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KERNEL-FUNCTION BASED PRIMAL-DUAL
ALGORITHMS FOR P∗(κ) LINEAR COMPLEMENTARITY

PROBLEMS
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Abstract. Recently, [Y.Q. Bai, M. El Ghami and C. Roos, SIAM J.
Opt. 15 (2004) 101–128] investigated a new class of kernel functions
which differs from the class of self-regular kernel functions. The class
is defined by some simple conditions on the growth and the barrier
behavior of the kernel function. In this paper we generalize the anal-
ysis presented in the above paper for P∗(κ) Linear Complementarity
Problems (LCPs). The analysis for LCPs deviates significantly from
the analysis for linear optimization. Several new tools and techniques
are derived in this paper.
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1. Introduction

In this paper we consider the following linear complementarity problem:

s = Mx+ q,

xs = 0, (1.1)
x, s ≥ 0,

where M ∈ Rn×n is a P∗(κ) matrix and q, x, s are vectors of Rn, and xs denotes
the componentwise product (Hadamard product) of vectors x and s. Linear com-
plementarity problems have many applications in mathematical programming and
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equilibrium problems. Indeed, it is known that by exploiting the first-order opti-
mality conditions of the optimization problem, any differentiable convex quadratic
program can be formulated into a monotone linear complementarity problem, i.e.
P∗(0) LCP , and vice versa [15]. Variational inequality problems are widely used in
the study of equilibrium in economics, transportation planning, and game theory,
and have a close connection to the LCPs. The reader can refer to Section 5.9
in [5] for the basic theory, algorithms, and applications.

The primal-dual IPM for linear optimization (LO) problems was first intro-
duced in [8,11] and extended to various class of problems, e.g.; [3,13]. Kojima
et al. [8] and Monteiro et al. [11] first proved the polynomial computational com-
plexity of the algorithm for LO problem independently, and since then many
other algorithms have been developed based on the primal-dual strategy. Kojima
et al. [9] proved the existence of the central path for any P∗(κ) LCP , generalized
the primal-dual interior-point algorithm in [8] to P∗(κ) LCP and proved the same
complexity results. Miao [10] extended the Mizuno-Todd-Ye predictor-corrector
method to P∗(κ) LCPs. His algorithm uses the l2-neighborhood of the central path
and has O ((1 + κ)

√
nL) iteration complexity. Recently, Illés and Nagy [7] give a

version of the Mizuno-Todd-Ye predictor-corrector interior point algorithm for the
P∗(κ) LCP and show that the complexity of the algorithm is O

(
(1 + κ)

3
2
√
nL
)
.

They choose τ and τ ′ neighborhood parameters in such a way that at each itera-
tion a predictor step is followed by one corrector step. For larger value of κ the
values of τ and τ ′ decrease fast, therefore the constant in the complexity results
is increasing.

Most of the polynomial-time interior point algorithms for LO are based on the
use of the logarithmic barrier function [8,14]. Peng et al. [13] introduced self-
regular barrier functions for primal-dual interior-point methods (IPMs) for LO,
semidefinite optimization (SDO), second order cone optimization (SOCO) and also
extended to P∗(κ) LCPs and proved that the complexity for large-update primal-
dual IPMs for P∗(κ) LCPs is the same as the one obtained for LO. Recently
in [2] the authors proposed a new primal-dual IPM for LO based on a new class of
kernel functions which are not logarithmic and not necessarily self-regular barrier
functions.

In this paper we propose a new large-update primal-dual IPM which generalizes
the results obtained in [2] to P∗(κ) LCPs. We use a new search direction based
on kernel functions which are neither logarithmic nor self-regular barrier. The
new analysis which is derived in this paper is different from the one used in early
papers [7,9,10,13]. Furthermore, our analysis provides a simpler way to analyze
primal dual IPMs.

We use the following notational conventions. Throughout the paper, ‖·‖ denotes
the 2-norm of a vector. The nonnegative orthant and positive orthant are denoted
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as Rn
+ and Rn

++, respectively. If z ∈ Rn
+ and f : R+ → R+, then f (z) denotes

the vector in Rn
+ whose i-th component is f (zi), with 1 ≤ i ≤ n. Finally, for

x ∈ Rn, X = diag (x) is the diagonal matrix from vector x, and J = {1, 2, ..., n}
is the index set.

This paper is organized as follows. In Section 2 we recall basic concepts and
the notion of the central path. In Section 3 we review known results relevant for
the development of the analysis. Section 4 contains new results to compute the
feasible step size and the study of the amount of decrease of the proximity function
during an inner iteration. Section 5 combiners the results from Section 3 and the
derived results in Section 4 to show the bound for the total number of iterations
of the algorithm. Finally, concluding remarks are given in Section 6.

2. Preliminaries

In this section we introduce the definition of P∗(κ) matrix and it’s properties [9].

Definition 2.1. Let Y be an open convex subset of Rn and κ ≥ 0. A matrix
M ∈ Rn×n is called a P∗(κ)-matrix on Y if and only if

(1 + 4κ)
∑

i∈J+(x)

xi (Mx)i +
∑

i∈J−(x)

xi (Mx)i ≥ 0,

for all x ∈ Y , where

J+(x) = {i ∈ J : xi (Mx)i ≥ 0} and J−(x) = {i ∈ J : xi (Mx)i < 0} .

