δ(u)), yv = −z(δ(v)) for all u ∈ U, v ∈ V.

If we restrict the new variables ze to

0 ≤ ze ≤ 1, e ∈ E,

then the conditions 0 ≤ yu ≤ bu and −dv ≤ yv ≤ −bv can be written as follows:

z(δ(u)) ≤ bu, u ∈ U, z(δ(v)) ≥ bv, v ∈ V. (4)

By Corollary 2.3, we can obtain problem (2) with respect to −σ. For −σ prob-
lem (3) contains the conditions −du ≤ yu ≤ −bu and 0 ≤ yv ≤ bv. In the same
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way, it can be shown that these conditions are equivalent to

z(δ(u)) ≥ bu, u ∈ U, z(δ(v)) ≤ bv, v ∈ V. (5)

From (4) and (5), it implies that the vector z = (ze : e ∈ E) is a solution to the
following linear system of equations on the bipartite graph G:

z(δ(w)) = bw, w ∈ UV, (6)

0 ≤ ze ≤ 1, e ∈ E. (7)

Note that for some w ∈ UV if bw = 0 then ze = 0, where e is an edge with one of
its endpoints w, that is δ(w) = {e}.

Theorem 2.4. The signature σ is a base of P (f∗ − f) if and only if there exists
a feasible solution to the linear system (6)–(7) on a bipartite graph G = (UV, E).

Proof. Suppose that there exists a feasible solution to (6)–(7). Then, there exists
an integer 0 and 1 basis feasible solution z = (ze : e ∈ E) to (6)–(7). Let

E1 =
{
e : ze = 1, e ∈ E

}
.

From bw = dw − 1 for any w ∈ UV , it follows that any node has a unit degree in
the subgraph defined by the subset E \ E1. Since |U | = |V |, the edge set E \ E1

is a perfect matching in G. Thus, σ ∈ P (f∗ − f) by Theorem 2.2.
Conversely, let σ ∈ P (f∗ − f). By Theorem 2.2, the graph G has a perfect

matching M . Then, bw is the degree of a node w ∈ UV in the subgraph obtained
by deleting all edges of M from G. Since b(U) = b(V ) for the right-hand side vector
b = (bu1 , . . . , bun , bv1 , . . . , bvn), we can define a solution of (6)–(7) by setting ze = 1
for e ∈ E \ M and ze = 0 for e ∈ M . �

Corollary 2.5. A bipartite graph G has a perfect matching if and only if there
exists a feasible solution to the linear system (6)–(7).

By Corollary 2.5, problem 2 is equivalent to finding a solution of the linear
system (6)–(7) on the graph G. It is clear that if there exists a solution of (6)–(7),
it is an optimal solution to the following problem on the graph G:

m∗ = max
∑

e∈E

ze, (8)

z(δ(w)) ≤ bw, w ∈ UV, (9)

0 ≤ ze ≤ 1, e ∈ E. (10)

It is well known that any basis solution of (6)–(7) (or (9)–(10)) is 0 and 1 integer
valued and it is the incidence vector of some set of edges. Using this set of edges, a
maximum cardinality matching can be easily found in the graph G. The following
lemma shows how to do it.
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Lemma 2.6. Let z = (ze : e ∈ E) be an optimal basis solution to the problem (8)–
(10) and let G0 be a subgraph obtained by deleting all edges e from G such that
ze = 1, i.e. G0 contains edges e for which ze = 0. Then, G0 consists of a matching
M0 and some stars.

Proof. Since z is an optimal basis solution to the problem (8)–(10), the graph G
has no edges e = (u, v) such that z(δ(u)) < bu, z(δ(v)) < bv and ze = 0. Thus, if
z(δ(u)) < bu and z(δ(v)) < bv then either the edge e is not in G or ze = 1. Hence,
G0 has no edge e = (u, v) such that z(δ(u)) < bu, z(δ(v)) < bv. Now, for any edge
(u, v) of G0, if z(δ(u)) = bu, then either z(δ(v)) = bv (in this case, the nodes u
and v are covered by the matching M0) or z(δ(v)) < bv (in this case, there is a
star with center v in G0). �

Let z = (ze : e ∈ E) be an optimal basis solution to (8)–(10). If the condition (9)
holds as equality for all w ∈ UV , then G0 is a perfect matching in G. Otherwise,
(the linear system (6)–(7) has no solution), by Lemma 2.6, the graph G0 consists
of stars and a matching M0. Let M be a matching that contains M0 and one edge
of each star in G0. Since z is an optimal basis solution, it is easy to see that M is a
maximum cardinality matching in G. Hence, if one has the graph G0, a maximum
matching can be found in O(n) time. In the next section, we present an O(mn)
(m = |E|) algorithm to solve (8)–(10) or equivalently to get the graph G0.

