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A DISCRETE-TIME GEO[X]/G/1 RETRIAL QUEUE
WITH GENERAL RETRIAL TIME

AND M-ADDITIONAL OPTIONS FOR SERVICE ∗

Muthukrishnan Senthil Kumar
1

Abstract. This paper concerns a discrete time Geo[X]/G/1 retrial
queue with general retrial time in which all the arriving customers re-
quire first essential service with probability α0 while only some of them
demand one of other optional services: type− r (r = 1, 2, 3, . . . M) ser-
vice with probability αr. The system state distribution, the orbit size
and the system size distributions are obtained in terms of generating
functions. The stochastic decomposition law holds for the proposed
model. Performance measures of the system in steady state are ob-
tained. Finally, some numerical illustrations are presented to justify
the influence of parameters on several performance characteristics.
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1. Introduction

There has been rapid growth in the literature on the discrete-time queue due
to their applications in communication systems and other related areas, see for
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instance [4,11,12,17,19,27,31] and the references therein. Many computer and com-
munication systems operate on a discrete-time basis where events can only happen
at regularly spaced epochs. In fact, discrete-time queues are more appropriate than
their continuous-time counterparts for modelling computer and telecommunication
systems because they work in slotted time basis that resemble packet transmitting
times and machine cycles [11,31]. Moreover, discrete-time models can be used to
derive the results for continuous-time models but not vice versa [27].

In recent years, the interest in analysis of retrial queueing systems has grown
and these systems have been widely used in the field of computers and communi-
cations. Retrial queueing system is characterized by the feature that the arriving
customers who find the server busy join the retrial queue (orbit) to try again for
their requests after some random time. With the recent advancements in mobile
communications the issue of retrials is becoming more important. In the retrial
queueing literature, survey papers such as the paper of Falin [14] and the paper
of Kulkurni and Liang [13] provide classified collections of work done in this re-
search area. Moreover, the monographs of Artalejo and Gomez [6] and Falin and
Templeton [15] have presented analytical and computational techniques that are
commonly used to analyze retrial queues.

The study of discrete-time queues was initiated by Meisling [23], and Powell
et al. [25]. More detailed applications on discrete-time queueing theory are in-
cluded in the two monographs [11,27]. In the past, the study of the retrial queues
has been focused on the continuous case. In fact, the paper of Yang and Li [32]
is the first one that considered discrete-time retrial queues. They have analyzed
a Geo/G/1 retrial using a generating function approach. Choi and Kim [13] and
Li and Yang [20] have analysed the models with two types of customers. The
batch arrival retrial queue has been addressed by Takahashi et al. [28], Atencia
and Moreno [8] and Artalejo et al. [5]. Retrial queueing systems with an unreliable
server have been analyzed by Atencia and Moreno [9,10], Moreno [24] and Wang
and Zhao [29,30]. The balking behavior of the customers has been studied by
Aboul-Hassan et al. [1,2].

Recently, there have been several contributions considering retrial queueing
systems in which the server may provide a second phase of service. Such situations
occur in day-to-day life, where all arriving customers require the main service
and only some may require the subsidiary service provided by the same server.
Madan [21] has studied an M/G/1 queue with second optional service in which the
first essential service time follows a general distribution but the second optional
service is assumed to be exponentially distributed. Medhi [22] has generalized
the model by considering that the second optional service is also governed by a
general distribution. Jau-Chuan Ke [18] has studied the model with J-additional
options for service. Senthil Kumar and Arumuganathan [26] have analysed single
server batch arrival retrial queue with two phases of service and Bernoulli schedule
vacation. Wang and Zhao [29] have extended the study to discrete-time retrial
queues with second optional service but without considering the general retrial
time.
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Most of the existing works focus on continuous-time models. Moreover the mod-
els studied in [18,21,22] have assumed a single arrival stream. The proposed work
is the generalization of the model of Atencia and Moreno [8] and Aboul-Hassan
et al. [3] by considering the additional M-options for service. The performance
characteristics of the system are obtained.

The rest of this paper is organized as follows. In the next section, the math-
ematical description of the model is introduced. In Section 3, the Markov chain
associated with the system is analyzed. The orbit and system sizes distribution
are obtained together with several performance measures of the system. Section
4 gives two different stochastic decomposition laws regarding the probability gen-
erating function of the system size. Finally, in Section 5, some numerical results
are illustrated to justify the impact of the service rate, retrial rate and so on.