Further, M is called a P∗-matrix if it is a P∗(κ)-matrix for some κ ≥ 0.

Note that the class of P∗-matrices is the union of all P∗(κ)-matrices for κ ≥ 0,
and contains the class of positive semi-definite matrices, i.e. symmetric matrices
M satisfying

∑
i∈J xi(Mx)i ≥ 0 for all x ∈ Rn, by choosing κ = 0. The class of P∗

matrices also contains matrices with all positive principal minors. In the following
we recall some results which are essential in our analysis.

Proposition 2.1 (Lemma 4.1 in [9]). If M ∈ Rn×n is a P∗ matrix, then

M ′ =
( −M I

S X

)

is a nonsingular matrix for any positive diagonal matrices X , S ∈ Rn×n.

We use the following corollary of Proposition 2.1 to prove that the modified
Newton system has a unique solution.
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Corollary 2.1. Let M ∈ Rn×n be a P∗ matrix and x, s ∈ Rn
++. Then for all

a ∈ Rn the system

−M�x+ �s = 0,
S�x+X�s = a,

has a unique solution (�x,�s).
The basic idea of primal-dual interior-point methods is to replace the second

equation in (1.1) by the nonlinear equation xs = μe, where e is the all-one vector,
and μ > 0. Thus we have the following parameterized system:

s = Mx+ q,

xs = μe, (2.1)
x ≥ 0, s ≥ 0,

where μ > 0. We assume that there exists strictly positive x and s that sat-
isfy (1.1).

Since M is a P∗(κ) matrix and (1.1) is strictly feasible, then the parameterized
system (2.1) has a unique solution (x(μ), s(μ)) for each μ > 0. (x(μ), s(μ)) is called
μ-center of (2.1), the set of μ-centers (μ > 0) defines a homotopy path, which is
called the central path of (2.1). If μ → 0 the limit of the central path exists.
This limit satisfies the complementarity condition, and belongs to the solution set
of (1.1) [9].

Let (x, s) be a strictly feasible point and μ > 0. We define the vector

v :=
√
xs

μ
. (2.2)

Note that the pair (x, s) coincides with the μ-center (x(μ), s(μ)) if and only if
v = e.

Let Ψ(v) be a smooth, strictly convex function defined for all v > 0, which is
minimal at v = e, with Ψ(e) = 0. Following [1,2,4,13] we define search directions
Δx, Δs by

−MΔx+ Δs = 0,
sΔx+ xΔs = −μv∇Ψ(v). (2.3)

Since M is a P∗ matrix, the system (2.3) uniquely defines (Δx,Δs) for any x > 0
and s > 0. Note that Δx = 0, Δs = 0, if and only if v = e, because the right-hand
sides in (2.3) vanish if and only if ∇Ψ(v) = 0, and this occurs if and only if v = e.

Let (x, s) be a strictly feasible point. We define the vector p by

p :=
√
x

s
. (2.4)
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Generic Primal-Dual Algorithm for LCP

Input:
a proximity function Ψ(v);
a threshold parameter τ ≥ 1;
an accuracy parameter ε > 0;
a barrier update parameter θ, 0 < θ < 1;

begin
x := x0; s := s0; μ := μ0;
while nμ ≥ ε do
begin
μ := (1 − θ)μ;
while Ψ(v) > τ do
begin

Solve (Δx,Δs) from (2.3)
x := x+ αΔx;
s := s+ αΔs;
v :=

√
xs
μ ;

end
end

end

Figure 1. The generic primal-dual interior-point algorithm for LCP.

Introducing the following notations

M̄ := PMP and P := diag (p), V := diag (v) where v =
√
xs

μ
, (2.5)

and

dx :=
vΔx
x

, ds :=
vΔs
s
, (2.6)

system (2.3) can be reformulated as

−M̄dx + ds = 0,
dx + ds = −∇Ψ(v). (2.7)

From the solution dx and ds, the vectors Δx and Δs can be computed from (2.6).
Note that the vectors dx and ds are not orthogonal. So our analysis in this

paper will deviate significantly from the analysis used for LO in [2].
The algorithm considered in this paper is described in Figure 1. The inner

while loop in the algorithm is called inner iteration and the outer while loop outer
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iteration. So each outer iteration consists of an update of the barrier parameter
and a sequence of one or more inner iterations. We assume that (1.1) is strictly
feasible, and the starting point

(
x0, s0

)
is strictly feasible for (1.1). Choose τ

and v0 =
√

x0s0

μ0 initial strictly feasible point such that Ψ
(
v0
) ≤ τ where τ is

threshold value in Figure 1. We then decrease μ to μ := (1 − θ)μ, for some
θ ∈ (0, 1). In general this will increase the value of Ψ(v) above τ . To get this value
smaller again, and getting closer to the current μ-center, we solve the scaled search
directions from (2.7), and unscaled these directions by using (2.3). By choosing
an appropriate step size α, we move along the search direction, and construct a
new pair (x+, s+) with

x+ = x+ α�x s+ = s+ α�s. (2.8)

If necessary, we repeat the procedure until we find iterates such that Ψ(v) no longer
exceed the threshold value τ , which means that the iterates are in a small enough
neighborhood of (x(μ), s(μ)). Then μ is again reduced by the factor 1− θ and we
apply the same procedure targeting at the new μ-centers. This process is repeated
until μ is small enough, i.e. until nμ ≤ ε. At this stage we have found an ε-solution
of (1.1). Just as in the LO case, the parameters τ, θ, and the step size α should
be chosen in such a way that the algorithm is ‘optimized’ in the sense that the
number of iterations required by the algorithm is as small as possible. Obviously,
the resulting iteration bound will depend on the kernel function underlying the
algorithm, and our main task becomes to find a kernel function that minimizes
the iteration bound.

