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Abstract. In this paper we propose a primal-dual interior-point al-
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search direction of algorithm is defined in terms of a matrix function
and the iteration is generated by full-Newton step. Furthermore, we
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We consider the standard convex quadratic semidefinite optimization (CQSDO)
problem as follows:

(P ) min C •X +
1
2
X •QX

s.t. Ai •X = bi, i = 1, . . . ,m,
X � 0,

where Ai ∈ Sn, i = 1, . . . ,m, b = (b1, b2, . . . , bm)T ∈ Rm, C ∈ Sn, Q ∈ Sn
+. The

lagrangian dual problem of (P ) is

(D) max bT y − 1
2
X •QX

s.t.

m∑
i=1

yiAi −QX + S = C, i = 1, . . . ,m,

S � 0.

The CQSDO problems first appeared in the research of Kojima et al. [11] and
they realized that the CQSDO problems were a special case of monotone semi-
definite linear complementarity problems (SDLCPs). In addition, if the matrices
C, Ai (i = 1, . . . ,m) and X are diagonal, (P ) reduces to a convex quadratic
optimization problem. If Q = 0, the CQSDO problem is just semidefinite opti-
mization (SDO) problem. Moreover, some optimization problems can transform
to the CQSDO problems, such as the nearest Euclidean distance matrix problem,
the nearest correlation matrix problem, Toh et al., we refer the reader to [16] for
details, and the CQSDO problems have some important implications in molecu-
lar conformation problems in chemistry and multidimensional scaling and multi-
variate analysis problems in statistics, Alfakih et al. We refer the reader to [3]
wherein some other applications of CQSDO are cited. Furthermore, some effi-
cient interior-point algorithms have been proposed to CQSDO, such as Nie and
Yuan in [13,14] proposed two algorithms for solving CQSDO problems, which are
predictor-corrector algorithm and potential reduction algorithm, respectively, and
Toh proposed an inexact primal-dual path-following algorithm for CQSDO in [15].
Wang and Bai [19] designed an interior point algorithm based on a parametric
kernel function and get the large- and small-update iteration bound. Recently,
Darvay [6] proposed a new technique for finding a class of search directions. Based
on this technique, the author designed a new primal-dual interior-point algorithm
for linear optimization (LO) with small-update method, and obtained iteration
bound O(

√
n log n

ε ). Achache [1] extended this technique to convex quadratic op-
timization. Later on, Wang and Bai [18] successfully extended this technique to
SDO and obtained the same iteration bound as LO.

Motivated by their work, we propose a new primal-dual path-following interior
point algorithm for CQSDO. We use a new method to find the search directions and
analyze the algorithm. Moreover, we derive the iteration bound for the algorithm
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with small-update method is O(
√
n log n

ε ), which is the same as LO and SDO and
is the best known bound so far.

The paper is organized as follows: in Section 1, we recall briefly basic results
on matrices and matrix functions and explain the concepts of the central path. In
Section 2, we use the new technique to find the search directions. In Section 3, we
present the generic primal-dual interior-point algorithm for CQSDO. In Section 4,
we derive the algorithm is well defined and can solve the CQSDO problem in
polynomial time. Finally, some conclusions are given in Section 5.

Some notations used throughout the paper are as follows: ‖ · ‖F and ‖ · ‖2

denote the Frobenius norm and the spectral norm for matrices, respectively. E
denotes the identity matrix. A � B (or A � B) means A − B is positive semi-
definite (or positive definite). We denote A •B = Tr(ATB) i.e., the trace of ATB.
For any Q ∈ Sn

++, the Q1/2 (or
√
Q) denotes its symmetric square root. When λ

is a vector, we use the diagonal matrix Λ with entries λi by diag(λ). We assume
that the eigenvalues of positive semi-definite V are listed according to the order of
their values such that λ1(V ) ≥ λ2(V ) ≥ · · · ≥ λn(V ). The notation g(x) = O(x)
means that g(x) ≤ c̄x for some positive constant c̄.

1. Preliminaries

1.1. Matrices and matrix function

We first recall some knowledge of matrices and matrix functions, which we can
refer to [7,8] for the details.

Definition 1.1. Let A ∈ Rn×n, then the trace of A is the sum of the diagonal
elements of matrix A, we denoted it as Tr(A).

