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Abstract. This paper addresses a Three-Dimensional Loading Capac-
itated Vehicle Routing Problem (3L-CVRP) which combines a three-
dimensional loading problem and vehicle routing problem in distribu-
tion logistics. The problem requires the combinatorial optimization of
a feasible loading solution and a successive routing of vehicles to sat-
isfy client demands, where all vehicles must start and terminate at
a central depot. In spite of its clear practical significance in the real
world of distribution management, 3L-CVRP in literature is very lim-
ited for its high combinatorial complexity. We solve this problem by a
hybrid approach which combines Genetic Algorithm and Tabu Search
(GATS). Genetic algorithm is developed for vehicle routing and tabu
search for three-dimensional loading, while these two algorithms are in-
tegrated for the combinatorial problem. We computationally evaluate
this hybrid genetic algorithm on all publicly available test instances,
and obtain new best solutions for several instances.

Keywords. Vehicle routing, three-dimensional loading, genetic
algorithm, tabu search.
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1. Introduction

The Three-Dimensional Loading Capacitated Vehicle Routing Problem (3L-
CVRP) is a very complex problem which combines two NP-hard problems called
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three-dimensional loading and vehicle routing. 3L-CVRP is initially introduced in
a seminal paper [16] and it requires the determination of a set of goods whose
total weight and volume cannot exceed vehicle weight capacity and loading space
respectively, a feasible placement of goods in the loading space and several routes
transported by a vehicle fleet for shipping goods to a number of clients for the
minimization of the number of vehicles and total transportation cost.

This combinatorial problem is of significant value from both practical and theo-
retical viewpoints. From the practical application, 3L-CVRP is especially relevant
for the cases that suppliers have to deal with large goods and the operations of
loading have to be considered seriously. i.e., when one is distributing soft drinks,
kitchen components, auto parts, and household appliances, the loading problem
must be taken into account. It has become increasingly popular in recent years
in the field of distribution management. Concerning theoretical importance, 3L-
CVRP is a very challenging problem for it includes two well known NP-hard opti-
mal problems: three-dimensional Loading Problem (3LP) and Capacitated Vehicle
Routing Problem (CVRP).

The 3LP is particularly related to various container loading problems. It is
constrained by the supporting surface, the fragility of goods, and the sequential
loading or unloading which are considered in the literatures [4, 11, 25, 30, 36]. The
3LP calls for the determination of a given set of three-dimensional rectangular
goods into the minimum number of three-dimensional containers (bins), while
ensuring goods are completely contained within containers. Although the 3LP is
solved by some effective heuristics and meta-heuristics in the literature [7,8,12,27],
several instances in [27,28] with less than 50 goods are still unsolved to optimality
due to their special difficult quality.

The CVRP is one of the most widely researched problems in combinatorial
optimization. It calls for determining the set of routes of minimal transportation
cost, where a set of consignments are shipped by a vehicle fleet. For each vehicle,
the total weight volume of loaded goods cannot exceed vehicle weight capacity
while the specific loading is not considered. Its thorough review is in the classical
volume [34]. Different effective solution methods are introduced for CVRP: i.e.,
an exact algorithm combining branch-and-cut and branch-and-price is presented
in [15], some other meta-heuristics are proposed in [5, 6, 31, 35].

To the best of our knowledge, loading and routing problems have been studied
widely but independently. Only few papers concern the combined optimization of
vehicle routing and three dimensional loading problems. More precisely, these com-
binatorial problems are almost motivated for the practical cases. For example, a
seminal paper [16] is exploded especially by a difficult loading problem with differ-
ent shaped goods of high risk and the cost of being damaged during transportation;
the paper [9] is studied for the delivery of timber chipboards, where Tabu Search
(TS) and an Ant Colony Optimization (ACO) are presented to solve the problem;
authors in [14] are capable of dealing with large-size instances, they introduce a
meta-heuristics for 3L-CVRP to provide high quality solutions with reasonable
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computational effort. A systematic survey of this field is presented recently in [21],
which can be useful both to practitioners and academic researchers.

The 3L-CVRP generalizes another loading and routing problem known as the
Two-dimensional Loading Capacitated Vehicle Routing Problem, denoted as 2L-
CVRP. In 2L-CVRP, each vehicle has a two-dimensional rectangular space, goods
with a two-dimensional rectangular space for being loaded to vehicles. The aim of
2L-CVRP is to optimize the distribution cost of the given goods which cannot be
stacked one over the other. The 2L-CVRP proposed initially in [19, 20] is solved
by exact and meta-heuristic algorithms. Subsequently it is improved by several
methods such as the branch-and-cut algorithm [22], tabu search heuristics [17],
GRASP × ELS approach [10], memetic algorithm [24], hybrid meta-heuristics [33],
and ACO [13], respectively.