2. Model description

In a discrete-time single server retrial queue, the time axis is segmented into
slots and the time axis is marked by 0, 1, 2,. . . It is assumed that all queueing
activities (arrivals, departures and retrials) occur at the slot boundaries. Different
from continuous-time queues, the probability of an arrival and a departure and
other queueing activities occurring concurrently may not be zero in discrete-time
queues any more. So, it is necessary to specify the order in which the arrivals and
departures take place in case of simultaneity. Thus, early arrival scheme (known
also as departure first rule) [27] is applied in this paper. According to this scheme,
the departures occur in the interval (m−, m), while arrivals and retrials occur in
the interval (m, m+), where m− is the instant immediately before time point m
and m+ is the instant immediately after time point m.

New customers arrive in batches according to a geometric arrival process with
probability p where p, is the probability that a batch of customers arrives in the
interval (m, m+). Batch sizes are independent and identically distributed with

probability distribution function {cl}∞l=1, generating function C(z) =
∞∑

l=1

clz
l and

nth factorial moments ζn. If, upon arrival, the server is busy, then the arriving
customers join the orbit, whereas if the server free, then one of the arriving cus-
tomers (selected at random) begins the first essential service (FES) immediately
and the others join the orbit. It is always supposed that retrials and services can
be started only at slot boundaries and their durations are integral multiples of slot
duration.

The service times of FES are independent and identically distributed with gen-

eral distribution {s0,i}∞i=1, generating function S0(x) =
∞∑

i=1

s0,ix
i and nth factorial

moments μ0,n. On completion of the FES, a customer decides with probability
αr to receive a rth type of optional service and with complementary probability

α0 to abandon the system forever
(

i.e.,
M∑

r=0
αr = 1

)
. The service times of rth
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type of multi-optional service are independent with general distribution {sr,i}∞i=1,

generating function Sr(x) =
∞∑

i=1

sr,ix
i and nth factorial moments μr,n.

Customers in orbit are assumed to form a FCFS queue. A customer waits in this
queue until he moves to the head of the queue. At this time, the customer begins
to retry joining the server. The time between retrials (the retrial time) is assumed

to follow a general distribution {ai}∞i=0, generating function A(x) =
∞∑

i=0

aix
i and

nth factorial moments υn.
Finally, various stochastic processes involved in the system are assumed to be

independent of each other. It is denoted that p̄ = 1 − p where 0 < p < 1.
Further, the traffic intensity is denoted as ρ = ρ1 + ρ2 where ρ1 = pζ1μ0,1 and

ρ2 = pζ1

M∑
r=1

αrμr,1.

3. The Markov chain

At time m+, the system can be described by the process,

{Xm = (Cm, ξm, ηr,m, Nm), r = 0, 1, 2, 3, . . .M ; m = 0, 1, 2, . . .}

where Cm denotes the state of the server, (0, 1, or r + 1 according to whether
the server is free, busy providing a FES, busy providing a rth type of optional
service) and Nm, the number of customers in the retrial group. If Cm = 0, then
ξm represents the remaining retrial time, and if Cm = 1, then η0,m corresponds
the remaining service time of FES and if Cm = r + 1, then ηr,m represents the
remaining service time of rth (r = 1, 2, 3, . . .M) type of optional service.

The future dynamics of Xm depends only on the current state after introducing
the above supplementary variables. Given the current state, the next state and the
evolution of the system prior to the current state are independent. So, it can be
shown that {Xm, m ∈ N} is the Markov chain of the proposed queueing system,
whose state space is

{(0, 0); (0, i, k) : i ≥ 1, k ≥ 1; (r + 1, i, k) : r = 0, 1, 2, · · ·M, i ≥ 1, k ≥ 0}.

Let

π0,0 = lim
m→∞Pr(Cm = 0, Nm = 0);

π0,i,k = lim
m→∞Pr(Cm = 0, ξm = i, Nm = k); i ≥ 1, k ≥ 1;

Pr,i,k = lim
m→∞Pr(Cm = r + 1, ηr,m = i, Nm = k); r = 0, 1, 2, . . .M, i ≥ 1, k ≥ 0

be the stationary distributions of the Markov chain {Xm, m ∈ N}. In this case,
Kolmogorov equations are also referred to the global balance equations. The
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Kolmogorov equations for the stationary distribution of our system are:

π0,0 = p̄π0,0 + p̄α0P0,1,0 + p̄

M∑
r=1

Pr,1,0 (3.1)

π0,i,k = p̄π0,i,k + α0p̄aiP0,1,k + p̄ai

M∑
r=1

Pr,1,k; i ≥ 1, k ≥ 1 (3.2)