Lemma 1.2. Let A, B ∈ Rn×n, then
(I) Tr(A) =

∑n
i=1 λi(A), where λi(A) is the ith eigenvalue of matrix A.

(II) Tr(A) = Tr(AT).
(III) Tr(AB) = Tr(BA).
(IV) Tr(A+B) = Tr(A)+Tr(B). Specially, if B is a skew-symmetric matrix, then
Tr(A + B) = Tr(A).

Definition 1.3. Let A ∈ Rn×n, the Frobenius norm and spectral norm are re-
spectively defined as

‖ A ‖F =
√

Tr(ATA) =

√√√√ n∑
i=1

n∑
i=1

aij

⎛
⎝=

√√√√ n∑
i=1

λ2
i (A) if A ∈ Sn

+

⎞
⎠

and

‖ A ‖2=
√
λmax(ATA) (= λmax(A) if A ∈ Sn

+).
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Theorem 1.4 (Spectral theorem for symmetric matrices in [21]). The real n× n
matrix A is symmetric if and only if there exists a matrix Q ∈ Rn×n such that
QTQ = E and QTAQ = Λ where Λ = diag(λ1, λ2, . . . , λn).

From Theorem 1.4, we can easily get the following corollary.

Corollary 1.5. Let A ∈ Sn, then we have A2 ∈ Sn and λi(A2) = λ2
i (A).

Now, we are ready to give the matrix functions. Suppose that ψ(t) is a real
valued function and its domain is [0,+∞), moreover, the derivative of ψ(t) exists
and ψ′(t) > 0 for t > 0.

Definition 1.6. Let V ∈ Sn
+ and

V = QT diag(λ1(V), λ2(V), . . . , λn(V))Q,

where Q is any orthonormal matrix that diagonalizes V . Then the (matrix valued)
matrix function ψ(V ) : Sn

+ 
→ Sn is defined as

ψ(V ) = QT diag(ψ(λ1(V)), ψ(λ2(V)), . . . , ψ(λn(V))Q. (1.1)

Furthermore, we define the derivative of ψ(V ), denoted as ψ′(V ). The ψ′(V ) is
given as follows:

ψ′(V ) = QT diag(ψ′(λ1(V)), ψ′(λ2(V)), . . . , ψ′(λn(V))Q. (1.2)

Definition 1.7 (Def. 1.3.1 in [8]). Let A, B ∈ Rn×n, A and B are called similar,
denoted as A ∼ B, if there exits an invertible matrix P , such that A = PBP−1.

Definition 1.8. Let A,B ∈ Sn, the matrix A and B are approximately equivalent,
if AB = BA and the absolute value of the difference of their each corresponding
eigenvalue is small enough. We denote it as A ≈ B.

It is easily to get the following lemma by matrix knowledge.

Lemma 1.9. Let A, B ∈ Sn. If A+B=E, then AB=BA.

Lemma 1.10 (Lem. 2.5 in [18]). Let A, B ∈ Sn and AB = BA, then

λi(A+B) = λi(A) + λi(B), i = 1, 2, . . . , n.

Furthermore, if |λi(B)| is small enough, we have

ψ(A+B) ≈ ψ(A) + ψ(B).

1.2. The central path

First, we assume that (P ) and its dual (D) satisfy the interior-point condition
(IPC), i.e., there exists X ∈ P , S ∈ D with X � 0, S � 0, where P and D
denote the feasible set of problem (P ) and its dual (D), respectively. Under the
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assumption of IPC, the optimality condition for (P ) and (D) can be written as
follows:

Ai •X = bi, i = 1, . . . ,m, X � 0,
m∑

i=1

yiAi −QX + S = C, S � 0, (1.3)

XS = 0.

We modify the above system by relaxing the third equation as follows:

Ai •X = bi, i = 1, . . . ,m, X � 0,
m∑

i=1

yiAi −QX + S = C, S � 0, (1.4)

XS = μE

with μ > 0. Under the assumption the (P ) and (D) satisfy the IPC, the system (4)
has a unique solution, denoted by (X(μ), y(μ), S(μ)). We call X(μ) the μ-center
of (P ) and (y(μ), S(μ)) the μ-center of (D). The set of μ-centers (with μ running
through positive real numbers) gives a homotopy path, which is called the central
path of (P ) and (D). If μ→ 0, then the limit of the central path exists and since
the limit points satisfy the complementarity condition, the limit yields optimal
solutions for (P ) and (D) [21].