In this paper we propose a hybrid approach based on the Genetic Algorithm and
Tabu Search (GATS) for 3L-CVRP. It is motivated by the excellent results pro-
duced from both the classical routing problem [2], where the competitive solution
time and quality is obtained by genetic algorithm (GA), which owns some efficient
features to be depicted in the third section, and three-dimensional loading [16],
in which a feasible loading pattern can easily be obtained and the computational
time can be rapidly reduced by tabu search (TS) and two types of loading heuris-
tics possessing some strengths. Our aim is to generate high quality solutions with
reasonable computational effort, therefore developing a hybrid genetic algorithm
being able to solve large-size cases and being probably useful for real world deliv-
ery. We deal with this problem by carefully merging and tailoring techniques from
the literature to the problem.

The main contribution of this paper is twofold. Firstly, using the hybrid genetic
algorithm, we produce very good results on all publicly available test instances
improving the best previous approaches on average by 0.82%, and in some cases
even by more than 9%. Secondly, we show that these solutions can be found very
fast by GATS, the average of computational times being in less than 60 s. This
is in contrast to the current results in the literature where computation time is
slower.

The remainder of this paper is outlined as follows: a more specific description of
3L-CVRP, its loading constraints and problem model, and an example are given
in Section 2. A hybrid genetic algorithm is presented in Section 3. In Section 4
computational results are proposed and analyzed. Some conclusions are drawn in
the final section.

2. Problem description

2.1. Problem statement

Let A = (B, C) be a complete graph, where B = {0, 1, . . . , n} is a set of n + 1
vertices corresponding to a depot (vertex 0) and n clients (vertices 1, . . . , n), and
C a complete set of edges connecting each vertex pair (i, j) (i, j = 0, 1, . . . , n).
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Each edge has an associated routing cost cij . Given a fleet of v(p = 1, . . . , v)
identical vehicles, each of which has a weight capacity D and a three-dimensional
rectangular loading space S addressed by width W , height H , and length L. Denote
by S = W · H · L the available rectangular loading space. Supposed each vehicle
has an opening as large as the vehicle (W · H) on the rear for the loading and
unloading operations. Each customer i (i = 1, . . . , n) requires a set of mi three-
dimensional items Iik(i = 1, . . . , n, k = 1, . . . , mi) having width wik, height hik,
and length lik, whose total weight is di. Let si =

∑mi

i=1 wikhiklik denote the total
amount of loading space needed by customer i. The notation is based on [14].

The 3L-CVRP calls for the determination of a set of at most v routes en-
tirely starting and ending at the depot, a feasible three-dimensional loading and
the minimization of the total cost, given that there exists a placement of goods in
the volume that satisfies 3L-CVRP constraints deriving from the nature of goods,
the stability of goods, and other practical transportation regulations, which are
presented as follows:

– Visiting rule: all items of each client only can be distributed once, hence split
deliveries are not allowed.

– Containing request: all goods are completely contained in vehicles, no parts of
goods outside of vehicles.

– Fragile requirement: goods are divided into two types: fragile and non-fragile. If
Iik is fragile, a fragility flag fik is equal to 1, and 0 otherwise (i = 1, . . . , n, k =
1, . . . , mi). Fragile and non-fragile goods can be stacked on top of each other
respectively, however non-fragile items cannot be placed on top of fragile ones.

– Loading constraint: the loading must be orthogonal. Goods usually have a fixed
top with respect to the height in transportation. Goods can only be rotated by
90◦ on the horizontal plane.

– Sequential loading policy: last-in-first-out policy introduced in [14,22] is a com-
mon request in the loading and delivering environments. It is denoted in the
following as a sequential loading constraint. When visiting a client, all his goods
must be unloaded without moving goods of clients visited later through a se-
quence of straight shifts parallel to the L-edge along the route. That is to say,
no goods required by the successive clients can be placed between Iik and the
rear of vehicle or on top of Iik.

– Up-down unloading limitation: if item i is on top of item j (the top of item
j is under the bottom of item i, but does not necessarily touches it), item j
cannot be unloaded before the unloading of item i, and the items which are on
top item i.

– Supporting area constraint: when item Iik is placed on top of other goods,
its base should be supported by a minimum supporting area. In other words,
the goods placed under Iik, must form a cumulative area Ā ≥ λwik lik, where
0 ≤ λ ≤ 1 is a given parameter which represents a minimum fraction of area of
Iik to be supported. Obviously, if an item is placed on the base of the vehicle
directly, the supporting area constraint will be always satisfied.
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Figure 1. A simple 3L-CVRP example.

The goal of 3L-CVRP is twofold. First, it minimizes the number of usage of vehicles
and the total transportation cost of routes. Secondly, it addresses a feasible loading
stack in the first place. Hence, the 3L-CVRP model can be divided into two groups,
one for VRP and the other for 3LP. The objective function and constraints of VRP
model are mathematically formulated as shown in [1, 14, 23, 32, 33, 37].