P0,i,k = pck+1s0,iπ0,0 + p̄s0,iπ0,1,k+1 + (1 − δ0k)ps0,i

k−1∑
l=0

∞∑
j=1

π0,j,k−1cl+1

+ ps0,iα0

k∑
l=0

cl+1P0,1,k−l + p̄P0,i+1,k + (1 − δ0k)p
k∑

l=1

clP0,i+1,k−l

+ α0p̄a0s0,iP0,1,k+1 + ps0,i

M∑
r=1

k∑
l=0

cl+1Pr,1,k−l

+ p̄a0s0,i

M∑
r=1

Pr,1,k+l, i ≥ 1, k ≥ 0 (3.3)

Pr,i,k = (1 − δ0k)psr,i

k∑
l=1

clαrP0,1,k−l + p̄sr,iαrP0,1,k

+ (1 − δ0k)p
k∑

l=1

clPr,i+1,k−l + p̄Pr,i+1,k, r = 1, 2, 3, . . .M, i ≥ 1, k ≥ 0

(3.4)

where δa,b denotes Kronecker’s delta, and the normalizing condition is

π0,0 +
∞∑
l=1

∞∑
k=1

π0,i,k +
M∑

r=0

∞∑
i=0

∞∑
k=0

Pr,i,k = 1. (3.5)

In order to solve (3.1)–(3.4), the following generating functions are introduced

φ0(x, z) =
∞∑

i=1

∞∑
k=1

π0,i,kxizk; Ωr(x, z) =
∞∑

i=1

∞∑
k=0

Pr,i,kxizk; r = 0, 1, 2 . . .M,

and the auxiliary generating functions are,

φ0,i(z) =
∞∑

k=1

π0,i,kzk; Ωr,i(z) =
∞∑

k=0

Pr,i,kzk; r = 0, 1, 2, . . .M, i ≥ 1.

The following lemmas will be used while deriving the main result.
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Lemma 3.1. If ζ1p

(
μ0,1 +

M∑
r=1

αrμr,1

)
≤ 1 − ζ1p̄(1 − A(p̄)), then

{
(C(z) + p̄A(p̄)(1 − C(z))

[
α0 +

M∑
r=1

αrSr(γ)

]
S0(γ) − zγ

}
≥ 0

for 0 ≤ z ≤ 1, where γ = p̄ + pC(z).

Proof. Let

g(z) =

{[
C(z) + p̄A(p̄)(1 − C(z))

][
α0 +

M∑
r=1

αrSr(γ)

]
S0(γ)

}

γ
·

This function satisfies the following properties:

(i) g(0) = A(p̄)

[
α0 +

M∑
r=1

αrSr(p̄)

]
S0(p̄);

(ii) g(1) = 1;

(iii) g′(1) = ζ1p

(
μ0,1 +

M∑
r=1

αrμr,1

)
+ ζp̄(1 − A(p̄) < 1;

(iv) Assuming 0 ≤ z < 1 and so g′′(z) > 0. This implies g(z) is convex.
Based on above properties of g(z), g(z) − z > 0 for 0 ≤ z < 1. So,{

[C(z) + p̄A(p̄)(1 − C(z))]

[
α0 +

M∑
r=1

αrSr(γ)

]
S0(γ) − zγ

}
> 0.

Hence Lemma 3.1 is proved. The following theorem gives an explicit expression
for the generating function of the stationary distribution of the system state. �

Theorem 3.2. If ζ1p

(
μ0,1 +

M∑
r=1

αrμr,1

)
≤ 1 − ζ1p̄(1 − A(p̄) then

φ0(x, z) =
A(x) − A(p̄)

x − p̄

px

(
zγ − C(z)S0(γ)

[
α0 +

M∑
r=1

αrSr(γ)
])

π0,0

[C(z) + p̄A(p̄)(1 − C(z))]
[
α0 +

M∑
r=1

αrSr(γ)
]

S0(γ) − zγ

Ω0(x, z) =
S0(x) − S0(γ)

x − γ

pxγA(p̄)(1 − C(z))π0,0

[C(z) + p̄A(p̄)(1 − C(z))]
[
α0 +

M∑
r=1

αrSr(γ)
]

S0(γ) − zγ

Ωr(x, z) =
Sr(x) − Sr(γ)

x − γ

αrS0(γ)pxγA(p̄)(1 − C(z))π0,0

[C(z) + p̄A(p̄)(1 − C(z))]

[
α0 +

M∑
r=1

αrSr(γ)

]
S0(γ) − zγ
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where

π0,0 =

1 − ζ1p

[
μ0,1 +

M∑
r=1

αrμr,1

]
− ζ1p̄(1 − A(p̄))