3. An algorithm for the problem (8)–(10)

To solve the problem (8)–(10), first the following procedure Marking marks
edges of some subset of E so that the incidence vector of the marked edges is a
feasible solution to (8)–(10). Then the Breadth-First Search procedure checks the
optimality of this solution and makes it an optimal if it is not an optimal solution.

Procedure Marking;
1. Scan a node u ∈ U and if it is possible, mark a maximum number
(but not greater than bu) of edges (u, v) with bv > 0.
2. Repeat step 1 for all nodes u ∈ U .

Let MarkU = {u : z(δ(u)) < bu, u ∈ U}, MarkV = {v : z(δ(v)) < bv, v ∈ V }
and let z = (ze : e ∈ E) be the incidence vector of the marked edges. It is
clear that the vector z is a feasible solution to (8)–(10) and if MarkU = ∅ or
MarkV = ∅ then z is an optimal solution. If MarkU �= ∅ or MarkV �= ∅, we
can not be convinced of the optimality of z. In this case, we try to make z an
optimal solution. For that, we iterate the Breadth-First Search procedure to find
an augmenting path between any pairs of nodes u ∈ MarkU and v ∈ MarkV
on the graph with arcs: all marked edges (u, v) are replaced by arc (v, u) and
unmarked edges (u, v) are replaced by arc (u, v), where u ∈ U and v ∈ V .

Breadth-First Search Procedure;
begin(installation parameters)
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level = 0;
label(u) = 0 for some u ∈ MarkU ;
label(w) = n for all w ∈ UV \ {u};
nw = z(δ(w) for all w ∈ UV ;

end(begin)
begin(finding path)
1. if an arc (u, v) is unmarked and label(u) = level label(v) := level;
2. If v ∈ MarkV (the path from u to v is found)

then do
set the marked arcs of the path as unmarked
and mark the unmarked arcs of the path;
nu := nu − 1; nv := nv − 1;
if nu = 0, nv = 0 then delete u from MarkU , v from MarkV ;
stop;

end(do)
else if an arc (v, u) is marked and label(v) = level

then do
label(u) := level + 1;
goto 1;

end(do)
end(begin)

If the Breadth-First Search procedure finds a path between any pair of nodes
u ∈ MarkU and v ∈ MarkV , then it is an augmenting path and the incidence
(characteristic) vector z of the set of marked edges is a feasible solution of (8)–
(10). If a value of label(w) for some node w ∈ UV is not increasing at some
iteration, this means that the incidence vector z of the current marked edges is
an optimal solution. We abbreviate this algorithm as AM&P (Algorithm Marking
and Perfect).

Lemma 3.1. The Procedure Marking marks at least m − 2n + 2 edges.

Proof. Similarly to the proof of Lemma 2.6, it is easy to see that the Procedure
Marking returns the set of unmarked edges which contains a matching and stars.
This set forms a forest with 2n nodes. A number of edges in a forest is maximum
when it consists of two trees. Hence the number of unmarked edges is at most
2(n − 1). Therefore, the number of marked edges is at least m − 2n + 2. �

By Lemma 3.1 m− 2n + 2 ≤ m∗ ≤ b(U) = m− n. Hence, m− n−m∗ ≤ n− 2
from which it follows that the Breadth-First Search procedure finds at most n− 2
augmenting paths. Thus, the AM&P algorithm runs in O(mn) time. In bipartite
graphs for which m = O(n), the finding of a maximum cardinality matching is
more arduous than in other graphs. The algorithm AM&P runs in O(n2) time
for m = O(n) and it is a suboptimal algorithm. Up to now, the best bipartite
maximum cardinality matching algorithm [2] runs in O(n1.5

√
m/ log |V |) time.
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4. Perfectly matchable subgraph problem
on a bipartite graph