2.2. Problem example

For the sake of good understanding of 3L-CVRP and its constraints, see, for
example, Figure 1, where nine clients demand for a total of 17 weighted goods, to
be delivered through vehicles based at a central depot. Fragile goods are depicted
in grey color. The total volume of goods loaded in the vehicle does not exceed the
vehicle weight D = 20. A possible solution formed by three routes is proposed.

In Figure 2, feasible three-dimensional loadings corresponding to the routes of
Figure 1 are shown: no split delivery happens; all goods are completely contained
in vehicles; no non-fragile item is placed on top of fragile goods; the loading is
orthogonal; each item base is supported, partially or completely, by the surface of
vehicles or other goods (see the loading of goods I11 and I32 of route 1, I72 and I91

of route 3 in Fig. 2); all items can be unloaded without moving items of the clients
visited later. For instance, recalling the loading of route 2, all goods of client 4
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Figure 2. Feasible three-dimensional loadings for the routes of Figure 1.

can be unloaded without shifting goods from client 5 or 6, after distributing the
goods of client 4, the goods of client 5 can be unloaded without moving any goods
of client 6.

In the version of 3L-CVRP, when removing some of the constraints described
above, some different loading and routing problems representing different practical
problems in transportation will be obtained. It is also of interest to estimate the
solution difference between one loading structure and another for understanding
the cost implications of different constraints. We will analyze and estimate these
different influences in Section 4.

3. A Hybrid genetic algorithm

To our best knowledge, both the capacity vehicle routing problem and the three-
dimensional problem are NP-hard problems, and the combinatorial problem 3L-
CVRP is clearly also the case. Therefore, we prefer to employ heuristic and meta-
heuristic methods instead of an exact algorithm to solve this combinatorial problem
within reasonable time. A number of initial feasible solutions for 3L-CVRP are
initially generated by Sweep Approach (SA) [18], which are optimized by a genetic
algorithm (GA). We then solve the loading sub-problem using TS method. In
Section 3.1 GA is set up to construct the solutions of VRP. In Section 3.2 TS
is proposed to find a feasible solution of 3LP. In Section 3.3 a hybrid genetic
algorithm is presented to solve 3L-CVRP, its procedure is introduced in detailed.

3.1. GA for vehicle routing

At the start of the process of GA for VRP, we produce an initial population
of structured solutions using SA proposed by [3, 26, 29]. Four stages are executed
in SA. First, the consignments around the depot are numbered and sorted clock-
wise. Second, the vehicles are numbered and each of them is required to serve the
consecutive customers from a randomly-selected customer base until a constraint
violation occurs. Third, a given number of initial solutions are constructed to build
a population, each of which is calculated through the routing distances and related
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Table 1. The solution depiction of Figure 1.

Customer 1 2 3 4 5 6 7 8 9
Solution 1 1 1 2 2 2 3 3 3

Table 2. The application of 2-point crossover of the parents.

Customer 1 2 3 4 5 6 7 8 9
Parent 1 1 1 3 2 1 2 3 2 3
Parent 2 1 3 2 1 3 1 2 2 3

Table 3. The result of 2-point crossover for the offspring.

Customer 1 2 3 4 5 6 7 8 9
Offspring 1 1 1 3 2 3 1 2 2 3
Offspring 2 1 3 2 1 1 2 3 2 3

to a fitness value of GA. Fourth, for the sake of crossover of GA, the route of each
solution of VRP is described as a line which is marked with the decimal number
of vehicle. For example, the solution of Figure 1 is depicted as follows:

In Table 1, customers 1, 2, 3 are marked with vehicle 1, customers 4, 5, 6 with
vehicle 2, customers 7, 8, 9 with vehicle 3. The chromosome of solution is depicted
as line 1-1-1-2-2-2-3-3-3 according to the sequence number of customers.

The structured solutions of initial population will be optimized by a reproduc-
tive process and a replacement scheme of GA. In the reproductive process, two
parent solutions in the population are chosen by roulette method [2], which is em-
ployed to generate offspring with a standard 2-point crossover procedure. These
2-points in the chromosome are selected randomly, see Table 2. Crossover points are
generated randomly between customers 4 and 5, and between customers 8 and 9.
Columns depicted as lines are inserted in the corresponding locations in Table 2
and are divided into two sectors. An application of 2-point crossover yields the fol-
lowing offspring, each having the vehicle allocations from parent 1 with one sector
and from parent 2 within the other sector in Table 3.