A(p̄)
·

Proof. Multiplying (3.2)–(3.4) by zk and summing over k and using boundary
condition (3.1), these equations become,

φ0,i(z) = p̄φ0,i+1(z) + p̄aiα0Ω0,1(z) − paiπ0,0 (3.6)

Ω0,i(z) =

(
C(z) − a0

z

)
ps0,iπ0,0 +

p̄

z
s0,iφ0,1(z) +

C(z)
z

ps0,iφ0(1, z)

+

(
p̄a0 + pC(z)

z

)
α0s0,iΩ0,1(z) + [p̄ + pC(z)]Ω0,i+1(z)

+

(
p̄a0 + pC(z)

z

)
s0,i

M∑
r=1

Ωr,1(z) (3.7)

Ωr,i(z) = (pC(z) + p̄)sr,iΩ0,1(z) + (pC(z) + p̄)Ωr,i+1(z). (3.8)

Multiplying (3.6)–(3.8) by xi and summing over i, then(
x − p̄

x

)
φ0(x, z) = p̄[A(x) − a0]α0Ω0,1(z) − p[A(x) − a0]π0,0

+ p̄[A(x) − a0]
M∑

r=1

Ωr,1(z) − p̄φ0,1(z) (3.9)

(
x − (pC(z) + p̄)

x

)
Ω0(x, z) =

(
C(z) − a0

z

)
pS0(x)π0,0 +

p̄

z
S0(x)φ0,1(z)

+
C(z)

z
pS0(x)φ0(1, z) +

(
p̄a0 + pC(z)

z

)
α0S0(x)Ω0,1(z)

+
(

p̄a0 + pC(z)
z

)
S0(x)

M∑
r=1

Ωr,1(z) − (pC(z) + p̄)Ω0,1(z) (3.10)

(
x − (pC(z) + p̄)

x

)
Ωr(x, z) = (pC(z) + p̄)αrSr(x)Ω0,1(z)

− (pC(z) + p̄)Ωr,1(z) r = 1, 2, 3, . . .M.
(3.11)
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To obtain φ0(1, z), put x = 1 in (3.9). Hence,

pφ0(1, z) = p̄[1 − a0]α0Ω0,1(z) − p[1 − a0]π0,0

+ p̄[1 − a0]
M∑

r=1

Ωr,1(z) − p̄φ0,1(z). (3.12)

Substitute (3.12) in equation (3.10), then

(
x−(pC(z)+p̄)

x

)
Ω0(x, z)=

p̄(1 − C(z))
z

S0(x)φ0,1(z) − pa0(1 − C(z))
z

S0(x)π0,0

+
[(

C(z) + (1 − C(z))p̄a0

z

)
α0S0(x) − (pC(z) + p̄)

]
Ω0,1(z)

+
(

C(z) + (1 − C(z))p̄a0

z

)
S0(x)

M∑
r=1

Ωr,1(z). (3.13)

To find φ0,1(z) and Ω0,1(z), first put x = p̄ in (3.9) and x = p̄ + pC(z) in (3.13)
and (3.11). Hence

p[A(p̄) − a0]π0,0 = p̄[A(p̄) − a0]α0Ω0,1(z)

+ p̄[A(p̄) − a0]
M∑

r=1

Ωr,1(z) − p̄φ0,1(z) (3.14)

(
pa0(1 − C(z))

z

)
S0(γ)π0,0 =

p̄(1 − C(z))
z

S0(γ)φ0,1(z)

+
[(

C(z) + (1 − C(z))p̄a0

z

)
α0S0(γ) − γ

]
Ω0,1(z)

+
(

C(z) + (1 − C(z))p̄a0

z

)
S0(γ)

M∑
r=1

Ωr,1(z) (3.15)

γ Ωr,1(z) = γαrSr(γ)Ω0,1(z) r = 1, 2, 3, . . .M (3.16)

where γ = pC(z) + p̄
Substitute Ωr,1(z) in (3.14) and (3.15), we have,

p[A[(p̄) − a0]π0,0 = p̄[A(p̄) − a0]

(
α0 +

M∑
r=1

αrSr(γ)

)
Ω0,1(z) − p̄φ0,1(z) (3.17)

(
pa0(1 − C(z))

z

)
S0(γ)π0,0 =

p̄(1 − C(z))
z

S0(γ)φ0,1(z)

+

[(
C(z) + (1 − C(z))p̄a0

z

)(
α0 +

M∑
r=1

αrSr(γ)

)
S0(γ) − γ

]
Ω0,1(z). (3.18)
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Then, solving (3.17) and (3.18), φ0,1(z), Ω0,1(z), and Ωr,1(z) are given by,