Let G = (UV, E) be any bipartite graph where we do not require that |U | = |V |.
It is known that S ⊆ UV induces a perfectly matchable subgraph G(S, γ(S)) if it
has a perfect matching. Let x = (x1, x2) ( x1 = (x1

u, u ∈ U), x2 = (x2
v, v ∈ V )) and

z = (ze : e ∈ E) be vectors of node and edge variables, respectively. Let P denote
the set of all perfectly matchable subgraphs of G. We assume that G(∅, γ(∅)) is
in P and let G(S, γ(S)) be in P . Then, we show that the 0 or 1 incidence vectors
x and z of the sets S, γ(S) satisfy the following linear system:

z(δ(u)) − x1
u = y(δ(u)), u ∈ U, (11)

z(δ(v)) − x2
v = y(δ(v)), v ∈ V, (12)

ze ≤ x1
u, u ∈ U, e = (u, v) ∈ E, (13)

ze ≤ x2
v, v ∈ V, e = (u, v) ∈ E, (14)
x1(U) − x2(V ) = 0, (15)

0 ≤ xv ≤ 1, v ∈ UV, (16)
0 ≤ ze ≤ 1, 0 ≤ ye ≤ 1, e ∈ E. (17)

Since z is the incidence vector of γ(S), then z(δ(u)) and z(δ(v)) are the degrees
of nodes u ∈ S ∩ U and v ∈ S ∩ V in the subgraph G(S, γ(S)). Hence, it follows
that z(δ(S ∩ U)) = z(δ(S ∩ V )). Since G(S, γ(S)) has a perfect matching, then
x1(U) = x2(V ), from which it follows that

b(S ∩ U) = z(δ(S ∩ U)) − x1(U) = z(δ(S ∩ V )) − x2(V ) = b(S ∩ V ),

for bu = z(δ(u)) − x1
u and bv = z(δ(v)) − x2

v. Hence, by Theorem 2.4 the linear
system (11)–(17) has a feasible solution.

Now, we want to show that any basis solution of (11)–(17) is 0 or 1 integer
valued. Let B denote the (|U | + |V |) × |E| incidence matrix of the bipartite
graph G and let B1 and B2 denote the submatrices of B consisting of the rows
corresponding to the nodes in U and the nodes in V , respectively. Then, the
constraints (11)–(15) can be rewritten as follows:

Bz − I12x − By = 0,

Iz − Bt
1x

1 ≤ 0,

Iz − Bt
2x

2 ≤ 0,

11x
1 − 12x

2 = 0,

where I and I12 are the |E|×|E| and (|U |+ |V |)×|E| identity matrices, Bt
1 and Bt

2

are transpose of matrices B1 and B2. Moreover, 11 = (1, . . . , 1), 12 = (1, . . . , 1)
are the 1 × |U | and 1 × |V | matrices (vectors), respectively. Let A be a quadratic
submatrix consisting of some rows and columns that belong to some of the above
matrices. Then, the following cases are possible:
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1. In A, there is no row having some entries of the matrices 11 and −12.
Since the incidence matrix of any bipartite graph is unimodular, it follows
that det(A) = 0 or ∓1.

2. There is a row l of A having some entries of the matrices 11 and −12.
Then, by adjusting columns of A using addition and subtraction, we can
transform A to the submatrix B with the row l consisting of unit nonzero
entry. Then det(A) = det(B) by the well-known properties of determi-
nants. By the algebraic complement decomposition of det(B) with respect
to the nonzero entry of the row l, we have det(B) = (−1)kdet(B0). Since
the matrix B0 has no entries of the matrices 11and 12, then det(B0) = 0
or ∓1.

Moreover, it is easy to see that (11)–(17) has a feasible solution. Since con-
strains (16)–(17) are trivial, this implies that there exists 0 or 1 integer valued
basis solution of the linear system (11)–(17). Let x, y and z be some basis so-
lution to (11)–(17). Then x is the 0 or 1 incident vector of some S ⊆ UV . The
conditions (12) and (13) state that z is also the 0 or 1 incident vector of some
E(S) ⊆ γ(S). Hence, z(δ(u)) and z(δ(v)) are degrees of nodes u ∈ U ∩ S and
v ∈ V ∩ S in G(S, E(S)), respectively. Then, from condition (12) we have

z(δ(S ∩ U)) − x1(U) = z(δ(S ∩ V )) − x2(V ).