Customers 1, 2, 5 are served by a same vehicle in Table 2, while customer 5 is
replaced by customer 6 in Table 3. The former route for customers 1, 2, 5 is broken,
and a new route must be set up for customers 1, 2, 6. In this paper, we make use
of TS (readers can refer [16] for a detailed description) to find loadings of solution
of each offspring. If offspring duplicate existing members of the population, it will
be removed. If offspring have worse fitness than their parents, it will be deleted. If
offspring violate volume and/or capacity constraints, it will be removed. If offspring
have better gene values than their parents, they will be selected to stay in the
population. In each step of iterative process of this algorithm, a simple mutation
of chromosomes is applied in the population for the improvement of solutions.
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Figure 3. A process of GA for VRP.

In the replacement scheme, we give a size of population and keep it constant.
When an eligible offspring enters the population of GA, the fitness of the whole
members in the population will be calculated and ranked again. The member with
the worst fitness will be replaced by an eligible offspring. With this replacement
method feasible solutions will evolve and save computational time of algorithm.
The procedure will continue until the terminal criterion is satisfied. Figure 3 shows
a process of GA for VRP.
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3.2. TS for three-dimensional loading

In the TS algorithm, items I(k) to be loaded in the same vehicle k are sequenced
in reversed order of visit considering loading constraints. Non-fragile items pre-
cede fragile items to ensure the former’s top surface can be employed for carrying
subsequent items of any fragility status. For example, Figure 1, where the load-
ing sequence is {I31, I33, I32, I21, I22, I11, I12} for vehicle 1, I62, I61, I51, I52, I41 for
vehicle 2, and I92, I91, I81, I71, I72 for vehicle 3. Given such a sequence, front-left-
bottom and touching-area heuristics are executed respectively to find a feasible
loading solution that minimizes the used space or maximizes the number of items
to be loaded into vehicles. In this subsection, our aim is to use a loading space of
maximum width W , maximum height H , and minimum length LL.

Front-Left-Bottom heuristics for three-dimensional loading problem
(FLB3L) [3] focuses on those positions where the bottom surface of item
to be loaded (resp. left, resp. front) touches either the bottom of the vehicle
container or the top of an already loaded item. FLB3L scans the normal positions
according to our aim and considers two feasible orientations on the W -L plane.
FLB3L chooses the first feasible loading as soon as it satisfies all packing
constraints. Touching-Area heuristics for three-dimensional loading problem
(TA3L) [26] concerns the positions in which an item to be loaded maximizes
the percentage of the item surface touching the vehicle container and other
items already packed. TA3L selects the position with the highest percentage.
Each procedure of these two heuristics is iterated until all items are placed
into vehicles or one of other stopping criteria is reached and the best loading
solution is obtained. The stopping criteria say that a prefixed maximum number
of generations is reached and the algorithmic convergence has been achieved.

If the minimum length LL is less than L for each vehicle, namely LL ≤ L,
a feasible loading is found and the algorithm terminates. If one vehicle cannot
contain its items, namely LL > L, TS chooses a better loading solution obtained
by the two loading heuristics and attempts to update this incumbent solution.
For the vehicles where items cannot be fully loaded, items are divided into two
types. Items u loaded entirely within the vehicle are defined as type T1, u ∈ T1.
Items v having a portion outside the vehicle are as type T2, v ∈ T2. TS uses
two tabu lists for these two types of items, The value of the tabu list length
is experimentally determined as the minimum between 10 and half the number
of goods to be loaded. TS will substitute a different pair (u, v) to execute all
possible shifts for investigating the neighborhood thoroughly only if it improves
the incumbent solution. The improvement is evaluated by a score M(u, v), where
M(u, v) = S(u, v) + (σ(u) + σ(v))L. S(u, v) is the solution value of VRP after u
and v are exchanged. σ(u) and σ(v) is respectively the rate of the number of times
items u and v having been selected for exchanging in the previous movement of the
number of exchanges executed. L is the length of vehicle container. We calculate
the score M(u, v) of each pair (u, v) and choose the best score for the improvement
of loading problem. TS does not permit the exchange (u, v) until it has executed
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Figure 4. A process of TS for 3LP.

a prefixed number of iterations. TS will terminate as soon as a feasible loading
is found or when the algorithm has finished a prefixed number of iterations. A
procedure of TS is shown in Figure 4.

3.3. A Hybrid approach for 3L-CVRP

In this subsection, we integrate GA and TS to be a hybrid approach for 3L-
CVRP. First we apply SA to generate some initial solutions for VRP. Subsequently
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we employ GA to optimize the solutions of VRP and rank the solutions of a given
number in the population. Third we make use of FLB3L and TA3L (FT) to address
3LP. If a feasible loading of the 3LP is found by the two loading heuristics, the
process of the hybrid algorithm will terminate. Otherwise, 3LP is optimized by TS.
In the TS algorithm, items are divided into two types and exchanged with each
other to improve the rate of space usage of vehicles. If a feasible loading solution
is generated by TS, the hybrid algorithm terminates. Otherwise, the procedure is
repeated for the successive top solution of VRP until a feasible solution is found.
A pseudocode of the hybrid approach for 3L-CVRP is described in Table 4, while
in the next two paragraphs some procedures of the hybrid approach are explained.