φ0,1(z) =
p(A(p̄) − a0)

(
zγ − C(z)S0(γ)

[
α0 +

M∑
r=1

αrSr(γ)
])

π0,0(
[C(z) + p̄A(p̄)(1 − C(z))]

[
α0 +

M∑
r=1

αrSr(γ)
]

S0(γ) − zγ

)
p̄

· (3.19)

Ω0,1(z) =
pA(p̄)(1 − C(z))S0(γ)π0,0(

[C(z) + p̄A(p̄)(1 − C(z))]
[
α0 +

M∑
r=1

αrSr(γ)
]

S0(γ) − zγ

) · (3.20)

Ωr,1(z) =
αrSr(γ)pA(p̄)(1 − C(z))S0(γ)π0,0(

[C(z) + p̄A(p̄)(1 − C(z))]
[
α0 +

M∑
r=1

αrSr(γ)
]

S0(γ) − zγ

) ;

r = 1, 2, 3, . . .M. (3.21)

Based on Lemma 3.1

φ0(x, z)=
A(x)−A(p̄)

x−p̄

px

(
zγ − C(z)S0(γ)

[
α0+

M∑
r=1

αrSr(γ)
])

π0,0(
[C(z) + p̄A(p̄)(1 − C(z))]

[
α0 +

M∑
r=1

αrSr(γ)
]

S0(γ) − zγ

)

Ω0(x, z)=
S0(x)S0(γ)

x−γ

pxγA(p̄)(1−C(z))π0,0(
[C(z)+p̄A(p̄)(1−C(z))]

[
α0+

M∑
r=1

αrSr(γ)
]

S0(γ) − zγ

)

Ωr(x, z)=
Sr(x)−Sr(γ)

x−γ

αrS0(γ)pxγA(p̄)(1 − C(z))π0,0(
[C(z)+p̄A(p̄)(1 − C(z))]

[
α0+

M∑
r=1

αrSr(γ)
]

S0(γ)−zγ

)
r = 1, 2, 3, . . .M.

π0,0 + φ0(1, 1) +
M∑

r=0

Ωr(1, 1) = 1

then,

π0,0 =
1 − ζ1p

(
μ0,1 +

M∑
r=1

αrμr,1

)
− ζ1p̄(1 − A(p̄))

A(p̄)
·

This completes the proof of the theorem. �
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Corollary 3.3.
1. The marginal generating function of the number of customers in the orbit when
the server is idle is given by

π0,0 + φ0(1, z) =
A(p̄)γ

(
S0(γ)

[
α0 +

M∑
r=1

αrSr(γ)
]
− z

)
π0,0(

[C(z) + p̄A(p̄)(1 − C(z))]
[
α0 +

M∑
r=1

αrSr(γ)
]

S0(γ) − zγ

) ·

2. The marginal generating function of the number of customers in the orbit when
the server is busy is given by,

M∑
r=0

Ωr(1, z) =
γA(p̄)

[
(1 − S0(γ)) +

M∑
r=1

S0(γ)αr(1 − Sr(γ))
]

π0,0(
[C(z) + p̄A(p̄)(1 − C(z))]

[
α0 +

M∑
r=1

αrSr(γ)
]

S0(γ) − zγ

) ·

3. The probability generating function of the orbit size is given by

Ψ(z) = π0,0 + φ0(1, z) +
M∑

r=0

Ωr(1, z)

=
γA(p̄)(1 − z)π0,0(

[C(z) + p̄A(p̄)(1 − C(z))]
[
α0 +

M∑
r=1

αrSr(γ)
]

S0(γ) − zγ

) ·

4. The probability generating function of the number of customers in the system
is given by,

Φ(z) = π0,0 + φ0(1, z) + z

M∑
r=0

Ωr(1, z)

=
γA(p̄)(1 − z)

[
α0 +

M∑
r=1

αrSr(γ)
]

S0(γ)π0,0(
[C(z) + p̄A(p̄)(1 − C(z))]

[
α0 +

M∑
r=1

αrSr(γ)
]

S0(γ) − zγ

) ·

Next, some performance measures for the system at the stationary regime are
presented.

