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Abstract. In this paper, we propose a new method to generate a
continuous belief functions from a multimodal probability distribution
function defined over a continuous domain. We generalize Smets’ ap-
proach in the sense that focal elements of the resulting continuous belief
function can be disjoint sets of the extended real space of dimension n.
We then derive the continuous belief function from multimodal prob-
ability density functions using the least commitment principle. We
illustrate the approach on two examples of probability density func-
tions (unimodal and multimodal). On a case study of Search And
Rescue (SAR), we extend the traditional probabilistic framework of
search theory to continuous belief functions theory. We propose a new
optimization criterion to allocate the search effort as well as a new
rule to update the information about the lost object location in this
latter framework. We finally compare the allocation of the search ef-
fort using this alternative uncertainty representation to the traditional
probabilistic representation.
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Introduction

The theory of belief functions is a powerful formalism to deal with imperfect
information and has been widely used in many applications such as classification,
decision making, association. As defined by Dempster [5] and Shafer [20], belief
functions are defined over so-called frames of discernment that are exclusive and
exhaustive sets of hypotheses. A frame of discernment is a discrete set of un-
ordered elements. The extension of belief function theory to continuous frames of
discernment leads to the definition of continuous belief functions. The definition
of belief functions on real numbers has not been explored extensively up to this
day [14,18,24,27], and a particularly interesting application is the extension of the
probabilistic estimation.

In this paper, we model belief functions following [18,24,27] since this approach
provides an explicit link between belief functions and probability distributions.
We adopt a representation where basic belief assignments (bba) are allocated only
to connected (non-disjoint) sets of R

n
(space of real numbers of dimension n).

However, when belief functions are issued from multimodal probability distribu-
tions, we assign belief functions to unions of disjoint sets, which therefore requires
a formalism to describe a more complex frame of discernment.

We propose an alternative representation of continuous belief functions to the
Smets’ representation [24]. After some theoretical background on belief function
theory in Section 3, we propose a new representation of continuous belief functions
such that focal elements belong to B

(
R

n
)
, the Borel σ-algebra of R

n
. We focus

on consonant belief functions, i.e. belief functions with nested focal elements as
in [3,24,27]. We illustrate the approach on two examples of probability density
functions, and compare our approach to the one suggested in [3,24] by computing
the consonant belief function linked to a Gaussian mixture. We then apply the
approach to the search and rescue (SAR) problem [1,11–13] in Section 4.2.

1. Discrete belief functions

Initially, belief functions were defined over a discrete and unordered frame of
discernment Ω, which is a finite set of mutually exclusive elements [5,20,21] where
2Ω denotes the power set of Ω.

1.1. Basic Functions

A basic belief assignment (bba) mΩ is a mapping from 2Ω to [0, 1] such that∑
A⊆Ω

mΩ (A) = 1. A focal element of mΩ is an element A of 2Ω which bba mΩ (A)

is not equal to zero. The following functions are defined for each X ⊆ Ω:
• belief function

belΩ (X) =
∑

A⊆X,A �=∅
mΩ (A) (1.1)
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• plausibility function

plΩ (X) =
∑

A⊆Ω,A∩X �=∅
mΩ (A) (1.2)

• communality function

qΩ (X) =
∑

X⊆A

mΩ (A) (1.3)

• pignistic probability [22]

BetPΩ(X) =
∑
A⊆Ω

|A ∩ X |
|A|

mΩ (A)
1 − mΩ(∅) · (1.4)

These functions are used to represent the information transmitted by an agent. bel
and pl can be respectively interpreted as lower and upper bounds on the probability
for a given event, while q, is a measure of non specificity. The commonality
function q is often used for its convenient computational properties. The pignistic
probability models the bet of an evidential source of information and is used for
making decision in evidence theory. To combine the information given by two
independent sources of information, the conjunctive rule of combination is often
used. Two bbas mΩ

1 and mΩ
2 combined by the conjunctive rule, lead to mΩ

1 ∩© 2

defined for all A ⊆ Ω by:

mΩ
1 ∩© 2 (A) =

∑
X∩Y =A

mΩ
1 (X)mΩ

2 (Y ) (1.5)

which can also be written as:

qΩ
1 ∩© 2(A) = qΩ

1 (A) · qΩ
2 (A) (1.6)

using the commonality function.