In Table 4, four different types of algorithms are integrated for 3L-CVRP,
namely SA, GA, FT and TS. Two main processes are produced to solve vehi-
cle routing sub-problem and three-dimensional loading sub-problem respectively.
These four algorithms will be integrated since no feasible solution of 3L-CVRP is
found in a whole procedure.

Some steps probably confusing readers during the process are explained as fol-
lows. The first point is step 13, we list the whole solutions of VRP for the choice
of finding a feasible loading solution in sequence. The second one is step 19, the
number of iterations is given, if TS cannot find a feasible loading solution on a top
solution of VRP, the algorithm will halt and test the successive top solution. At
last, the process will stop when either the number of generations reaches 1000 or
the number of continuous iteration of non-improvement reaches 100.

4. Computational results

The Hybrid Approach is coded in C# and compiled with windows XP com-
piler. The algorithm is tested by computational experiments on a Pentium IV
with 2.3 GHz and 1 GB of RAM, running under a windows operative system. It is
tested on the set of instances proposed in [16], which can be downloaded from
http://www.or.deis.unibo.it/research.html. These instances are the only
3L-CVRP instances available on the web. They provide an interesting test bed
since heuristic solutions are available for comparison. In the instances, the graphs,
the weight demanded by clients and the vehicle weight capacities are taken from
27 Euclidean CVRP instances (see [34] for a detailed description of CVRP test bed
instances). The arc costs are determined as the Euclidean distances between client
coordinates. The loading volume has dimensions W = 25, H = 30, and L = 60.
For each client the number of requested goods is randomly generated according to
a uniform distribution between 1 and 3. Each item dimension is randomly gener-
ated according to a uniform distribution in the interval between 20% and 60% of
the corresponding vehicle dimension. The minimum supporting area is set equal
to 0.75. For presenting the advantage of this hybrid approach, we compare its so-
lutions with TS [16], GTS [33], ACO [14], and HBMO [32]. The parameters setting
for the GATS are given in Table 5, where the ones of TS are tested in [16,17,29,38],
and the ones of GA are examined in [2].

http://www.or.deis.unibo.it/research.html
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Table 4. A pseudocode of the hybrid approach for 3L-CVRP.

SA-GA for CVRP, FT-TS for 3LP

01. Using SA to generate an initial population of structured solutions

02. Evaluate fitness value for each individual in the population

03. Select two parents in the population with roulette method

04. Produce two offspring by crossovering the parents

05. Mutate offspring

06. Evaluate fitness of offspring

07. Rank the member of the population

08. Remove the worst solution from the population

09. Keep the size of population constant

10. If the stopping criteria of GA are satisfied

11. Go to step 15

12. Else

13. Go to step 03

14. Endif

15. List the top solutions of GA (LT S)

16. Do i=1:LT S

17. Load the items with F LB3L and T A3L respectively.

18. If a feasible loading solution is obtained

19. Go to step 35

20. Else

21. Do ii = 1 : NI %NI: the number of iterations

22. Employ two tabu lists for two types of items

23. Calculate the improvement of M (u, v) for each pair

24. Choose the best improvement and exchange the items pair (i, j)

25. If a feasible loading solution is obtained

26. Go to step 35

27. Else

28. go to step 21

29. Endif

30. Enddo

31. Endif

32. Enddo

33. If no feasible solution for 3L-CVRP is found

34. Go to step 1 and repeat the procedure until the solution of 3L-CVRP is found

35. Return the best solution found for 3L-CVRP

Table 5. The parameters of GA and TS.

GA TS
Parameter Description Value Parameter Description Value

α Iterations 1000 γ Neighbor size Min{n/4, 20}
β Popular size 100 μ Tabu list tenure Min{n/10, 15}
λ Crossover 0.75 τ Tentative value 1, c, 2c
θ Mutation 0.05 π Average edge cost
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In Table 6, the first four columns report the index I of instances, the number
of clients n, the total number of goods M (M =

∑n
i=1 mi), and the number

of vehicles employed. The next four columns report the solutions obtained by
TS [16], GTS [33], ACO [14], and HBMO [32], respectively. The hybrid algorithm
in this paper is run 10 times. For the GATS we report the average total travel
costs uavg, the computational time generating best solution of the instances secu,
and the total running time for the solution sectot. Since the solutions found by
TS in [16] is the first and standard results based on all publicly available test
instances, we mainly compare GATS with the other four algorithms and give
their gaps, evaluated as %gG-T = 100((uavg − x)/x, %gG-G = 100((uavg − y)/y,
%gG-A = 100((uavg − zavg)/zavg, and %gG-H = 100((uavg − c)/c. For each column
the row AVG presents the average values on the 27 instances. Each vehicle satisfies
the standard 3L-CVRP requirements of the loading constraints: fragile constraint,
sequential loading, a minimum supporting of 75% of each goods base and rotation
allowed only on the base.