By Theorem 2.4, the subgraph G(S, E(S)) has a perfect matching. Since E(S) ⊆
γ(S), the subgraph G(S, γ(S)) induced by matchable set S also has a perfect
matching.

Now let us consider the perfectly matchable subgraph problem on any bipartite
graph. We have abbreviated it as PMSP: given a bipartite graph G = (UV, E)
with a weight ce ≥ 0 for all e ∈ E and it is required to find S ⊆ UV such that
the subgraph G(S, γ(S)) has a perfect matching and c(γ(S)) is a maximum. From
the above results, it follows that PMSP can be formulated as the following linear
programming problem:

maximize
∑

e∈E

ceze,

subject to (11)–(17).

Lemma 4.1. Let G∗ = (S∗, γ(S∗)) be a subgraph required in the PMSP and let
M∗ be a perfect matching in G∗. If ce ≥ 0 for all e ∈ E, then |M | = |M∗|, where
M is a maximum cardinality matching in a bipartite graph G.

Proof. If |M | > |M∗|, then there exist nodes u ∈ U and v ∈ V such that they are
covered by M and they are not covered by M∗. Hence, by applying the Breadth-
First Search procedure, we can find an augmenting path between the nodes u and
v. The edges of this path are alternatively in and not in M . We add all edges of
this path to γ(S∗). Then, a maximum cardinality matching in the graph defined
by γ(S∗) contains more edges than M∗. Let us denote the maximum cardinality
matching again by M∗. If |M∗| < |M |, by following the above procedure, we have
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|M | = |M∗| and M is a subset of γ(S∗). From ce ≥ 0 for all e ∈ E it follows that
the value of c(γ(S∗)) can be just increased. �

The preceding lemma states that there exists a maximum cardinality matching
M in G such that M = M∗. It is easy to show by an example that we can
not replace M by a maximum weight matching in M = M∗. However we can
show that the maximum cardinality matching M can be found by applying first
any maximum flow algorithm and then any bipartite maximum weight matching
algorithm. For this, we create a directed version of the underlying graph G by
designating all arc as pointing from the nodes in U to the nodes in V . Then we
introduce a source node s and a sink node r, with an arc connecting s to each node
in U and an arc connecting each node in V to r. We set capacity of arcs (s, u) and
(v, r) to bu and bv, respectively. For the arc in E, we assign a unit capacity. This
network is denoted by Gsr which is called a network with underlying graph G. We
have found the maximum flow from s to r in the network Gsr. Using the residual
capacity on the edges of the residual network corresponding to the maximum flow
(see [1]) we can find the minimum s − r cut; if there exists a directed path from
source s to a node w, we add the node w to the set A. Then [A, A] is a minimum
cut and s ∈ A, r ∈ A, where A = (UV ∪ {s, r}) \ A. It is not difficult to see that
the cut [A, A] can be found by using the graph G0 (see Lem. 2.6) as follows. Let
δ0(w) denotes a star with center w in the graph G0. If G0 has no a star, then
either A = {s} or A = {r}. If there are stars δ0(w) in G0, then the set A contains
leaves of any star and nodes covered by matching M0 (see Lem. 2.6). For any
bipartite graph G following cases are possible.

Case 1. The graph G0 contains a matching M0 and stars δ0(w1),. . . ,δ0(wp) such
that the centers w1, . . . , wp are either in V or in U . In this case the cut [A, A] is
the set either of all arcs (s, u), u ∈ U or of all arcs (v, r), v ∈ V , respectively.

Case 2. The graph G0 contains a matching M0 and stars δ0(wk) such that wk ∈ U
or wk ∈ V for k = 1, . . . , p.

Lemma 4.2. If (s, u) ((v, r)) is not an arc of the minimum cut [A, A] then in the
graph G any maximum cardinality matching covers the node u ∈ U (v ∈ V ).