3. Properties of Kernel functions

This section is a review of parts of [2] needed in the analysis. We call ψ :
(0,∞) → [0,∞) a kernel function if ψ is twice differentiable and the following
conditions are satisfied.

(i) ψ′(1) = ψ(1) = 0;
(ii) ψ′′(t) > 0, for all t > 0.

In this paper we restrict our selves to functions that are coercive, i.e.,

(iii) limt↓0 ψ(t) = limt→∞ ψ(t) = ∞.

Clearly, (i) and (ii) imply that ψ(t) is a nonnegative strictly convex function
such that ψ(1) = 0, and ψ(t) is completely determined by its second derivative:

ψ(t) =
∫ t

1

∫ ξ

1

ψ′′(ζ) dζdξ. (3.1)



KERNEL FUNCTION FOR LCPS 191

Moreover, by (iii), ψ(t) has the so called barrier property. In [2] the additional
conditions are imposed on the Kernel function, namely ψ ∈ C3 and

tψ′′(t) + ψ′(t) > 0, t < 1, (2-a)
ψ′′′(t) < 0, t > 0, (2-b)

2ψ′′(t)2 − ψ′(t)ψ′′′(t) > 0, t < 1, (2-c)
ψ′′(t)ψ′(βt) − βψ′(t)ψ′′(βt) > 0, t > 1, β > 1. (2-d)

The first property (2-a) is related to Definition 1 and Lemma 2.1.2 in [13]. This
property is equivalent to convexity of the composed function z �→ ψ(ez) and this
holds if and only if ψ(

√
t1t2) ≤ 1

2 (ψ(t1) + ψ(t2)) for any t1, t2 > 0. Following [1],
we therefore say that ψ is exponentially convex, or shortly, e-convex, whenever
t > 0.

We denote by � : [0,∞) → [1,∞) and ρ : [0,∞) → (0, 1] the inverse functions
of ψ(t) for t ≥ 1, and − 1

2ψ
′(t) for t ≤ 1, respectively. In other words

s = ψ(t) ⇔ t = �(s), t ≥ 1, (3.3)

s = − 1
2ψ

′(t) ⇔ t = ρ(s), t ≤ 1. (3.4)

We recall from [2] two theorems that are needed later in the analysis of the algo-
rithm presented in this paper.

Theorem 3.1 (Thm. 3.2 in [2]). For any positive vector v and any β > 1, we
have

Ψ(βv) ≤ nψ

(
β�

(
Ψ(v)
n

))
.

It follows from this theorem that if Ψ(v) ≤ τ and β = 1√
1−θ then

Lψ(n, θ, τ) := nψ

(
�
(
τ
n

)
√

1 − θ

)
(3.5)

is an upper bound for Ψ( v√
1−θ ), the value of Ψ(v) after the update of μ.

The following theorem gives a lower bound of the norm-based proximity measure
δ(v), defined by

δ(v) := 1
2‖ψ′(v)‖ =

1
2

√√√√ n∑
i=1

ψ′(vi)2 =
1
2
‖dx + ds‖ , (3.6)

in terms of Ψ(v). Since Ψ(v) is strictly convex and attains its minimal value zero
at v = e, we have

Ψ (v) = 0 ⇔ δ (v) = 0 ⇔ v = e.
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i Kernel functions ψi ψ′
i ψ′′

i ψ′′′
i (t)

1 t2−1
2

− log t t− 1
t

1 + 1
t2

− 2
t3

2 t2−1
2

+ t1−q−1
q(q−1)

− q−1
q

(t− 1) t− 1 − t−q−1
q

1 + t−q−1 − (q + 1) t−q−2

3 1
2

(
t− 1

t

)2
t− 1

t3
1 + 3

t4
− 12

t5

4 t2−1
2

+ e
1
t
−1 − 1 t− e

1
t
−1

t2
1 + 1+2t

t4
e

1
t
−1 − 1+6t+6t2

t6
e

1
t
−1

5 t2−1
2

− ∫ t

1
e

1
ξ
−1dξ t− e

1
t
−1 1 + e

1
t
−1

t2
− 1+2t

t4
e

1
t
−1

6 t2−1
2

+ t1−q−1
q−1

, q > 1 t− t−q 1 + qt−q−1 −q (q + 1) t−q−2

7 t− 1 + t1−q−1
q−1

, q > 1 1 − t−q qt−q−1 −q (q + 1) t−q−2

Table 1. Seven kernel functions and first three derivatives.

Theorem 3.2 (Thm. 4.9 in [2]). One has

δ(v) ≥ 1
2ψ

′ (� (Ψ(v)) .

3.1. Seven kernel function

By way of example we consider in this paper the seven kernel functions studied
in [2] , as listed in Table 1. Note that some of these kernel functions depend on
a parameter (e.g., ψ2(t) depends on the parameter q > 1), and hence when the
parameter is not specified, it represents a whole class of kernel functions.