1.2. The least commitment principle

The least commitment principle suggest the choice of the least committed belief
function. This principle can be applied for instance to several alternative repre-
sentations of a piece of information or to find the original belief function from a
pignistic distribution.

The least commitment principle relies on an order relation between belief func-
tions in order to determine if a belief function is more or less committed than
another. A possible partial ordering �qover belief functions is based on the com-
monality function and is defined by:(

∀A⊆Ω, qΩ
1 (A)≤qΩ

2 (A)
)
=⇒

(
mΩ

1�q mΩ
2

)
1. (1.7)

1Note that
(
mΩ

1 �q mΩ
2

)
is equivalent to

(
belΩ1 �q belΩ2

)
.
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Hence, the belief function belΩ2 is less committed than belΩ1 according to the com-
monality ordering.

1.3. The general bayesian theorem

The classical Bayesian theorem of conditional probability has been extended to
the theory of belief functions as follows the general Bayesian theorem (TGB) [25]:

Let mΩ be a bba and h a hypothesis. mΩ [h] (A) is the value of the bba mΩ for
A if h is true. In this case we have

∑
A⊆Ω

mΩ [h] (A) = 1. Hence mΩ [h] is the bba

obtained after conditioning mΩ on h. Let T and Ω be two frames of discernment
and mT be a bba defined over T . If we assume that mT [ω] is known for all ω ∈ Ω,
then if t∗ ⊆ T is true, we have according the GTB:

mΩ [t∗] (A) =
∏
ω∈A

plT [ω] (t∗) ·
∏
ω∈A

(
1 − plT [ω] (t∗)

)
. (1.8)

This equality can be deduced from the maximum likelihood principle [23]:

plΩ [t∗] (A) = plT [A] (t∗) . (1.9)

This principle remains valid if the frame of discernment is continuous such as the
set of real numbers and if we consider a finite partition of a real set. However,
the resulting belief functions will be discrete although the frame of discernment is
continuous. Therefore, there is a need for a richer model for defining continuous
belief functions, as presented in the next section.

2. Continuous belief function on real number

Using the belief function framework in order to model the information on a con-
tinuous frame of discernment is not an easy task. Indeed, as belief functions do not
satisfy the additivity property (i.e. bel (A ∪ B) �= bel (A) + bel (B)− bel (A ∩ B)),
focal elements need to be easy to handle. A first attempt at this [24,27] used a
basic belief density (bbd) function mR

n

, an object equivalent to the probability
density function (pdf) in probability theory. The bbd allocates a density to subsets
of R

n
.

2.1. Basic belief density on real numbers

Smets [24] suggests to model continuous belief functions on R by applying mass
only on intervals of R. He links a bbd mR on R to a pdf fT on T = {(x, y) ∈
R

2|x ≤ y} (he sets [x, y] = ∅ si y < x). Hence, he defines mR ([x, y]) = fT (x, y)
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By analogy with the discrete case in equations (1.1)–(1.3), he obtains:

belR([a, b]) =
∫ x=b

x=a

∫ y=b

y=x

fT (x, y) dy dx (2.1)

plR([a, b]) =
∫ x=b

x=−∞

∫ y=+∞

y=max(a,x)

fT (x, y) dy dx (2.2)

qR([a, b]) =
∫ x=a

x=−∞

∫ y=+∞

y=b

fT (x, y) dy dx (2.3)

We note mR

1 ∩© 2 the bbd resulting from conjonctive combination of mR

1 and mR

2 .
The product mR

1 (A) · mR

2 (B) is allocated to mR

1 ∩© 2 (A ∩ B). For each closed set A

of R, we have:
qR

1 ∩© 2(A) = qR

1 (A) qR

2 (A) . (2.4)
We presented above an introduction to the results obtained by Smets [24]. We

can extend this to R
n

using boxes instead of intervals or using ellipsoids as in
Caron’s work [3].

2.2. Consonant bbds

Consonant bbds have been studied in several papers [3,18,24]. Focal elements of
consonant belief function are nested. For each A and B, focal elements of mR

n

, we
have A ⊂ B ⇐⇒ qR

n

(B) < qR
n

(A). Therefore it is quite natural to assign a real
number y to a focal element F (y) such as y < y′ implies F (y) ⊆ F (y′), meaning
that the order on the focal elements reduces to an order over R .We note that the
plausibility function of a consonant bbd is a possibility function. Indeed we have
that plR

n

(A) = max
x∈A

(
plR

n

(x)
)
.