In Table 6, in terms of solution quality the GATS meta-heuristics is clearly
superior to the TS. In all the cases, the average of the solutions found by GATS
is 8.14% better than the one found by the TS. Secondly, we find that the per-
formance of GATS is 3.99% better than the performance of GTS, for the whole
instances except for E023-03s, E031-09h, E036-11h, E041-14h, E076-14s, E101-
08e, and E101-14s. We thirdly note that the GATS results in a 0.95% solution
improvement compared with the ACO algorithm, 16 instances within the 27 can
produce better solutions. Fourthly, we find that performance of GATS is 0.82%
better than the performance of HBMO, which produced the best current solutions
in literature. Finally, we focus on the computational times executed by GATS. We
yield a very largely averaged reduction of computational times of GATS compared
with the other four algorithms, reaching 97.40%, 97.78%, 96.93%, and 92.89%,
respectively.

In Table 7, we execute the GATS approach to evaluate the effect of each load-
ing constraint imposed by the problem on the total costs. In particular, we run
our algorithm with four different loading constraint configurations, including the
fragility, LIFO, and supporting area constraints. For the sake of simple compari-
son, we only give the average value of solutions generated by the algorithms. The
first column reports the different loading constraints for the different algorithms,
while the second to sixth columns report the solution under four different loading
constraints. The seventh column reports the gaps between four different loading
conditions of GATS, where %gGATS = 100(ui − uavg)/uavg, ui(i = 2, 3, 4, 5) is the
solution value of the i th row generated by GATS. The last column reports the gaps
between these five different algorithms, where %dG-T = 100(uavg−x)/x, %dG-G =
100(uavg − y)/y, %dG-A = 100(uavg − zavg)/zavg, %dG-H = 100(uavg − c)/c. The
first row shows the solutions of all constraints of TS, GTS, ACO, HBMO, GATS
and two types of gaps, the second row to the fourth one does not consider the
fragility, LIFO, and support area respectively. For the last figuration all three
aforementioned constraints are ignored.
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We firstly focus on the percentage difference %gGATS, the gaps between all con-
straints and the other four constraints in Table 7. If we remove the LIFO constraint
and supporting area constraint, the algorithm will lead to the larger reduction of
4.82% and 4.64%. While removing the fragility constraint can just find a weak re-
duction of 1.95% in the solution value. When we remove all three constraints, the
hybrid approach will obtain an overall average solution value reduction of 11.30%
which is by far better improvement than three others. Secondly, we concern the dif-
ferences %dG-T , %dG-G, %dG-A, and %dG-H between the average solutions found
by TS, GTS, ACO, HBMO and GATS under different loading configurations. We
find that when considering the whole constraints, the gaps among these three al-
gorithms are the largest at 8.14%, 3.99%, 0.95%, and 0.28%. While relaxing some
constraints, the gap will be reduced. We note that the smallest gaps between GATS
and TS, GATS and GTS are 2.82% and 1.64% when the supporting area constraint
is ignored, the smallest gap between GATS and ACO is 0.54% when we relax the
LIFO constraint.

We finally test tabu search and two types of loading heuristics on the three-
dimensional loading instances independently, and compare the results with the
recent literature, such as [7,8]. We find tabu search integrating FLB3L and TA3L

in this paper cannot produce better solutions than the results generated by [7, 8]
due to the lack of application of the Interval Graph representation of the packing
and the size enlargement of the associated neighborhoods.

5. Conclusions and future researches

The problem in this paper combines three-dimensional loading problem and
capacitated vehicle routing problem which both are NP-hard problems. Although
the practical relevance is evident, we only can find very few papers devoted to the
combination of loading and routing due to its sophisticated characteristics. There
is no exact algorithm presented for this combinatorial problem, so it is difficult to
achieve the optimality for the reasonably sized problems. A very good performance
of GATS approach is presented with publicly available test instances comparing
to recent TS, GTS, ACO, and HBMO meta-heuristics. We are able to improve the
total routing cost on average by 0.82% comparing with the best current solutions.