Proof. For the case 1 the proof of the lemma is trivial. Thus, consider the case 2.
If (s, u) is not an edge of the cut [A, A] then either the node u = wk or u �= wk for
k = 1, . . . , p, where wk is a center of stars δ0(wk). Consider the case when u = wk

that is u is a center of some star δ0(wk) and wk ∈ U . Then an amount of the flow on
the arc (s, wk) is less than bwk

and any maximum cardinality matching in G covers
the node wk. Moreover, if v is a leaf of the star δ0(wk) then [A, A] contains the arc
(v, r) and there exists a maximum cardinality matching covering the node v. Now
consider the case when (s, u) is not an arc of [A, A] and u �= wk for all k = 1, . . . , p.
Then the node u is covered by the matching M0 in the graph G0 (see the proof of
Lem. 2.6). Hence the set Nu contains some nodes {v0, . . . , vh} such that (u, v0),
(u1, v1),. . . ,(uh, vh) are the edges of M0. Then |{u, u1, . . . , uh}| ≥ |Nu,u1...uh

|.
Therefore any maximum cardinality matching in G covers all nodes in Nu,u1...uh

,
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in particular, the node u. By the same way it proves that if (v, r) is not an arc of
the cut [A, A] the node v is covered by maximum matching covers in G. �

From Lemma 4.2, we have the important fact that if (s, u) ((r, v)) is an arc of
[A, A], any maximum cardinality matching covers all nodes Nu (Nv). This implies
that if (s, u) ((v, r)) is an arc of [A, A] and u ∈ S∗ (v ∈ S∗) then δ(u) ⊆ γ(S∗)
(δ(v) ⊆ γ(S∗)) since ce ≥ 0 for all e ∈ E. In case 1, when A = {s}, any maximum
cardinality matching covers all nodes in V i.e. UV0 = V . Hence we compute
weights ae = c(δ(u)) on the edges e ∈ δ(u), for all u ∈ U . Since ∪u∈Uδ(u) = E
and δ(u1) ∩ δ(u2) = ∅, we have correctly defined the weight ae for all the edge e
in E. In case 1, when A = {r} and UV0 = U , we compute the weight ae by the
same way.

Now let us consider case 2. Let the minimum cut [A, A] contain arcs (s, u1),. . . ,
(s, ut), (v1, r),. . . ,(vl, r) and arcs (ui, vj) for some i and j, where 1 ≤ i ≤ t and
1 ≤ j ≤ l. Then from Lemma 4.2, it implies that the nodes ui and vj of the arc
covered by any maximum cardinality matching and the edges (ui, vj) are not an
edge of a maximum cardinality matching in G (see the proof of Lem. 4.3). Let
Ga be a graph obtained by deleting all such edges (ui, vj) from the graph G and
let δa(w) denotes a star with the center w in Ga. Then there is no edge between
the centers of any pair of stars δa(u) and δa(v). Hence, in the graph Ga we can
correctly define ae = c(δa(ui)) for all edges e of the stars δa(ui) and ae = c(δa(vj))
for all edges e of the stars δ(vj). Since cuivj ≥ 0, we can add the edge (ui, vj) to
the set γ(S∗) without fouling the optimality of G∗ = (S∗, γ(S∗)). In this case, the
set UV0 contains the nodes that are either center of some star or not end of the
edge of the minimum cut.

Now we need the following lemma.

Lemma 4.3. If Ma is a maximum weight matching in the graph Ga with respect to
the weight ae on the edges e, then |Ma| = |M |, where M is a maximum cardinality
matching in the graph G.

Proof. Since Ga = G for case 1, we will prove the lemma for case 2. We can
assume that ce > 0 for any e ∈ E. In fact, if ce = 0 for some edge e, we define
ce = ε for an edge e, where ε is a sufficiently small number and ε may be chosen
by the same way as for the linear programming problem so that the redefinition
ce = ε does not change an optimal solution to PMSP. First, we show that the
edges (ui, vj) are not edges of a maximum cardinality matching in the graph G.
To prove it, consider the structure of the graph G0 (see the proof of Lem. 2.6).
Since (ui, vj) are edges of the minimum cut, ze = 1 for e = (ui, vj). Then G0