Corollary 3.4.
1. The probability that the system is idle is given by,

π0,0 =
1 − ζ1p

(
μ0,1 +

M∑
r=1

αrμr,1

)
− ζ1p̄(1 − A(p̄))

A(p̄)
·
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2. The probability that the system is busy is given by,

1 − π0,0 =
ζ1p̄ + ζ1p

(
μ0,1 +

M∑
r=1

αrμr,1

)
+ A(p̄)(1 − ζ1p̄) − 1

A(p̄)
·

3. The mean number of customers in the orbit is given by,

E[N ] = Ψ′(1)

=

ζ2

(
ζ1p

(
μ0,1 +

M∑
r=1

αrμr,1

)
+ ζ1p̄(1 − A(p̄))

)

+2ζ3
1 p̄p(1 − A(p̄))

[(
μ0,1 +

M∑
r=1

αrμr,1

)
− 1
]

+ζ3
1p2

(
μ0,2 +

M∑
r=1

αrμr,2

)
2ζ1

(
1−ζ1p

(
μ0,1+

M∑
r=1

αrμr,1

)
−ζ1p̄(1−A(p̄))

) ·

4. The mean number of customers in the system is given by,

E[L] = Φ′(1)

=

ζ2

(
ζ1p

(
μ0,1 +

M∑
r=1

αrμr,1

)
+ ζ1p̄(1 − A(p̄))

)

−2ζ3
1 p̄p(1 − A(p̄)) + ζ3

1p2

(
μ0,2 +

M∑
r=1

αrμr,2

)

+2ζ2
1p

(
μ0,1 +

M∑
r=1

αrμr,1

)[
1 − ζ1p

(
μ0,1 +

M∑
r=1

αrμr,1

)]
2ζ1

(
1−ζ1p

(
μ0,1+

M∑
r=1

αrμr,1

)
−ζ1p̄(1−A(p̄))

) ·

5. The mean time a customer spends in the system is given by,

E[W ] =
E[L]

p
·

Remark 3.5 (three special cases). First case is a retrial queue with single arrival,
the second case is system with one additional option for service and the third case
is system with no additional option for service.
(a) Setting C(z) = z, the present model reduces to Geo/G/1 retrial queue with
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general times and M-additional options for service. The generating functions pre-
sented Theorem 3.3 are reduced to

φ0(x, z) =
A(x) − A(p̄)

x − p̄

px

(
zγ − zS0(γ)

[
α0 +

M∑
r=1

αrSr(γ)
])

π0,0{
[z + p̄A(p̄)(1 − z)]

[
α0 +

M∑
r=1

αrSr(γ)
]

S0(γ) − zγ

}

Ω0(x, z) =
S0(x) − S0(γ)

x − γ

pxγA(p̄)(1 − z)π0,0{
[z + p̄A(p̄)(1 − z)]

[
α0 +

M∑
r=1

αrSr(γ)
]

S0(γ) − zγ

}

Ωr(x, z) =
Sr(x) − Sr(γ)

x − γ

αrS0(γ)pxγA(p̄)(1 − z)π0,0{
[z + p̄A(p̄)(1 − z)]

[
α0 +

M∑
r=1

αrSr(γ)
]

S0(γ) − zγ

}
r = 1, 2, 3, . . .M

where

π0,0 =
1 − p

(
μ0,1 +

M∑
r=1

αrμr,1

)
− p̄(1 − A(p̄))

A(p̄)
·

(b) If only one additional optional service is considered (i.e. r = 1), the present
model reduces to Geo[X]/G/1 retrial queue with second optional service, the prob-
ability generating function of number of customers in the system presented in
Corollary 3.3 is reduced as follows:

Φ(z) = π0,0 + φ0(1, z) + zΩ1(1, z)

=
γA(p̄)(1 − z)(α0 + α1S1(γ))S0(γ)π0,0

([C(z) + p̄A(p̄)(1 − C(z))] [α0 + α1S1(γ)] S0(γ) − zγ)

where

π0,0 =
1 − ζ1p(μ0,1 + α1μ1,1) − ζ1p̄(1 − A(p̄))

A(p̄)
·

(c) If there is no additional optional service, then the probability generating func-
tion presented in Corollary 3.3 is reduced to

Φ(z) = π0,0 + φ0(1, z) + zΩ1(1, z) =
γA(p̄)(1 − z)S0(γ)π0,0

([C(z) + p̄A(p̄)(1 − C(z))]S0(γ) − zγ)
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where
π0,0 =

1 − ζ1p(μ0,1) − ζ1p̄(1 − A(p̄))
A(p̄)

·
This result coincides the probability generating function of number of customers
in the system, derived by Hassan et al. [3].