2. The new search directions

We use a new technique to find the search direction through replacing the
third equation of the system (4) by ψ(XS

μ ) = ψ(E), then the system (4) can be
rewritten as

Ai •X = bi, i = 1, . . . ,m, X � 0,
m∑

i=1

yiAi −QX + S = C, S � 0, (2.1)

ψ(
XS

μ
) = ψ(E).

For a given feasible iterate (X, y, S) with X,S � 0, the search directions ΔX,Δy,
ΔS at the current iteration is the unique solution of the following Newton system

Ai • (X + ΔX) = bi, i = 1, . . . ,m,
m∑

i=1

(yi + Δyi)Ai −Q(X + ΔX) + (S + ΔS) = 0, (2.2)

ψ

(
(X + ΔX)(S + ΔS)

μ

)
= ψ(E).
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Applying Lemma 1.10 and neglecting the term ΔXΔS, then the third equation
of (6) can be written as

ψ

(
XS

μ

)
+ ψ′

(
XS

μ

)
XΔS
μ

+ ψ′
(
XS

μ

)
SΔX
μ

= ψ(E).

Using the first two equations of the system (5) and the above equation, then system
(6) can be written as

Ai • ΔX = bi, i = 1, . . . ,m,
m∑

i=1

ΔyiAi −QΔX + ΔS = 0, (2.3)

ΔX +XΔSS−1 = μ

(
ψ′
(
XS

μ

))−1(
ψ(E) − ψ(

XS

μ
)
)
S−1.

To keep ΔX and ΔS are symmetric, we use NT-symmetrization scheme in [12].
Now, we define

P := X1/2(X1/2SX1/2)−1/2X1/2 = S−1/2(S1/2XS1/2)1/2S−1/2.

We replace the term XΔSS−1 in the third equation of the system (7) by PΔSPT .
Then we have

Ai • ΔX = bi, i = 1, . . . ,m,
m∑

i=1

ΔyiAi −QΔX + ΔS = 0, (2.4)

ΔX + PΔSPT = μ

(
ψ′
(
XS

μ

))−1(
ψ(E) − ψ(

XS

μ
)
)
S−1.

Furthermore, let D = P 1/2, V := 1√
μD

−1XD−1 = 1√
μDSD. Then we have

V 2 =
(

1√
μ
D−1XD−1

)
(
√
μDSD) = D−1XS

μ
D.

Using Definition 2.6, we have

ψ

(
XS

μ

)
= Dψ(V 2)D−1 and ψ′

(
XS
μ

)
= Dψ′(V2)D−1. (2.5)

Furthermore, let

Āi :=
1√
μ
DAiD; DX :=

1√
μ
D−1ΔXD−1; DS :=

1√
μ
DΔSD. (2.6)
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Then (8) can be rewritten as

Āi •DX = 0, i = 1, . . . ,m,
m∑

i=1

ΔyiĀi − Q̄DX +DS = 0, (2.7)

DX +DS = PV ,

where Q̄DX = DQDDXD
2 and

PV =
√
μD−1(Dψ′(V 2)D−1)−1(ψ(E) −Dψ(V 2)D−1)S−1D−1.

In this paper, we use ψ(t) =
√
t, then

PV = 2(E − V ). (2.8)

We also have

V 2 + V PV = V 2 + 2V (E − V ) = E − (E − V )2 = E − P 2
V

4
· (2.9)

For the further analysis of the algorithm, we define a norm-based proximity mea-
sure δ(X,S, μ) as follows

δ(V ) := δ(X,S, μ) :=
‖ PV ‖F

2
=‖ E − V ‖F . (2.10)

Through the first two equations of the system (11), we have

DX •DS ≥ 0. (2.11)

It is the largest difference between the CQSDO and the SDO, as for SDO case,
DX •DS = 0 [18].