Since 3L-CVRP can open new possibilities of solving real life problems in trans-
portation logistics, it is valuable to study this field continuously. In our opinion,
the future research benefit is threefold. Firstly, the performance of the hybrid ap-
proach for 3L-CVRP can be further improved possibly when considering different
objective functions reflecting practical requirements. Secondly, 3L-CVRP can be
extensively studied, where its formulation is extended to cover more operational
constraints such as heterogeneous fleet of vehicles, pickup and delivery, time win-
dows and the center of gravity of the load. Thirdly, it is also possible to integrate
the model and method with location issues.
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Appendix

(The routes of 27 instances: RI)

RI 1: 0-7-8-1-11-5-0|| 0-12-4-13-14-0|| 0-3-2-9-10-15-0||0-6-0||
RI 2: 0-12-4-15-10-0|| 0-2-3-1-0||0-8-7-0|| 0-11-9-5-0|| 0-14-6-0||
RI 3: 0-12-18-16-13-14-17-0|| 0-1-6-19-11-20-5-7-0|| 0-2-9-8-0|| 0-3-15-4-0||
RI 4: 0-8-7-5-0|| 0-14-13-4-9-0|| 0-10-19-11-6-0|| 0-12-18-16-17-0|| 0-15-3-0|| 0-2-

1-0||
RI 5: 0-1-2-5-7-9-10-0|| 0-15-12-14-16-17-0|| 0-18-20-21-19-0|| 0-11-8-6-3-4-13-0||
RI 6: 0-9-7-5-6-8-0|| 0-12-15-18-14-0|| 0-3-4-11-0|| 0-17-20-21-0|| 0-13-16-0|| 0-1-

2-10-0||
RI 7: 0-6-1-2-3-16-15-14-21-0|| 0-10-13-18-0|| 0-4-5-8-7-9-0|| 0-19-20-22-17-0|| 0-

11-12-0||
RI 8: 0-6-1-2-3-16-15-14-17-0|| 0-5-4-8-7-0|| 0-9-13-11-12-18-0|| 0-19-20-22-21-0||

0-10-0||
RI 9: 0-6-14-1-23-2-0|| 0-16-13-7-17-0|| 0-9-8-11-21-0|| 0-5-20-0|| 0-18-24-22-0|| 0-

10-12-0|| 0-19-15-0|| 0-3-0||
RI 10: 0-25-29-24-1-4-3-0|| 0-26-28-27-6-5-0|| 0-8-14-9-17-12-0|| 0-16-13-15-10-11-

7-0|| 0-19-20-22-2-18-0|| 0-21-23-0||
RI 11: 0-15-16-13-7-17-0|| 0-8-14-9-12-11-21-0|| 0-1-24-25-29-6-4-3-0||0-22-20-19-

18-23-0|| 0-26-28-27-5-2-10-0||
RI 12: 0-14-19-8-0|| 0-10-11-0|| 0-22-28-2-0|| 0-29-5-15-20-0|| 0-4-30-13-0|| 0-6-17-

12-3-0|| 0-9-25-18-23-0|| 0-26-7-27-0|| 0-16-1-21-0||
RI 13: 0-3-20-25-19-23-21-8-9-10-0|| 0-5-11-12-7 -6-0||0-13-32-17-1-4-31-0||0-18-26-

27-28-2-30-29-0|| 0-15-24-14-22-16-0||
RI 14: 0-18-19-21-20-22-24-0|| 0-4-3-2-12-5-31-0|| 0-28-27-26-25-17-0|| 0-30-14-15-

1-13-11-0|| 0-10-8-9-7-0|| 0-6-32-23-16-29-0||
RI 15: 0-29-28-27-26-25-0|| 0-21-20-22-19-18 -17-14-1-0|| 0-8-9-10-32-6-7-12-3-0||0-

23-24 -15-13-0|| 0-4-5-11-2-0|| 0-16-30-31-0||
RI 16: 0-29-5-15-20-0|| 0-33-1-22-23-0|| 0-10-31-25-0|| 0-7-35-8-34-0|| 0-13-27-4-0||

0-26-12-17-3-0|| 0-18-24-16-0|| 0-11-19-0|| 0-21-28-0|| 0-30-2-0|| 0-9-32-0||
RI 17: 0-16-33-23-0|| 0-8-35-7-26-0||0-28-21 -0||0-27-13-15-5-0|| 0-6-2-29-0|| -3-32-

39-0|| 0-38-10-0|| 0-31-9-0|| 0-4-34-0|| 0-22-1-30-0|| 0-12-40-0|| 0-18-25-24-0||
0-20-37-36-0|| 0-14-19-0||

RI 18: 0-5-6-7-35-3-4-34-32-0|| 0-28-33-31-41-44-0|| 0-21-20-24-9-15-1-0|| 0-12-14-
13-16-25-0|| 0-30-39-40-42-36-38-37-2-0||0-23-22-26-19-8-0||0-11-18-17-10-
0||0-27-29-43-0||