4. Stochastic decomposition

In this section, the stochastic decomposition property of the system size distri-
bution for the proposed model is derived. Fuhrmann and Cooper [16] presented
a stochastic decomposition law for the M/G/1 queueing model with generalized
vacations, which affirms that the number of customers in any system with vaca-
tions in the stationary regime is distributed as the sum of two independent random
variables: one is the number of customers in the corresponding standard model
M/G/1 and the other is the number of customer in the system with vacations
given that the server is on vacations. The stochastic decomposition law for retrial
queues has been studied by Yang and Templeton [33]. In the proposed model, the
probability generating function of the system size can be decomposed as follows:

Φ(z) = Q(z)Θ(z)
where

Q(z) =

[
1 − ζ1p

(
μ0,1 +

M∑
r=1

αrμr,1

)]
(1 − z)

[
α0 +

M∑
r=1

αrSr(γ)
]

S0(γ)[
α0 +

M∑
r=1

αrSr(γ)
]

S0(γ) − z

and

Θ(z) =

γA(p̄)
([

α0+
M∑

r=1
αrSr(γ)

]
S0(γ)−z

)
π0,0{

[C(z)+p̄A(p̄)(1−C(z))]
[
α0+

M∑
r=1

αrSr(γ)
]

S0(γ)−zγ

}[
1−ζ1p

(
μ0,1+

M∑
r=1

αrμr,1

)]

=
π0,0 + φ0(1, z)
π0,0 + φ0(1, 1)

·

It can be shown that Q(z) is the probability generating function of the number
of customers in the standard Geo[X]/G/1 queue with multi-optional service and
Θ(z) is the probability generating function of the number of customers in the
present model given that the server is idle. This can be explained by the following
decomposition law.
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Theorem 4.1. In the stationary regime, the total number L of customers in the
system under study is distributed as the sum of two independent random vari-
ables: one is the total number L′ of customers in the corresponding standard model
Geo[X]/G/1 with multi-optional service and the other is the total number M ′ of
customers in the system given that the server is idle. That is, L = L′ + M ′

The above theorem is used to compute a measure of proximity between the
distributions of the system size in the standard Geo[X]/G/1 queue and present
queueing system. The following theorem is provided using this result.

Theorem 4.2. The following inequalities hold:

2
(1 − A(p̄))

(
ζ1p

(
μ0,1 +

M∑
r=1

αrμr,1

)
+ ζ1p̄ − 1

)
A(p̄)

≤
∞∑

j=0

∣∣P [L = j] − P [L1 = j]
∣∣

≤ 2
(1 − A(p̄))

(
ζ1p

(
μ0,1 +

M∑
r=1

αrμr,1

)
+ ζ1p̄ − 1

)

A(p̄)
(

1 − ζ1p

(
μ0,1 +

M∑
r=1

αrμr,1

)) ·

Proof. Using the decomposition law,

P [L = j] =
j∑

k=0

P [L1 = k]P [M1 = j − k]

=
j−1∑
k=0

P [L1 = k]P [M1 = j − k] + P [L1 = j]P [M1 = 0]

= P [L = j − 1] + P [L1 = j]P [M1 = 0].

Based on the previous results, the following can be obtained:

|P [L = j] −P [L1 = j]
∣∣ ≤ P [L = j − 1] + P [L1 = j](1 − P [M1 = 0])

= P [L = j] − P [L1 = j]P [M1 = 0] + P [L1 = j](1 − P [M1 = 0])

= P [L = j] + P [L1 = j](1 − 2P [M1 = 0]).
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Summing over all states, we get the upper bound:

∞∑
j=0

∣∣P [L = j] − P [L1 = j]
∣∣ ≤ ∞∑

j=0

P [L = j − 1] + P [L1 = j](1 − P [M1 = 0])

= 2(1 − 2P [M1 = 0])

= 2
(1 − A(p̄))

(
ζ1p

(
μ0,1 +

M∑
r=1

αrμr,1

)
+ ζ1p̄ − 1

)

A(p̄)
(

1 − ζ1p

(
μ0,1 +

M∑
r=1

αrμr,1

)) ·

Using the inequality ‖a − b‖ ≥ a − b

∞∑
j=0

|P [L = j] −P [L1 = j]
∣∣ ≥ ∣∣P [L = 0]−P [L1 = 0]

∣∣+ ∞∑
j=1

(
P [L = j] − P [L1 = j]

)
= P [L1 = 0](1 − P [M1 = 0]) + 1 − P [L = 0] − (1 − P [L1 = 0])

= 2P [L1 = 0](1 − P [M1 = 0])

= 2
(1 − A(p̄))

(
ζ1p

(
μ0,1 +

M∑
r=1

αrμr,1

)
+ ζ1p̄ − 1

)
A(p̄)

·

This completes the proof of the inequality. �

5. Numerical results

In this section, the numerical examples are presented to study the impact of the
parameters on the mean orbit size E[N ] and mean waiting time E[W ]. Assume
that there are two additional optional services (i.e. M = 2).