We can easily obtain

δ(V ) = 0 ⇔ V = E ⇔ DX = DS = 0 ⇔ XS = μE. (2.12)

So the value of δ(V ) is considered as a measure for the distance between the given
pair (X, y, S) and μ−center (X(μ), y(μ), S(μ)).

As we use ψ(t) =
√
t, we replace the PV by 2(E − V ) in (11). Then solving

(11), we have the new search directions DX and DS , by using (10), we can get
ΔX and ΔS. If (X, y, S) �= (X(μ), y(μ), S(μ)), then (ΔX,Δy,ΔS) �= 0. So we
obtain the new full-Newton triple by

(X+, y+, S+) = (X, y, S) + (ΔX,Δy,ΔS). (2.13)
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3. The generic interior-point algorithm

In this section, we propose the generic primal-dual interior-point algorithm for
CQSDO as the following Figure 1.
Primal-Dual Interior-Point Algorithm for CQSDO

Input:
A threshold parameter 0 < τ < 1 (default τ = 1

2 );
an accuracy parameter ε > 0;
an update parameter θ, 0 < θ < 1 (default θ = 1

2
√

n
);

a strictly feasible pair(X0, y0, S0) and μ0 = 1 such that δ(X0, S0, μ0) ≤ τ ;
begin
X := X0; y := y0; S := S0; μ := μ0

while nμ ≥ ε do
begin
solve the system (11) and use (10) for (ΔX,Δy,ΔS);
choose a suitable step size α;
update (X, y, S) := (X, y, S) + (ΔX,Δy,ΔS);
μ := (1 − θ)μ;

end
end

Figure 1. Primal – dual Interior Point Algorithm for CQSDO.

4. Analysis of the algorithm

In this section, we will prove the algorithm is well defined and the CQSDO
problem can be solved by this algorithm in polynomial time. In addition, we also
prove the local quadratic convergence of the algorithm.

To simplify the discussion, let

QV = DX −DS. (4.1)

From the third equation of (11) and using (18), we get

DX =
PV +QV

2
, DS =

PV −QV

2
, DXDS +DSDX =

P 2
V −Q2

V

2
· (4.2)

From (14) and (15), we can derive

‖ QV ‖F≤‖ PV ‖F = 2δ(V ). (4.3)

Lemma 4.1 (Lem. 2.6 in [18]). Let t > 0 and V ∈ Sn
+, then

‖ (tE − V 2)(tE + V )−1 ‖F≤ 1
t+ λmin(V )

‖ tE − V 2 ‖F .
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Let 0 ≤ α ≤ 1, we define

X(α) = X + αΔX, S(α) = S + αΔS. (4.4)

Lemma 4.2 (Lem. 6.1 in [9]). Suppose that X � 0 and S � 0. If one has

det(X(α)S(α)) > 0, ∀ 0 ≤ α ≤ ᾱ,

then X(ᾱ) � 0 and S(ᾱ) � 0.

Lemma 4.3 (Lem. 6.3 in [9]). Suppose that Q ∈ Sn
++ and M ∈ Rn×n are skew-

symmetric, i.e., M = −MT . One has det(Q + M) > 0. Moreover, if λi(Q+M) ∈
R, i = 1, 2, . . . , n, then

0 < λmin(Q) ≤ λmin(Q+M) ≤ λmax(Q+M) ≤ λmax(Q)

which implies Q+M � 0.

The following lemma is very crucial to our analysis, under the condition we
given, it also shows that the strict feasibility of the full Newton-step.

Lemma 4.4. Suppose δ := δ(X,S, μ) < 1, then the full Newton step is strictly
feasible.

Proof. From (21) and (10), we have

X(α)S(α) = XS + α(ΔXS +XΔS) + α2ΔXΔS
= μD(V 2 + α(DXV + V DS) + α2DXDS)D−1

∼ μ(V 2 + α(DXV + V DS) + α2DXDS) = Q(α) +M(α),

where

Q(α) = μ

(
V 2 +

1
2
α(DXV + V DS + V DX +DSV ) +

1
2
α2(DXDS +DSDX)

)
,

and

M(α) = μ

(
1
2
α(DXV + V DS − V DX −DSV ) +

1
2
α2(DXDS −DSDX)

)
.