2.3. Least Committed bbd induced by unimodal pdf

To each bbd mR
n

corresponds a pignistic pdf Betf and a pignistic probability
BetP . For each interval [a, b] in R, we have according to [24]:

BetP ([a, b]) =
∫ x=∞

x=−∞

∫ y=∞

y=x

min(y, b) − max(x, a)
y − x

fT (x, y) dy dx. (2.5)

The hypothesis is that BetP has been obtained by an underlying belief func-
tion and the problem becomes one of identifying this belief function. However,
since there no one-to-one correspondence between bel and BetP many solutions
exist. To this end, the least committment principle can then be applied as sug-
gested in [24] where the corresponding optimization criterion is the maximization
of commonality ordering (Eq. (1.7)). Smets [24] proved that in this case, the least
committed bdd for the commonality ordering (q-LC bbd) associated with Betf on
R whose graph is “bell-shaped” (i.e. unimodal) is consonant.
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Let BIso(BetP ) denote the set of bbds whose pignistic probability is equal to
BetP , i.e. the set of isopignistic bbds. For each interval [a, b] of R we have:

fT (a, b) = mR([a, b]) = (γ (b) − b)
dBetf (b)

db
δ (a − γ (b)) (2.6)

with b in [η,∞], and γ (b) in [−∞, η] such that Betf(b) = Betf(γ(b)), η being
the mode of Betf . The focal elements of this belief function are the α-cuts2 of
Betf . In [3], Caron et al. provide the expression of the q-LC bbd associated with
the Gaussian pdf of R

n. They prove that its focal elements are the confidence sets
of the associated Gaussian pdf.

3. Credal measure and index function

Both the approaches of Smets and Caron et al. described in the previous section
are based on the description of focal elements from a continuous function. However,
they only take into account the frames of discernment built with connected (non-
disjoint) subsets of R. One drawback of these approaches is that the α-cuts of
a multimodal function cannot be modeled, as they are not connected sets by
definition (cf. Ex. 3.6 in Sect. 3.6). If we accept as a focal set any element
of B(Rn), the Borel σ-algebra, we cannot compute the consonant belief function
linked to a multimodal pdf.

We propose here to explicitly introduce an index function aiming at describing
the focal elements of a continuous belief function [8].

3.1. Basics

Our aim is to build a belief function over R
n
, say μB(R

n), which set of focal
elements is F

(
μB(R

n)
)
. Let f I be an onto mapping index function for a set of

real numbers I called the index space, such that all the focal elements of a belief
function are described using I:

f I : I ∈ B
(
R

l
)

−→ F
(
μB(R

n)
)

y �−→ f I(y)
(3.1)

where l is the dimension of the index space I. We can consider μB(R
n) as a positive

measure on a measurable space (I,B(I)) that satisfies the condition
∫

I

dμB(R
n)(y)

≤ 1. If for each A ∈ B
(
R

n
)
, the following sets belong to B(I),

F⊆A = {y ∈ I|f I(y) ⊆ A} (3.2)

F∩A = {y ∈ I|
(
f I(y) ∩ A

)
�= ∅} (3.3)

F⊇A = {y ∈ I|A ⊆ f I(y)} (3.4)

2 the α-cuts of a function f from R
n

to R
+ are the sets {y ∈ R

n|f(y) ≥ α}.
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we are able to compute the belief functions using f I . We call the measurable space(
I,B(I) , μB(R

n)
)

credal space and the corresponding positive measure μB(R
n),

credal measure.
We define for all A ∈ B

(
R

n
)
:

belB(R
n)(A) =

∫
F⊆A

dμB(R
n)(y) (3.5)

plB(R
n)(A) =

∫
F∩A

dμB(R
n)(y) (3.6)

qB(R
n)(A) =

∫
F⊇A

dμB(R
n)(y). (3.7)

We note that l, the dimension of I, does not depend on n, the dimension of the
frame of discernment. As an example, Smets suggests in [24] to use subsets of R

2

to describe focal elements of a belief on R while Caron et al. in [3] use an index
space of dimension 1 to describe the focal elements of a Gaussian belief function
on R

n
.

3.2. Variable substitution

Integration by substitution is a method to find integrals. This important tool
can be used in the theory of belief functions.