does not contain these edges. Hence, either the nodes ui, vj are the centers of
some stars in G0 or are the end nodes of some edges that are not in a maximum
cardinality matching. Thus, in the graph Ga, there is at least one matching M
that is a maximum cardinality matching in G. Suppose that |Ma| < |M | in the
graph Ga. Then there are nodes u ∈ U and v ∈ V not covered by the matching
Ma in G. Since Ma is not a maximum matching, we can find an augmenting path
π between nodes u and v. Let (u0, v0),. . . ,(uk, vk) denote the edges of π, where
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u = u0 and v = vk. Then we can find new matching M1 by inclusion and exclusion
the edges of π alternately to Ma and from Ma. Since the number of edges of π is
odd, the edges (u0, v0) and (uk, vk) are in M1. Here it follows that |M1| ≥ |Ma|+1
and all the nodes u0, v0,. . . ,uk, vk are covered by M1. From the definition of the
weight aei (ei = (ui, vi)), it follows that either aei = c(δ(ui)) or aei = c(δ(vi))
for i = 0, 1, . . . , k. Hence, the edges ei−1, ei or the edges ei, ei+1 have the same
weight. Since Ma and M1 contain either the edges ei−1, ei or the edges ei,ei−1,
respectively, and M1 covers the nodes u0, v0,. . . ,uk, vk,this implies that the weight
of M1 is greater than the weight of Ma. It contradicts that Ma is a maximum
weight matching. �

Thus, by Lemmas 4.2, 4.3 we can replace G by the bipartite graph Ga (Ga = G
for case 1) with the edge set ∪w∈UV0δ(w) and consider the PMSM on Ga with
weights ae = aw +al on the edges e = (w, l) of all stars δa(w), where aw = c(δa(w))
and w is the center, al = 0 and l is a leaf of the star δa(w). Therefore, we derive
the following algorithm to solve PMSP:

1. Find the minimum cut [A, A] in the network Gsr.
2. If (s, u), (v, r) are arcs of the cut [A, A] then delete the arc (u, v)

from the graph G.
3. Define weight ae = c(δ(w)) on an edge e of all stars δ(w) in the

graph Ga (set Ga = G for case 1).
4. Find a maximum weight matching Ma in the graph Ga.
5. Find the matchable set

S∗ = {w; a node w is covered by the matching Ma},

and the induced subgraph G∗ = (S∗, γ(S∗)).
Consider the PMSP on the graph G in Figure 1 to illustrate the steps of the
algorithm. The set U contains dark nodes and the set V contains light nodes.
The weight ce of an edge is shown near of an edge e. Figure 2 shows the graph
G0 (see Lem. 2.6). The graph G0 contains the matching M0 = {(1, 1)} and the
star δ0(2) with the center 2 ∈ V and the stars δ0(4), δ0(5) with centers 4, 5 ∈ U .
Figure 3 shows the cut [A, A] whose edges cross the curved line in the network Gsr.
Figure 4 shows the graphs Ga and G∗. The graph Ga is obtained after deleting
the edges (4, 1) and (5, 2) from G (see Case 2). The weights ae are shown on the
edges of the stars δa(1), δa(2) and δa(3) with the centers 1, 2, 3 ∈ U and on the
edges of stars δa(3), δa(4), δa(5), δa(6) with the centers 3, 4, 5, 6 ∈ V . In Ga, a
maximum weight matching Ma contains edges (1, 1), (3, 2), (4, 3), (5, 6). Hence,

S∗ = {{1, 3, 4, 5} ∈ U, {1, 2, 3, 6} ∈ V }

which induces the graph G∗ = (S∗, γ(S∗)) in Figure 4.
In conclusion, note that the AM&P algorithm finds the graph G0 in O(mn)

time. Then in the network Gsr the minimum cut [A, A] can be found in O(mn)
time by using the graph G0. Hence the AM&P algorithm finds the cut [A, A] in
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O(mn) time. Since |Ma| = |M | by Lemma 4.3, then a maximum weight matching
in Ga with the weight (cost) ae on an edge e, can be found by solving the minimum
cost flow problem on the network of the underlying graph Ga with a unit capacity
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Figure 4. (a) Graph Ga. (b) Graph G∗.

of all arcs and with the flow value |M | ≤ n. Thus, the primal-dual algorithm to
be applied to the latter problem sends exactly unit flow from source to sink in
each iteration. Therefore, the computations required to find a maximum weight
matching are exactly the same as those performed for computing n shortest paths
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between source and sink in the network with underlying graph Ga. Consequently,
the running time of the algorithm is O(n3).

The author wish to thank an anonymous referee for his helpful remarks.
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