Note that all kernel functions in Table 1 satisfy the conditions (2-a)...(2-d) [2].

4. Analysis of the algorithm

In this section, we show how to compute a feasible step size α of a Newton step
with the decrease of the barrier function. Since dx and ds, are not orthogonal the
analysis in this paper is different from that of LO case. After a damped step, with
step size α, using (2.2) and (2.6) we have

x+ = x+ αΔx =
x

v
(v + αdx) , s+ = s+ αΔs =

s

v
(v + αds) .

Thus we obtain

v2
+ =

x+s+
μ

= (v + αdx) (v + αds) . (4.1)

In the sequel we use the following notation:

ν := min
i∈J

vi, δ := δ(v), σ+ :=
∑
i∈J+

dxidsi , σ− := −
∑
i∈J−

dxidsi . (4.2)
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Since M is a P∗(κ) matrix, we have

(1 + 4κ)
∑
i∈J+

Δxi(MΔx)i +
∑
i∈J−

Δxi(MΔs)i ≥ 0,

where J+ = {i ∈ J : Δxi(MΔx)i ≥ 0} , J− = J − J+. Using the first equation
in (2.3) we have for Δx ∈ Rn, MΔx = Δs, and

(1 + 4κ)
∑
i∈J+

ΔxiΔsi +
∑
i∈J−

ΔxiΔsi ≥ 0.

From (2.6) it follows that dxds = v2ΔxΔs
xs = ΔxΔs

μ with μ > 0, and

(1 + 4κ)
∑
i∈J+

dxidsi +
∑
i∈J−

dxidsi = (1 + 4κ)σ+ − σ− ≥ 0. (4.3)

The next lemma gives an upper bound of σ+ and σ−

Lemma 4.1. One has

σ+ ≤ δ2, and σ− ≤ (1 + 4κ) δ2.

Proof. By definition of σ+, σ− and δ, we have

σ+ =
∑
i∈J+

dxidsi ≤
1
4

∑
i∈J+

(dxi + dsi)
2 ≤ 1

4

∑
i∈J

(dxi + dsi)
2 =

1
4
‖dxi + dsi‖2 = δ2.

Since M is a P∗(κ) matrix, using (4.3), we get

(1 + 4κ)σ+ − σ− ≥ 0.

Thus
σ− ≤ (1 + 4κ)σ+ ≤ (1 + 4κ) δ2.

This proves the lemma. �

The following lemma gives an upper bound for ‖dx‖ and ‖ds‖.
Lemma 4.2. One has

n∑
i=1

(
d2
xi

+ d2
si

) ≤ 4 (1 + 2κ) δ2, ‖dx‖ ≤ 2
√

1 + 2κ δ, and ‖ds‖ ≤ 2
√

1 + 2κ δ.

Proof. From the definitions (3.6) and (4.2), we have

δ =
1
2
‖dx + ds‖ , and

∑
j∈J

dxidsi = σ+ − σ−,
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then

2δ = ‖dx + ds‖ =

√√√√ n∑
i=1

(dxi + dsi)
2 =

√√√√ n∑
i=1

(
d2
xi

+ d2
si

)
+ 2 (σ+ − σ−).

Using (4.3), and Lemma 4.1, we get

2δ ≥
√√√√ n∑

i=1

(
d2
xi

+ d2
si

)
+ 2

(
1

1 + 4κ
σ− − σ−

)
=

√√√√ n∑
i=1

(
d2
xi

+ d2
si

)− 8κ
1 + 4κ

σ−.

Then, we get

4δ2 +
8κ

1 + 4κ
σ− ≥

n∑
i=1

(
d2
xi

+ d2
si

)
.

Using again Lemma 4.1, we have

4 (1 + 2κ) δ2 ≥ 4δ2 +
8κ

1 + 4κ
σ− ≥

n∑
i=1

(
d2
xi

+ d2
si

)
.

Thus

‖dx‖ ≤
√√√√ n∑

i=1

(
d2
xi

+ d2
si

) ≤ 2
√

1 + 2κ δ.

Using the same argument we can prove that

‖ds‖ ≤ 2
√

1 + 2κ δ.

Thus the lemma follows. �

Our aim is to find an upper bound for

f(α) := Ψ (v+) − Ψ (v) := Ψ
(√

(v + αdx) (v + αds)
)
− Ψ (v) ,

where Ψ : Rn → R is given by

Ψ(v) =
n∑
i=1

ψ(vi). (4.4)

To do this, the next four technical lemmas are needed. It is clear that f(α) is not
necessarily convex in α. To simplify the analysis we use a convex upper bound for
f(α). Such a bound is obtained by using that ψ(t) satisfies the condition (2-a).
Hence, ψ(t) is e-convex. This implies

Ψ (v+) = Ψ
(√

(v + αdx) (v + αds)
)
≤ 1

2 [Ψ (v + αdx) + Ψ (v + αds)] .
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Thus we have f(α) ≤ f1(α), where

f1(α) := 1
2 [Ψ (v + αdx) + Ψ (v + αds)] − Ψ (v)

is a convex function of α, since Ψ(v) is convex. Obviously, f(0) = f1(0) = 0.
Taking the derivative of f1(α) to α, we get

f ′
1(α) = 1

2

n∑
i=1

(ψ′ (vi + αdxi) dxi + ψ′ (vi + αdsi) dsi) .