Theorem 3.1. Let f I1 and f I2 be two index functions associated with two credal

measures μ
B(R

n)
1 and μ

B(R
n)

2 . Let ϕ be a one-to-one mapping such that ϕ (y1) = y2

implies f I1 (y1) = f I2 (y2). These credal measures are equal if:

dμ
B(R

n)
1 (y1) = |det (ϕ′ (y1)) | dμ

B(R
n)

2 (ϕ (y1)) (3.8)

This means that if H1 ⊂ I1 and H2 ⊂ I2 are two elements of a Borel σ-algebra

such that ϕ (H1)=H2 and ϕ−1 (H2)=H1 imply
∫

H1
dμ

B(R
n)

1 (y1)=
∫

H2
dμ

B(R
n)

2 (y2),
then the two beliefs associated to the credal measures are the same.

3.3. Conjonctive combination rule

The conjunctive combination rule is given by the following theorem:

Theorem 3.2. Let μ
B(R

n)
1 and μ

B(R
n)

2 be two credal measures. The credal measure

μ
B(R

n)
1 ∩© 2 resulting from the conjonctive combination of μ

B(R
n)

1 and μ
B(R

n)
2 satisfies:

q
B(R

n)
1 ∩© 2 (A) = q

B(R
n)

1 (A) · qB(R
n)

2 (A) . (3.9)
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Proof. Let A be in B
(
R

n
)
. We have:

q
B(R

n)
1 (A) · qB(R

n)
2 (A) =

∫
F 1

⊇A

dμ
B(R

n)
1 (y1) ·

∫
F 2

⊇A

dμ
B(R

n)
2 (y2). (3.10)

According to the Fubini’s theorem, we have:

q
B(R

n)
1 (A) · qB(R

n)
2 (A) =

∫
F 1

⊇A

∫
F2⊇A

dμ
B(R

n)
1 (y1) dμ

B(R
n)

2 (y2)

=
∫

F 1
⊇A

∫
F2⊇A

d
(

μ
B(R

n)
1 ⊗ μ

B(R
n)

2

)
(y1, y2).

(3.11)

Let f I1 ∩© 2 be a mapping such that:

f I1 ∩© 2 : I1 ∩© 2 = I1 × I2 −→ F
(

μ
B(R

n)
1 ∩© 2

)
y = (y1, y2) �−→ f I1(y1) ∩ f I2(y2) .

(3.12)

We have:
F 1 ∩© 2
⊆A =

(
F 1
⊆A × I2

)
∪
(
I1 × F 2

⊆A

)
(3.13)

F 1 ∩© 2
∩A = F 1

∩A × F 2
∩A (3.14)

F 1 ∩© 2
⊇A = F 1

⊇A × F 2
⊇A. (3.15)

These sets belong to a σ-algebra, so f I1 ∩© 2 can be seen as an index function.

Therefore we can build a credal measure μ
B(R

n)
1 ∩© 2 such that:

μ
B(R

n)
1 ∩© 2 = μ

B(R
n)

1 ⊗ μ
B(R

n)
2 . (3.16)

Hence:
q
B(R

n)
1 ∩© 2 (A)=

∫
F

1 ∩© 2
⊇A

dμ
B(R

n)
1 ∩© 2 (y). (3.17)

We obtain:
q
B(R

n)
1 ∩© 2 (A) = q

B(R
n)

1 (A) · qB(R
n)

2 (A) . (3.18)
�

3.4. Consonant credal measures

Consonant credal measures are a particular case of credal measure. Indeed their
index functions f I

cs are bijections such that:

f I
cs : I ⊂ R

+ −→ F
(
μB(R

n)
)

y �−→ f I
cs(y)

and y2 < y1 ⇐⇒ f I
cs(y1) ⊂ f I

cs(y2)

(3.19)
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f I
cs can be used to rewrite equations (3.5) to (3.7). For example, if the index space

is an interval, i.e. I =[0, ymax], we have:

belB(R
n)(A) =

∫ y1

ymax

dμB(R
n)(y) with y1 the smallest element of F⊆A (3.20)

plB(R
n)(A) =

∫ 0

y1

dμB(R
n)(y) with y1 the biggest element in F∩A (3.21)

qB(R
n)(A) =

∫ 0

y1

dμB(R
n)(y) with y1 the biggest element in F⊇A. (3.22)

The conjunctive combination of two consonant credal measures is not consonant,
which may be problem. A solution is to replace the credal measure by the isopig-
nistic consonant credal measure.