It is clear to see that M(α) is skew-symmetric. From Lemma 4.3, if Q(α) �
0, then det(Q(α) + M(α)) > 0. As X(α)S(α) ∼ Q(α) + M(α), we can get
det(X(α)S(α)) > 0. Next, we just need to proof Q(α) � 0. Applying (12), (13)
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and (19),we have

Q(α) = μ

(
V 2 +

1
2
α(V PV + PV V ) + α2P

2
V −Q2

V

4

)

= μ

(
V 2 + αV PV + α2P

2
V −Q2

V

4

)

= μ

(
(1 − α)V 2 + α(V 2 + V PV ) + α2P

2
V −Q2

V

4

)

= μ

(
(1 − α)V 2 + α(E − P 2

V

4
) + α2P

2
V −Q2

V

4

)

= μ

(
(1 − α)V 2 + α(E − (1 − α)

P 2
V

4
− α

Q2
V

4
)
)
. (4.5)

Since 0 ≤ α ≤ 1 and (20), we have

∥∥∥∥(1 − α)
P 2

V

4
+ α

Q2
V

4
)
∥∥∥∥

F

≤ (1 − α)
∥∥∥∥P 2

V

4

∥∥∥∥
F

+ α

∥∥∥∥Q2
V

4

∥∥∥∥
F

≤ (1 − α)
‖PV ‖2

F

4
+ α

‖QV ‖2
F

4
≤ (1 − α)δ2 + αδ2 = δ2 < 1.

So we can get

(
(1 − α)V 2 + α(E − (1 − α)

P 2
V

4
− α

Q2
V

4
)
)

� 0,

that is, Q(α) � 0. Thus det(X(α)S(α)) > 0. Since X(0) = X � 0 and S(0) =
S � 0, by Lemma 4.2, we have X(1) � 0 and S(1) � 0 for ᾱ = 1. This completes
the proof of the lemma. �

Now we give an important lemma of local quadratic convergence of full Newton-
step algorithm.

Lemma 4.5. Suppose that δ = δ(X,S, μ) < 1, then we have

δ(X+, S+, μ) ≤ δ2

1 +
√

1 − δ2
≤ δ2.

That is to say the full Newton-step algorithm satisfies local quadratic convergence.

Proof. Using the proof of Lemma 4.4 and (22) and letting α = 1, we have

X+S+

μ
∼ E − Q2

V

4
+M,
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where
M =

1
2
(DXV + V DS − V DX −DSV +DXDS −DSDX).

Obviously, M is a skew-symmetric matrix and E − Q2
V

4 � 0. So we derive that

V 2
+ ∼ X+S+

μ
∼ E − Q2

V

4
+M. (4.6)

By using Lemma 4.3, we have

λmin(V 2
+) = λmin

(
E − Q2

V

4
+M

)
≥ λmin

(
E − Q2

V

4

)
·

Applying (20), we have

λmin(V 2
+) ≥ λmin

(
E−Q2

V

4

)
≥ 1−λmax(

Q2
V

4
) ≥ 1−

∥∥∥∥Q2
V

4

∥∥∥∥ ≥ 1−‖QV ‖2

4
≥ 1−δ2.

(4.7)

Therefore

λmin(V+) ≥
√

1 − δ2. (4.8)
By using Lemma 4.1 with t = 1 and (23), we derive

δ(X+, S+, μ) = ‖E − V+‖F = ‖(E − V+)(E + V+)(E + V+)−1‖F

= ‖(E − V 2
+)(E + V+)−1‖F ≤ 1

1 + λmin(V+)
‖E − V 2

+‖F

=
1

1 + λmin(V+)

√
Tr
(

Q2
V

4
− M

)2

.

Since M is a skew-symmetric matrix, using (25) and Lemma 2.2, we get

δ(X+, S+, μ) ≤ 1
1 + λmin(V+)

Tr
(

Q2
V

4

)
≤ 1

1 +
√

1 − δ2

∥∥∥∥Q2
V

4

∥∥∥∥
F

≤ 1
1 +

√
1 − δ2

‖ QV ‖2
F

4
≤ δ2

1 +
√

1 − δ2
≤ δ2.