This gives, using last equation in (2.7) and (3.6),

f ′
1(0) = 1

2∇Ψ(v)T (dx + ds) = − 1
2∇Ψ(v)T∇Ψ(v) = −2δ(v)2. (4.5)

Differentiating once more, we obtain

f ′′
1 (α) = 1

2

n∑
i=1

(
ψ′′ (vi + αdxi) dx

2
i + ψ′′ (vi + αdsi) ds

2
i

)
. (4.6)

The following lemma gives an upper bound of f1(α) in terms of δ and ψ′′ (t).

Lemma 4.3. One has

f ′′
1 (α) ≤ 2 (1 + 2κ) δ2 ψ′′ (ν − 2α

√
1 + 2κ δ

)
.

Proof. Using Lemma 4.2 and the definition of ν as given in (4.2),

vi + αdxi ≥ ν − 2α
√

1 + 2κ δ, 1 ≤ i ≤ n, (4.7)

vi + αdsi ≥ ν − 2α
√

1 + 2κ δ, 1 ≤ i ≤ n. (4.8)
Since ψ′′ is monotonically decreasing, using the above inequalities, we get

ψ′′(vi + αdxi) ≤ ψ′′(ν − 2α
√

1 + 2κ δ), (4.9)

and
ψ′′(vi + αdsi ) ≤ ψ′′(ν − 2α

√
1 + 2κ δ). (4.10)

This implies that

f ′′
1 (α) ≤ 1

2 ψ
′′ (ν − 2α

√
1 + 2κ δ

) n∑
i=1

(
d2
xi

+ d2
si

)
,

now using again Lemma 4.2 i.e.,
∑n
i=1

(
d2
xi

+ d2
si

) ≤ 4 (1 + 2κ) δ2, then

f ′′
1 (α) ≤ 2 (1 + 2κ) δ2 ψ′′ (ν − 2α

√
1 + 2κ δ

)
.

This proves the lemma. �
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Putting
δκ :=

√
1 + 2κ δ, (4.11)

we have

f ′′
1 (α) ≤ 2δ2κ ψ

′′ (ν − 2αδκ) , (4.12)

Since f1(α) is convex, we will have f ′
1(α) ≤ 0 for all α less than or equal to the

value where f1(α) is minimal, and vice versa. In this respect the next result is
important.

Lemma 4.4. One has f ′
1(α) ≤ 0 if α satisfies the inequality

− ψ′ (ν − 2αδκ) + ψ′ (ν) ≤ 2δκ
(1 + 2κ)

· (4.13)

Proof. We may write, using Lemma 4.3, and also (4.5),

f ′
1(α) = f ′

1(0) +
∫ α

0

f ′′
1 (ξ) dξ

≤ −2δ2 + 2δ2κ

∫ α

0

ψ′′ (ν − 2ξδκ) dξ

= −2δ2 − δκ

∫ α

0

ψ′′ (ν − 2ξδκ) d (ν − 2ξδκ)

= −2δ2 − δκ (ψ′ (ν − 2αδκ) − ψ′ (ν)) .

Hence, f ′
1(α) ≤ 0 will certainly hold if α satisfies

−ψ′ (ν − 2αδκ) + ψ′ (ν) ≤ 2δ2

δκ
=

2δκ
(1 + 2κ)

,

the last equality follows from (4.11), which proves the lemma. �

The next lemma uses the inverse function ρ : [0,∞) → (0, 1] of − 1
2ψ

′(t) for
t ∈ (0, 1], as defined in (3.4).

Lemma 4.5. The largest value of the step size α satisfying (4.12) is given by

ᾱ :=
1

2δκ

[
ρ (δ) − ρ

(
1 +

√
1 + 2κ

1 + 2κ
δκ

)]
. (4.14)

Moreover

ᾱ ≥ 1

(1 + 2κ)ψ′′
(
ρ
(

1+
√

1+2κ
1+2κ δκ

)) · (4.15)
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Proof. We want α such that (4.13) holds, with α as large as possible. Since
ψ′′(t) is decreasing, the derivative to ν of the expression at the left in (4.13) (i.e.
−ψ′′ (ν − 2αδκ)+ψ′′ (ν)) is negative. Hence, fixing δκ, the smaller ν is, the smaller
α will be. One has

δ = 1
2 ‖∇Ψ(v)‖ ≥ 1

2 |ψ′ (ν)| ≥ − 1
2ψ

′ (ν) .

Equality holds if and only if ν is the only coordinate in v that differs from 1, and
ν ≤ 1 (in which case ψ′ (ν) ≤ 0). Hence, the worst situation for the step size
occurs when ν satisfies

− 1
2ψ

′ (ν) = δ. (4.16)
The derivative to α of the expression at the left in (4.13) equals

2δκψ′′ (ν − 2αδκ) ≥ 0,

and hence the left-hand side is increasing in α. So the largest possible value of α
satisfying (4.13), satisfies

− 1
2ψ

′ (ν − 2αδκ) =
1 +

√
1 + 2κ

1 + 2κ
δκ. (4.17)

Due to the definition of ρ, (4.16) and (4.17) can be written as

ν = ρ (δ) , ν − 2αδκ = ρ

(
1 +

√
1 + 2κ

1 + 2κ
δκ

)
.