3.5. Consonante credal measure induced by a multimodal pdf

As stated previously, the approaches of Smets and Caron et al. cannot deal
with multimodal pdfs as the focal elements need to be connected, which is not
the case if they are obtained by α-cuts of a multimodal pdf. We apply here our
approach based on the index function and show that we can represent consonant
credal measures induced by a multimodal pdf.

The pignistic transformation in the case of a credal measure is written for each
A ∈ B

(
R

n
)
:

BetP (A) =
∫

F∩A

λ
(
A ∩ f I(y)

)
λ (f I(y))

dμB(R
n)(y). (3.23)

In this case λ (B) is the Lebesgue’s measure of the hypervolume B, element of
B
(

R
n
)

(we set 0/0 = 1). Let Betf be a continuous pdf on R
n
. We will show

that the α-cuts of Betf , defines a consonant credal measure μB(R
n) asssociated to

Betf .

Proposition 3.3. Let Betf be a continuous pdf. Among the belief functions of
BIso(BetP ), one has as focal elements the α-cuts of Betf and as consonant credal
measure μB(R

n) such that:

dμB(R
n) (α) = λ

(
f I

cs(α)
)
dλ (α) . (3.24)

Proof. The α-cuts of g, a continuous function from R
n

to R
+, are:

f I
cs(α) = {x ∈ �n|g (x) ≥ α} (3.25)

F cs
⊆A is an element of Borel algebra. Indeed:

F cs
⊆A �= ∅ ⇒ ∃αinf = inf

{
α ∈ I|f I

cs(α) ∩ A �= ∅
}

⇒ F cs
⊆A = |αinf , αmax] .

(3.26)
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Using a similar argument, we can prove that F cs
⊇A and F cs

∩A are elements of Borel
algebra. Hence, we can define by using Betf :

f I
cs : I = [0, αmax] −→

{
f I

cs(α) |α ∈ I
}

α �−→ f I
cs(α) .

(3.27)

As the index function f I
cs does not satisfy the relation given in (3.19), we need

to invert the upper and lower bounds of each integral used to compute the belief,
plausibility and commonality functions.

We will use two different expressions of BetP
(
f I

cs (α)
)

to compute the density
of the credal measure. Using the pignistic transformation, we have:

BetP
(
f I

cs (α)
)

=
∫ 0

αmax

λ
(
f I

cs (α) ∩ f I
cs(y)

)
λ (f I

cs(y))
dμB(R

n)(y) . (3.28)

Moreover, let ν be the measure such as:

λ
(
f I

cs(α)
)

=
∫ α

αmax

dν (y). (3.29)

Then:

BetP
(
f I

cs(α)
)

=
∫ α

αmax

ydν (y). (3.30)

By differentiating these two expressions, we have:

dν (α)
∫ α

αmax

1
λ (f I

cs(y))
dμB(R

n)(y) = αdν (α) . (3.31)

Hence:

α =
∫ α

αmax

1
λ (f I

cs(y))
dμB(R

n)(y). (3.32)

By differentiating, we have:

dμB(R
n) (α) = λ

(
f I

cs(α)
)
dλ (α) . (3.33)

�
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Proposition 3.3 shows that we can build a consonant credal measure for any
continuous pdf, not only for simple modal distributions. Therefore, this result
extends the existing approaches.

Theorem 3.4. Among the set of belief functions BIso(BetP ), the belief function
defined by equation (3.24) is the least committed one for the communality ordering.

Proof. If
(
f I , μB(R

n)
)
∈ BIso(BetP ), we have by construction:

pl
(
R

n
� f I(α)

)
− α · λ

(
f I(α)

)
≤ betP

(
R

n
� f I(α)

)
. (3.34)

The credal measure defined by Proposition 3.3 leads us to use a plausibility
function which is equal to the upper bound of this inequality. We deduce that this
is the least committed one for the plausibility ordering. As this belief function is
consonant, it is the least committed one for the commonality ordering. �

We can build the least committed belief function linked to BIso(BetP ) when
the associated probability density function is continuous. For discret frames of
discernementor in particular cases of continuous belief functions, this kind of result
has already been obtained [24].