This completes the proof of the lemma. �

Now, we give a critical lemma of computing the iteration bound, the proof of
the lemma is similar to Lemma 6.5 in [18], so we just give the lemma without
proof.
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Lemma 4.6. After a full-Newton step, then

X+ • S+ ≤ nμ.

The following lemma gives a simple relation between δ and δ+ after updating the
μ to (1 − θ)μ.

Lemma 4.7. Let δ < 1 and μ+ = (1 − θ)μ, where 0 < θ < 1. Then

δ+ := δ(X+, S+, μ+) ≤ θ
√
n+ δ2

1 − θ +
√

(1 − θ)(1 − δ2)
·

Furthermore, if δ ≤ 1
2 , θ = 1

2
√

n
and n ≥ 4, then we have

δ(X+, S+, μ+) ≤ 1
2
·

Proof. Using (23), (25) and applying Lemma 4.1 with t =
√

1 − θ, we derive

δ(X+, S+, μ+) =

∥∥∥∥∥E −
√
X+S+

μ+

∥∥∥∥∥
F

=
1√

1 − θ
‖ √

1 − θE − V+ ‖F

=
1√
1−θ ‖ (

√
1−θE − V+)(

√
1−θE + V+)(

√
1 − θE + V+)−1 ‖F

≤ 1√
1 − θ(

√
1 − θ + λmin(V+))

‖ (1 − θ)E − V 2
+ ‖F

=
1√

1 − θ(
√

1 − θ + λmin(V+))

√
Tr
(
−θE +

Q2
V

4
− M

)2

.

By M is a skew-symmetric matrix and using (25), we have

δ(X+, S+, μ+) ≤ 1
1 − θ +

√
(1 − θ)(1 − δ2)

∥∥∥∥−θE +
Q2

V

4

∥∥∥∥
F

≤ 1
1 − θ +

√
(1 − θ)(1 − δ2)

(
θ
√
n+

‖QV ‖2
F

4

)

≤ 1
1 − θ +

√
(1 − θ)(1 − δ2)

(θ
√
n+ δ2).

Furthermore, since n ≥ 4 and δ ≤ 1
2 , we have

1 − θ = 1 − 1
2
√
n
≥ 3

4
·

and δ(X+, S+, μ+) ≤ 1
2 · �
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From above lemmas and the default θ = 1
2
√

n
, we have that the (X,S) � 0 and

δ < 1
2 are maintained during the algorithm. Hence, the algorithm is well defined.

Lemma 4.8. Suppose that X0 and S0 are strictly feasible, μ0 = X0•S0

n and
δ(X0, S0, μ0) ≤ 1

2 · Moreover, let Xk and Sk be the matrices obtained after k

iterations. Then the inequality Xk • Sk ≤ ε is satisfied

k ≥ 1
θ

log
X0 • S0

ε
·

Proof. From Lemma 4.6, we have

Xk • Sk ≤ nμk = n(1 − θ)kμ0 = (1 − θ)kX0 • S0·

So, if we keep the inequality Xk • Sk ≤ ε hold, we just need

(1 − θ)kX0 • S0 ≤ ε.

Taking logarithms on both sides, we have

k log(1 − θ) + log(X0 • S0) ≤ log ε.

Applying inequality θ+log(1− θ) ≤ 0 (0 ≤ θ < 1), we just need that the following
inequality holds

kθ ≥ log(X0 • S0) − log ε = log
X0 • S0

ε
·

This completes the proof of the lemma. �

Theorem 4.9. Let θ = 1
2
√

n
, then the algorithm requires at most

O

(√
n log

X0 • S0

ε

)

iterations.

Proof. Let θ = 1
2
√

n
, by using Lemma 4.8, the theorem is easily proof. �

Corollary 4.10. If let X0 = S0 = E, the iteration bound is

O

(
√
n log

n

ε

)
,

which is the same as LO and SDO and is also the currently best known iteration
bound for the algorithm with small-update method.
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5. Conclusions

In this paper, we proposed a new primal-dual interior-point algorithm for
CQSDO problem with full-Newton step. We used a new technique to find the
search directions and applied new method to analyze the algorithm for CQSDO
problem. Moreover, we obtained the currently best known iteration bound for
small-update methods, namely, O(

√
n log n

ε ), which is the same as LO and SDO
case.
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