This implies,

α =
1

2δκ

(
ν − ρ

(
1 +

√
1 + 2κ

1 + 2κ
δκ

))
=

1
2δκ

(
ρ (δ) − ρ

(
1 +

√
1 + 2κ

1 + 2κ
δκ

))
,

proving (4.14).
Using the definition of ρ,

−ψ′ (ρ(δ)) = 2δ.
Taking the derivative to δ, we find

−ψ′′ (ρ(δ)) ρ′(δ) = 2,

which implies that

ρ′(δ) = − 2
ψ′′ (ρ(δ))

< 0. (4.18)

Hence ρ is monotonically decreasing in δ. An immediate consequence of (4.14)
and (4.18) is

ᾱ =
1

2δκ

∫ δ

1+
√

1+2κ
1+2κ δκ

ρ′(σ) dσ =
1
δκ

∫ 1+
√

1+2κ
1+2κ δκ

δ

dσ
ψ′′ (ρ(σ))

· (4.19)
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To obtain a lower bound for ᾱ, we want to replace the argument of the last
integral by its minimal value. So we want to know when ψ′′ (ρ(σ)) is maximal, for
σ ∈ [δ, 1+

√
1+2κ

1+2κ δκ]. Due to (2-b), ψ′′ is monotonically decreasing. So ψ′′ (ρ(σ)) is

maximal when ρ(σ) is minimal for σ ∈ [δ, 1+
√

1+2κ
1+2κ δκ]. Since ρ is monotonically

decreasing this occurs when σ = 1+
√

1+2κ
1+2κ δκ. Therefore

ᾱ =
1
δκ

∫ 1+
√

1+2κ
1+2κ δκ

δ

dσ
ψ′′ (ρ(σ))

≥ δκ

δκ (1 + 2κ)ψ′′
(
ρ
(

1+
√

1+2κ
1+2κ δκ

))
=

1

(1 + 2κ)ψ′′
(
ρ
(

1+
√

1+2κ
1+2κ δκ

)) ,
which proves the lemma. �

For future use we define

α̃ :=
1

(1 + 2κ)ψ′′
(
ρ
(

1+
√

1+2κ
1+2κ δκ

)) , (4.20)

as the default step size. By Lemma 4.5 this step α̃ satisfies (4.13). By (4.15) we
have ᾱ ≥ α̃. We recall without proof the following lemma from [12].

Lemma 4.6 (Lem. 3.12 in [12]). Let h(t) be a twice differentiable convex function
with h(0) = 0, h′(0) < 0 and let h(t) attain its (global) minimum at t∗ > 0. If
h′′(t) is increasing for t ∈ [0, t∗] then

h(t) ≤ th′(0)
2

, 0 ≤ t ≤ t∗.

Lemma 4.7. If the step size α satisfies (4.13) then

f(α) ≤ −α δ2. (4.21)

Proof. Let h(α) be defined by

h (α) := −2αδ2 + αδκψ
′ (ν) − 1

2
ψ (ν) +

1
2
ψ (ν − 2αδκ) .

Then

h(0) = f1(0) = 0, h′(0) = f ′
1(0) = −2δ2, h′′(α) = 2δ2κ ψ

′′ (ν − 2αδκ) .
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Due to Lemma 4.3, f ′′
1 (α) ≤ h′′(α). As a consequence, f ′

1(α) ≤ h′(α) and f1(α) ≤
h(α). Taking α ≤ ᾱ, with ᾱ as defined in Lemma 4.5, we have

h′(α) = −2δ2 + 2δ2κ

∫ α

0

ψ′′ (ν − 2ξδκ) dξ

= −2δ2 − δκ (ψ′ (ν − 2αδκ) − ψ′ (ν)) ≤ 0.

Since h′′(α) is increasing in α, using Lemma 4.6, we may write

f1(α) ≤ h(α) ≤ 1
2αh

′(0) = −αδ2.

Since f(α) ≤ f1(α), the proof is complete. �

Theorem 4.8. Let ρ be defined in (3.4) and α̃ in (4.20). Then

f(α̃) ≤ − δ2

(1 + 2κ)ψ′′
(
ρ
(

1+
√

1+2κ
1+2κ δκ

)) = − δ2

(1 + 2κ)ψ′′
(
ρ
(

1+
√

1+2κ√
1+2κ

δ
)) ,
(4.22)

and the right-hand side expression in (4.22) is monotonically decreasing in δ.

Proof. By combining (4.15) in Lemma 4.5 and results in Lemma 4.7, using also (4.11)
we obtain (4.22).