3.6. Examples

We illustrate our results on two special cases, (1) a simple Gaussian pdf and
(2) a mixture of Gaussian pdfs, and build the corresponding consonant credal
measures.

Example 3.5 (Gaussian pdf). Let Betf be the pdf of a Gaussian distribution.
We define Betf−1 as the bijective inverse function of Betf restrained to R

+.
According to Theorem 3.4, Betf−1 induces a credal measure such that:

dμB(R
n) (α) = λ

(
f I

cs (α)
)
dλ (α) = 2Betf−1 (α) dλ (α) . (3.35)

As α = Betf (x), we have:

dλ (α) = Betf ′ (x) dλ (x) = xBetf (x) dλ (x) . (3.36)

Hence, according to the Theorem 3.1, the credal measure μ̃ as:

dμ̃B(R
n) (x) = 2x2Betf (x) dλ (x) (3.37)

and the associated index function such that f(x) = [−x, x] describe the same belief
as μB(R

n). That is the result given by Smets in [24].

Theorem 3.1 and Proposition 3.3 can thus be used to build a consonant credal
measure associated with a Gaussian pdf. Unfortunately, the analytic expression
of BetP ◦ f I

cs and λ ◦ f I
cs are not always trivial and an alternative solution in this
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Figure 1. Gaussian mixture.

case is to compute a numerical approximation of λ (fcs (α)). In the next example,
we will illustrate this approach and compute the numerical approximation of the
credal measure induced by a Gaussian mixture. The results will be then compared
with those obtained in [3].

Example 3.6 (Gaussian mixture). In [3], Caron et al. give an expression of
bbd induced by a Gaussian pdf on R

n
. They build a bbd induced by a Gaussian

mixture Betf =
∑

i βiBetfi, such that the plausibility satisfies pl =
∑

i βipli and
the plausibilities pli are the ones induced by the pdf Betfi using the Theorem 3.4.
The resulting belief function is isopignistic to Betf . However, its focal elements
are not the α-cuts of Betf but rather those of Betfi. Thus, this method does not
build the consonant belief function induced by Betf . Hence we do not obtain the
least committed isopignistic belief function induced by Betf .

Let us consider the Gaussian mixture plotted in Figure 1. The numerical ap-
proximations of BetP ◦ fcs and λ ◦ fcs are plotted in Figure 2. As expected, the
plausibility obtained with Proposition 3.3 is clearly higher than the one obtained
by the method described in [3] and its shape is clearly different (cf. Fig. 3). We
conclude that in pattern recognition application, the method choosen to generate
the plausibility function used by the generalized Bayesian theorem [3,18] will have
an impact on the results. In [7], the authors show that according the method used
to generate belief functions, the results of classification are not the same and that
the method following the least commitment principle is the more cautious one.

4. Optimal search theory with belief functions

In a search and rescue (SAR) problem, algorithms are developed which aim at
providing solutions to optimally allocate the search effort in order to maximize
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Figure 2. Study of α-cuts.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

P
la

us
ib

ili
ty

 o
f x

 

 

Plausibility with the consonant belief function
Plausibility with the method of Caron et al.

Figure 3. Comparaison of plausibility functions.

the chances of finding a lost object. The theory of probability is the traditional
theoretical framework for modeling uncertainty. An approach using discrete be-
lief functions has been developed in [9]. Due to its computational burden, this
approach should be restricted to small environments with a restricted number of
cells. In this paper, we suggest an alternative modeling approach based on con-
tinuous belief functions. After some background on the classical search theory, we
will apply the approach developed in Section 4 to the search and rescue problem.
The objective is to demonstrate the interest of using continuous belief functions
to model and solve a SAR problem.
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4.1. Classical approach of search problem

Let R be the search area. If R is continuous, the distribution location of the
search object on a search space can be represented by a continuous probability
density function fl defined by [29]:

∫
x∈R

fl (x) dx = β (4.1)

where β is a real number between 0 and 1. A β value lower than 1 corresponds
to a belief that the search object is outside the search area with a probability of
1 − β. If the search area is discrete, we have:

∑
c∈R

POC (c) = β (4.2)

where POC (c), is the probability that the search object is in the cell c (probability
of containement).