RI 19: 0-17-37-15-44-42-41-13-0|| 0-12-47-4-18-14 -25-46-0||0-40-19-45-33-10-39-
38-0|| 0-5-49-9-50-16-2-29-0|| 0-36-35-20-3-28-31 -48-0||0-8-26-7-23-24-43-
0||0-30-34-21-11-22-0||0-1-32-27-6-0||
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RI 20: 0-52-45-53-46-49-0|| 0-9-7-4-8-3-5-71-0|| 0-13-12-16-17-2-15-19-11-59-0||0-
58-61-60-62-63-64-66-54-0||0-65-67-68-39-57-25-0||0-44-42-43-48-47-50-70-
0||0-28-22-21-30-29-20-0||0-10-6-18-1-33-0||0-32-31-34-36-41-0||0-14-35-55-
0||0-24-26-23-27-0||0-38-37-69-40-51-0||0-56-0||

RI 21: 0-55-25-50-18-24-49-16-3-0|| 0-56-23-63-33 -73-62-28-22-1-0||0-70-60-71-36-
47-21-74-30-4-0||0-72-39-9-32-44-40-12-0||0-51-6-68-75-67-34-52-57-0||0-64-
42-41-43-2-48-0||0-20-37-5-29-45-13-0||0-38-65-11-66-59-14-0||0-46-8-35-7-
0||0-31-10-58-26-0||0-53-19-54-15-0||0-61-69-27-17-0||

RI 22: 0-13-27-52-34-46-8-35-14-54-0|| 0-17-51-6-68 -75-4-67-0||0-43-41-42-64-22-
0||0-71-60-70-37-47-21-29-0||0-61-28-62-73-33-63-16-0||0-44-3-32-9-39-40-
0||0-19-53-11-65-38-10-0||0-69-36-5-48-74-2-0||0-25-50-18-24-49-23-0||0-57-
15-20-7-0||0-1-56-30-45-0||0-12-26-58-72-0||0-59-66-31-55-0||

RI 23: 0-39-9-32-44-3-16-63-0|| 0-12-40-17-51-6-75 -0||0-49-24-18-50-25-55-72-65-
0||0-15-57-13-27-29-5-36-0||0-43-41-42-64-22-62-73-2-0||0-70-60-71-69-21-
47-48-54-0||0-67-34-46-8-35-7-58-0||0-23-56-1-33-68-30-0||0-10-38-11-66-19-
0||0-53-14-59-52-45-0||0-61-28-74-4-0||0-20-37-26-0||0-31-0||

RI 24: 0-53-14-19-8-13-0|| 0-71-60-70-20-37-5-69-0|| 0-25-50-18-24-49-1-0||0-43-41-
42-64-22-73-23-0||0-10-58-72-39-9-0||0-36-47-21-74-28-0||0-32-44-3-16-63-
51-0||0-26-67-34-46-0||0-4-75-68-6-17-0||0-2-30-48-29-27-0||0-52-45-15-57-
54-12-0||0-7-35-11-65-38-0||0-59-66-31-55-0||0-33-62-61-56-0||0-40-0||

RI 25 : 0-42-87-97-95-94-6-96-0|| 0-77-3-79-33-81 -9-51-20-70-31-0||0-98-37-92-
59-99-93-85-61-5-89-0||0-55-25-39-56-75-74-22-0||0-36-47-48-82-7-8-11-0||0-
44-14-100-91-16-0||0-67-23-41-73-21-72-4-54-0||0-18-60-83-84-17-86-0||0-
63-90-32-10-62-0||0-38-43-15-57-2-58-40-0||0-28-27-69-1-50-0||0-80-68-12-
26-53-13-0||0-29-24-76-78-34-35-71-19-0||0-45-46-49-64-0||0-30-66-65-52-
0||0-88-0||

RI 26: 0-73-70-71-76-78-81-63-0|| 0-44-45-46-48-51 -52-43-0||0-24-25-27-26-23-
6-12-0||0-32-33-34-36-39-38-37-0||0-97-93-92-94-95-96-99-98-4-0||0-89-88-
85-84-83-68-0||0-86-87-90-91-75-1-5-0||0-82-79-77-80-72-66-0||0-7-3-8-9-15-
0||0-40-41-42-49-0||0-22-21-20-28-0||0-18-17-13-19-16-14-29-0||0-56-58-60-
54-0||0-50-47-69-62-55-0||0-67-65-74-61-64-0||0-59-57-53-31-35-0||0-11-10-
2-30-0||0-100-0||

RI 27: 0-35-71-9-81-33-79-51-0|| 0-92-59-99-96-94-6 -89-18-24-0||0-93-85-91-100-
37-98-0||0-82-48-47-36-46-8-45-0||0-15-43-42-87-97-95-27-0||0-14-44-16-61-
5-84-7-0||0-21-73-72-74-22-75-56-25-0||0-65-66-20-30-70-31-0||0-57-2-58-40-
0||0-60-83-17-86-38-53-0||0-3-77-76-50-1-28-0||0-80-68-26-0||0-13-52-88-62-
10-63-0||0-41-23-39-4-34-0||0-11-19-49-64-90-32-0||0-54-55-12-0||0-69-78-
29-67-0||
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