Putting t = ρ
(

1+
√

1+2κ√
1+2κ

δ
)
, which implies t ≤ 1, and which is equivalent to

2
(

1+
√

1+2κ√
1+2κ

)
δ = −ψ′(t), t is monotonically decreasing if δ increases. Hence, the

right-hand expression in (4.22) is monotonically decreasing in δ if and only if the
function

g(t) :=
(ψ′(t))2

4
(
1 +

√
1 + 2κ

)2
ψ′′(t)

is monotonically decreasing for t ≤ 1. Note that g(1) = 0 and

g′(t) =
2ψ′(t)ψ′′(t)2 − ψ′(t)2ψ′′′(t)

4
(
1 +

√
1 + 2κ

)2
ψ′′(t)2

·

Hence, since ψ′(t) < 0 for t < 1, g(t) is monotonically decreasing for t ≤ 1 if and
only if

2ψ′′(t)2 − ψ′(t)ψ′′′(t) ≥ 0, t ≤ 1.
The last inequality is satisfied, due to condition (2-c). Hence the theorem is
proved. �

5. Iteration bounds

In this section we derive the complexity bounds for large-update methods and
small-update methods. To do this we need to recall the following lemma from [12].
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Lemma 5.1 (Prop. 2.2 in [12]). Let t0, t1, . . . , tK be a sequence of positive numbers
such that

tk+1 ≤ tk − βt1−γk , k = 0, 1, . . . ,K − 1, (5.1)

where β > 0 and 0 < γ ≤ 1. Then K ≤
⌊
tγ0
βγ

⌋
.

Lemma 5.2. If K denotes the number of inner iterations, we have

K ≤ Ψγ
0

βγ
.

Proof. The definition of K implies ΨK−1 > τ and ΨK ≤ τ and

Ψk+1 ≤ Ψk − βΨ1−γ
k , k = 0, 1, . . . ,K − 1.

Yet we apply Lemma 5.1, with tk = Ψk. This yields the desired inequality. �

Thus the upper bound on the total number of iterations is given by

Ψγ
0

θβγ
log

n

ε
≤ 1
θβγ

(
nψ

(
�
(
τ
n

)
√

1 − θ

))γ
log

n

ε
, (5.2)

where Ψ0 ≤ Lψ(n, θ, τ) denote the value of Ψ(v) after the μ−update, and Lψ(n, θ, τ)
as defined in (3.5).

5.1. Application to the seven kernel functions

It may be clear that we can use the scheme of Figure 2 to analyze the behavior
of our algorithm for P∗(κ) LCP, as given in Figure 1. We recall from [2] two
lemmas without proof that are needed for the analysis.

Lemma 5.3 (Lem. 6.2 in [2]). When ψ(t) = ψi(t) and 1 ≤ i ≤ 6, then

√
1 + 2s ≤ �(s) ≤ 1 +

√
2s,

with �(s) is the inverse function of ψ(t) for t ∈ [1,∞) obtained by solving t from
the equation s = ψ(t), t ≥ 1, as defined in (3.3).

Lemma 5.4 (Lem. 6.3 in [2]). Let 1 ≤ i ≤ 7. Then one has

Ψ0 ≤ ψ′′(1)
2

(√
2τ + θ

√
n
)2

1 − θ
·

Hence, if τ = O(1) and θ = Θ( 1√
n
), then Ψ0 = O(ψ′′(1)).
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Step 0: Specify a kernel function ψ(t); an update parameter θ, 0 < θ < 1; a
threshold parameter τ ; and an accuracy parameter ε.

Step 1: Solve the equation − 1
2ψ

′(t) = s to get ρ(s), the inverse function of
− 1

2ψ
′(t), t ∈ (0, 1]. If the equation is hard to solve, derive a lower

bound for ρ(s).
Step 2: Calculate the decrease of Ψ(v) during an inner iteration in terms of δ

for the default step size α̃ from

f(α̃) ≤ − δ2

(1 + 2κ)ψ′′
(
ρ
(

1+
√

1+2κ√
1+2κ

δ
)) ·

Step 3: Solve the equation ψ(t) = s to get �(s), the inverse function of ψ(t), t ≥
1. If the equation is hard to solve, derive lower and upper bounds for
�(s).

Step 4: Derive a lower bound for δ in terms of Ψ(v) by using

δ(v) ≥ 1
2ψ

′ (� (Ψ(v)) .

Step 5: By Theorem 4.8, using the results of step 3 and step 4 find a valid
inequality of the form

f(α̃) ≤ −βΨ(v)1−γ ,

for some positive constants β and γ, with γ ∈ (0, 1] as small as possible.
Step 6: Calculate the upper bound of Ψ0 from

Ψ0 ≤ Lψ(n, θ, τ) = nψ

(
�
(
τ
n

)
√

1 − θ

)
≤ n

2
ψ′′(1)

(
�( τn )√
1 − θ

− 1
)2

.

Step 7: Derive an upper bound for the total number of iterations by using that

Ψγ
0

θβγ
log

n

ε

is an upper bound for this number.
Step 8: Set τ = O(n) and θ = Θ(1) to calculate a complexity bound for large-

update methods, and set τ = O(1) and θ = Θ( 1√
n
) to calculate a

complexity bound for small-update methods.

Figure 2. Scheme for analyzing a kernel-function-based algorithm.
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5.2. Example: Analysis of methods based on ψ2(t)

Consider the case where ψ(t) = ψ2(t)

ψ(t) =
t2 − 1

2
+
t1−q − 1
q(q − 1)

− q − 1
q

(t− 1), q > 0.

Step 1: To obtain the inverse function t = ρ(s) of − 1
2ψ

′(t) for t ∈ (0, 1] we need
to solve t from the equation

−t+ 1 +
t−q − 1

q
= 2s, t ∈ (0, 1].