5.1. Mean number of customers in orbit for various scenarios:

Let us consider the following various scenarios:

Scenario-1: α0 = 0.1, α1 = 0.8, andα2 = 0.1
Scenario-2: α0 = 0.2, α1 = 0.6, andα2 = 0.2
Scenario-3: α0 = 0.3, α1 = 0.4, andα2 = 0.3
Scenario-4: α0 = 0.4, α1 = 0.8, andα2 = 0.4.

Let retrial times follow the geometric distribution with generating function A(x) =
1−β
1−βx . Figure 1 depicts the effect of the various scenarios on mean orbit size E[N ]
versus β. Moreover, by considering the retrial time as binomial distribution with
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��

��

Figure 1. E[N ] vs. β for different scenarios (p = 0.1; ζ1 = 1.5;
μ0,1 = 1; μ1,1 = 2; μ3,1 = 3).

��Figure 2. E[N ] vs. υ1 for different retrial distributions (p = 0.1;
ζ1 = 1.5; μ0,1 = 1; μ1,1 = 2).

generating function A(x) = ((1 − β) + βx)n,and negative binomial distribution

A(x) =
(

1−β
1−βx

)n

,the effect of α0, α1, and α2 on E[N ] is analyzed. Figure 2 depicts
the effect of Scenario-2 on E[N ] versus the mean retrial time υ1 for various types
of retrial time distributions. In the case of binomial retrial time distribution and
binomial service time distribution, E[N ] is increasing if n increases for varying
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��

Figure 3. E[N ] vs. β for binomial retrial distribution with var-
ious values of n (p = 0.1; ζ1 = 2; μ0,1 = 1; μ1,1 = 2; μ3,1 = 5).

values of β. In Figure 3, we can observe the impact of n on E[N ]. From Figures 1
and 3, it is observed that

• mean number of customers in the orbit E[N ] is increased when β increases;
• mean number of customers in the orbit E[N ] is decreased when the prob-

ability of second additional optional service α2 increases.

5.2. Effect of mean batch size ζ1 on mean waiting time E[W ] and on mean number
of customers E[N ]

Figure 4 depicts the effect of mean batch size ζ1 on mean waiting time E[W ]
for the Scenario-2 by considering geometric service time for FES and two multi-
optional services. Figure 5 depicts the effect of ζ1 on mean number of customers in
the retrial group E[N ] for Scenario-2. In both the cases, it is observed that E[W ]
and E[N ] are increased as ζ1 increases for the small value of p = 0.1. Increasing
ζ1 rapidly decreases the upper bound of stability region. Increasing the value of
p yields a stability region which is almost empty for any ζ1 ≥ 1. This implies
that there is some significance impact of batch arrivals on system performance
measures.

5.3. Effect of various retrial time distributions on busy probability (1 − π0,0) and
E[W ]

In Scenario-2, Figure 6 illustrates that the busy probability (1−π0,0) is increas-
ing if mean time of retrial υ1 increases for various retrial time distributions and
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511 .	�

21 	�

521 .	�

Figure 4. E[W ] vs. β for different ζ1 with binomial service times
for FES and two multi-optional services (p = 0.1; μ0,1; μ1,1 = 2;
μ3,1 = 3).

Figure 7 illustrates the evolution of E[W ] as a function of υ1 for three different
types of retrial time distributions.

5.4. Effect of service rate μ0,1 on E[W ]

Figure 8 depicts that the effect of FES rate μ0,1 on mean waiting time E[W ].
For different values of μ0,1 (=1, 2 and 3) E[W ] is increasing as μ0,1 increases.

6. Conclusion

This paper concerns about steady state analysis of discrete time single server
batch arrival retrial queue with general retrial times, and second M-multi-optional
services. For such systems, numerical illustrations are clearly carried out to il-
lustrate the influence of various system parameters on important performance
measures. Some interesting particular cases are also discussed.
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Figure 5. E[N ] vs. β for different ζ1 with binomial service times
for FES and two multi-optional services (p = 0.1; μ0,1 = 1; μ1,1 =
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Figure 6. Busy probability (1− π0,0) vs. υ1 for different retrial
time distributions (p = 0.1; μ0,1 = 1; μ1,1 = 2; μ3,1 = 3).
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��
Figure 7. Mean waiting time E[W ] vs. υ1 for various retrial time distributions.

�� �
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Figure 8. Mean waiting time E[W ] vs. β for various μ0,1.
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