Among the several ways to initialize this location probability distribution [1],
one of them consists in defining a Gaussian function centered on the last known
point (LKP). Some methods have been proposed to generate complex probabil-
ity of containment distributions, which use several scenarii to define possibility
areas [19]. The conditional probability of detecting (POD) the search object pro-
vided that it is in a given cell c (POD (c)) depends on several parameters such
as the environment, the amount of search effort, the kind of search object and
the type of sensors. To characterize the ability of a sensor to detect a target,
we use the lateral range function α̂ (r) [29]. It corresponds to the instantaneous
probability that an object, located at a distance r perpendicular to the trajectory
of the sensor, will be detected (cf. Fig. 4). The integration of this function over
the distance r defines the sweep width:

W = 2
∫ ∞

0

α̂ (r) dr. (4.3)

In the discrete case, we consider that the sweep width is homogeneous over a given
grid cell (W (c)).

A classical lateral range function is α̂ [29]:

α̂ (r) =
{

1 for 0 ≤ r ≤ d
0 for r > d

(4.4)

with W = 2d (cf. Fig. 4). When a sensor can be described with this law, we
call it a definite-range law sensor. There are several ways to measure the search
effort [29]. It can be defined by a trajectory length, the time spent in an area,
the cost of a mission, etc. In general, effort is defined as the length of the path
followed by the sensor. Let z be this length, V be the speed of the sensor, then
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Figure 4. Area swept by the sensor.

z = V · T with T the time spent in an area. The product of z by W gives us an
idea of the surface covered by the sensor. Let the sensor follow a definite range
law (cf. Eq. (4.4)), we can use W instead of α̂ (r) to compute the POD defined
by the exponential function b as follows:

b (z) = 1 − exp (−zW/A) . (4.5)

The exponential detection function assumes a random search along the path of
the sensor. Following an unsuccessful search mission, the POC is usually updated
based on the Bayes’ rule. Let n denote the discrete time index, c the cell number,
we then have:

POCn (c) =
POCn−1 (c) · (1 − PODn (c))

1 − POSn
(4.6)

where POS is the Probability Of Success define in equation (4.7).The resulting
POCn is not necessarily normalized. In this case, instead of redistributing the
POC on the whole search area, we assume that the search object is outside the
search area. This results in a lower β value.

4.2. Search planning

To optimally plan a mission, the available effort Ξ must be distributed over the
search area in a way that maximizes a performance criterion. Often [1], we try
to maximize the probability of finding the search object (POS). For one step of
planning, we maximize (in this equation, we work on continuous space):

POS =
∫

x∈R
fl (x) b (ξ (x)) dx

with Ξ =
∫

x∈R
ξ (x) dx

(4.7)

where ξ (x) is the amount of effort applied on x. Several methods have been
proposed to distribute the effort over the search area, depending on the fixed
constraints [28]. If we assume that the effort is continuous and infinitely divisible,
and that the search object is stationary, de Guenin [4] has proved that for an
amount of effort, the POS is maximized if for all x of R we have:

fl (x) b′ (ξ (x)) = λ (4.8)
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where b′ is the derivative in ξ of b and λ is a constant. Therefore, for a fixed λ, by
inverting b′, we can find the allocation of ξλ maximizing the POS on the search
area for a global amount of fixed effort. Then we have Ξλ =

∫
x∈R ξλ (x) dx. The

optimization problem is now transformed. Our aim is to find the λ which verifies
Ξλ = Ξ. algorithms for moving objects. There are many extension of optimal
search problem, according the type of search objects (moving targets, . . .), the type
of sensors (detection law, false alarm rate, . . .) and the problem constrains [2,28].

4.3. Belief function approach of search problem

To model the optimal search problem with the theory of belief functions, we
use the distributions of probability previously defined. Hence, we have to consider
two frames of discernement: R, a subset of R

2
, corresponds to the search area

and D =
{
d, d
}
, corresponds to the events “detection” or “no detection”. To

describe the location of the lost object, we use μR
POC , a credal measure. It can be

the one related to the least committed belief function induced by the probability
of containment. We denote the set of the focal elements of this belief function
Pε = {Πε, the ε-cuts of fl}. Moreover, we consider that the effort is splitted on
a partition of R, Pi = {Πi, i ≤ n ∈ N}. Hence, the probability to detect a lost
object on Π knowing that the object is there and knowing the effort that we have

allocated on the search areas is POD(Π) =
∑

Πi∩Π

(
|Πi ∩ Π|

|Π| POD (Πi)
)