Using that t−q−1
q = 2s+ t− 1 ≤ 2s, this implies

ρ(s) ≥ 1

(1 + 2qs)
1
q

·

Step 2: It follows that

f(α̃) ≤ − δ2

(1 + 2κ)ψ′′
(
ρ
(

1+
√

1+2κ√
1+2κ

δ
)) =− δ2

(1 + 2κ)

(
1 + 1

ρ
(

1+
√

1+2κ√
1+2κ

δ
)q+1

)

≤− δ2

(1 + 2κ)
(

1 +
(
1 + 2q

(
1+

√
1+2κ√

1+2κ
δ
)) q+1

q

)
≤− δ2

(1 + 2κ)
(
1 + (1 + 4qδ)

q+1
q

) ·
The last inequality follows, because 1+

√
1+2κ√

1+2κ
≤ 2 for all κ ≥ 0.

Step 3: By Lemma 5.3 the inverse function of ψ(t) for t ∈ [1,∞) satisfies

√
1 + 2s ≤ � (s) ≤ 1 +

√
2s.

Thus we have,

� (Ψ(v)) ≥
√

1 + 2Ψ(v).

Step 4: Now using that δ(v) ≥ 1
2ψ

′ (� (Ψ(v))), since τ ≥ 1, we have at the start
of each inner iteration that Ψ(v) ≥ τ ≥ 1, we obtain

δ ≥ 1
2

(√
1 + 2Ψ − 1 +

1
q

(
1 − 1

(1 + 2Ψ)q

))
≥ 1

2

(√
1 + 2Ψ − 1

)
=

Ψ
1 +

√
1 + 2Ψ

·
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Step 5: Substituting this, after some elementary reductions we arrive at

f(α̃) ≤ − δ2

(1 + 2κ)
(
1 + (1 + 4qδ)

q+1
q

) ≤ − Ψ
q−1
2q

54 q (1 + 2κ)
·

Thus it follows that

Ψk+1 ≤ Ψk − βΨk
1−γ , k = 0, 1, . . . ,K − 1,

with β = 1
54 q(1+2κ) and γ = q+1

2q , and where K denotes the number of inner
iterations. Hence the number K of inner iterations is bounded above by

K ≤ Ψγ
0

βγ
=

108 q2 (1 + 2κ)
q + 1

Ψ
q+1
2q

0 ≤ 108 q (1 + 2κ) Ψ
q+1
2q

0 .

Step 6: To estimate Ψ0 we use Lemma 5.4, with ψ′′(1) = 2. Thus we obtain,

Ψ0 ≤
(
θ
√
n+

√
2τ
)2

1 − θ
,

Step 7: The total number of iterations is bounded above by

108 q (1 + 2κ)
θ

((
θ
√
n+

√
2τ
)2

1 − θ

) q+1
2q

log
n

ε
.

Step 8: For large-update methods (with τ = O(n) and θ = Θ(1)) the right hand
side expression is

O
(
(1 + 2κ) q n

q+1
2q log

n

ε

)
.

For small-update methods (with τ = O(1) and θ = Θ
(

1√
n

)
) the right hand side

expression is O
(
(1 + 2κ) q

√
n log n

ε

)
.

We have proved that for any given kernel function ψ(t), this will yield a different
complexity results from LO case. For the sake of completeness we summarize these
results in Table 2, both for small-update and for large-update methods.

6. Concluding remarks

In this paper we extended the results obtained for kernel-function-based IPMs
in [2] for LO to P∗(κ) linear complementarity problems. The observation that
the vectors dx and ds are not in general orthogonal implies that the analysis
in [2] does not hold. The analysis in this paper is new and different from the
one using for LO and semidefinite optimization (SDO). Several new tools and
techniques are derived in this paper. The resulting iteration bounds for P∗(κ)
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i Kernel functions ψi Large-update Small-update

1 t2−1
2

− log t O
(
(1 + 2κ)n log n

ε

)
O
(
(1 + 2κ)

√
n log n

ε

)
2 t2−1

2
+ t1−q−1

q(q−1)
− q−1

q
(t− 1) O

(
(1 + 2κ) qn

q+1
2q log n

ε

)
O
(
(1 + 2κ) q

√
n log n

ε

)
3 1

2

(
t− 1

t

)2
O
(
(1 + 2κ)n

2
3 log n

ε

)
O
(
(1 + 2κ)

√
n log n

ε

)
4 t2−1

2
+ e

1
t
−1 − 1 O

(
(1 + 2κ)

√
n log2 n log n

ε

)
O
(
(1 + 2κ)

√
n log n

ε

)
5 t2−1

2
− ∫ t

1
e

1
ξ
−1
dξ O

(
(1 + 2κ)

√
n log2 n log n

ε

)
O
(
(1 + 2κ)

√
n log n

ε

)
6 t2−1

2
+ t1−q−1

q−1
, q > 1 O

(
(1 + 2κ) qn

q+1
2q log n

ε

)
O
(
(1 + 2κ) q2

√
n log n

ε

)
7 t− 1 + t1−q−1

q−1
, q > 1 O

(
(1 + 2κ) qn log n

ε

)
O
(
(1 + 2κ) q2

√
n log n

ε

)
Table 2. Complexity results for large- and small-update meth-
ods for LCPs.

linear complementarity problems depend on the parameter κ. For κ = 0, the
iteration bounds are the same as the bounds that were obtained in [2] for LO and
SDO in [6].
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