. Using the

least commitment principle with the communality ordering, we obtain μD
POD [Π],

the belief functions induced by POD(Π) which describes our belief in the detection
event3:

μD
POD [Π] (A) =

⎧⎨
⎩

min (2 · POD(Π), 2 (1 − POD(Π))) si A = D
max (0, 2 · POD(Π) − 1) si A = d

max (0, 1 − 2 · POD(Π)) si A = d.
(4.9)

To model the chance of finding the object after a search mission, we consider
the following belief function generate by the two previous kind of belief functions:

μD[μR
POC , μD

POD [Π]
]
(A) =

∫
F⊂R

μD
POD [Πε] (A) dμR

POC (ε) . (4.10)

Hence, the objective of the search plan is to split the effort on Pi in order to
maximize the pignistic probability of finding the lost object. This optimization
problem is the same as the one traditionally defined in probabilistic case, and
hence we can use the de Guenin’s algorithm [4] to find a solution.

After a search campaign, we can update mΠ
POC . The first thing is to model the

information transmitted by a sensor when the mission completes without detection.

3For the sake of simplicity, we set for all y in I, the index space, that μX [X] (y) =
μX [X] (f(y)).
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(a) Probability of containment. (b) Plausibility of containment (Caron’s
method).

(c) Plausibility of containment (the least
committedone).

Figure 5. Location of the lost object.

The aim is to be able to define plRPOD

[
d
]
(Π). In order to have a consonante belief

function, we define:

plRPOD

[
d
]
(Π) = max

x∈Π
plRPOD

[
d
]
(x) = max

Πi∩Π �=∅
plRPOD

[
d
]
(Πi) . (4.11)

According to the likelihood principle, we have for each part Πi of the search area:

plRPOD

[
d
]
(Πi) = plDPOD [Πi]

(
d
)
. (4.12)

To update the belief on the search object’s location, we combine the belief functions
with the conjunctive rule:

qΠ
POC′

[
d, μPOC

]
(Π) = qDPOD

[
d
]
(Π) · qRPOC (Π) . (4.13)
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We note that when the POD is smaller than 0.5, the plausibility send by the
sensor is equal to 1 with no impact on the update of the commonality.

Example 4.1 (the POC is a mixture of Gaussian). We assume that the probability
of containment is represented by a mixture of two Gaussian functions correspond-
ing to two possible LKP. Based on the results presented by Caron et al. in [3],
we can build a bbd associated with the POC. We build also the least committed
belief function induced by the POC (cf. Figs. 5). A first problem occurs with the
Caron’s method. In fact, some locations for the lost object are more probable than
other ones, however this ordering is not keept with the plausibility function in-
duced by Caron’s method. This does not happen when we use the least committed
one.

We assume that the sweep width is the same for all the search areas. We decide
to use the detection model describe by equation (4.5). Hence, we can compute
for the probabilistic and the belief functions approaches the optimal allocations
of effort in order to maximize the chance of finding the lost object (cf. Figs. 6).
We remark that in the case of Caron’s method, the effort is focused on a place
where the lost object does not seem to be. When we use the least committed
belief functions, the effort is allocated on a larger area (cf. Figs. 6). It is because
we consider that the source of information is subjective. Hence, it is weakened by
representing likelihoods on sets instead of singletons.

We then update the information about the location of the lost object in the two
frameworks (cf. Figs. 7). We observe that the areas where the informations about
the location of the lost object is updated is smaller in the case of the plausibility.
It is because in our approach with the belief functions, we do not update the
information about location if the probability of detection is smaller than 0.5.

Conclusion

In this paper, we have extended the approach proposed in [24,27] to describe
complex focal elements. With this extended model, it is possible to induce a
consonant belief function from a multimodal continuous pdf. Such a tool allows
us to make the same operations with the framework of belief functions and the
framework of probabilities. One example is the study of a SAR case. We remark
that based on the belief functions approach, we have a powerful way to merge
information from several sources on the location of the search object. This may be
used in the context of searches where several drones are used (for example [32]).
Recently, some studies [30,31] have addressed the performance measures of sensors
in a SAR context. We could take into account these results into the framework
belief functions.
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(a) Allocation of effort with probabilities. (b) Allocation of effort with Caron’s method.

(c) Allocation of effort with the least commit-
ted belief function.

Figure 6. Allocation of effort.
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