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TANGENCY PORTFOLIOS IN THE LP SOLVABLE
PORTFOLIO SELECTION MODELS
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Abstract. A risk measure in a portfolio selection problem is linear
programming (LP) solvable, if it has a linear formulation when the
asset returns are represented by discrete random variables, i.e., they
are defined by their realizations under specified scenarios. The efficient
frontier corresponding to an LP solvable model is a piecewise linear
curve. In this paper we describe a method which realizes and produces
a tangency portfolio as a by-product during the procedure of tracing
out of the efficient frontier of risky assets in an LP solvable model,
when our portfolio contains some risky assets and a riskless asset, using
nonsmooth optimization methods. We show that the test of finding
the tangency portfolio can be limited only for two portfolios. Also, we
describe that how this method can be employed to trace out the efficient
frontier corresponding to a portfolio selection problem in the presence
of a riskless asset.

Keywords. Linear programming, LP solvable portfolio selection mod-
els, subgradient, tangency portfolio, Aneja-Nair method.
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1. Introduction

In the original mean-risk Markowitz’s portfolio selection problem [8], the risk is
measured by the variance, which leads the problem to a quadratic programing
optimization problem. After that, some alternative risk measures have been

Received February 6, 2012. Accepted May 22, 2012.

1 College of Mathematical Sciences, Isfahan University of Technology, 84156-83111 Isfahan,
Iran. r.keykhaei@math.iut.ac.ir; jahandid@cc.iut.ac.ir

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2012

http://dx.doi.org/10.1051/ro/2012012
http://www.rairo-ro.org
http://www.edpsciences.org


150 R. KEYKHAEI AND M.T. JAHANDIDEH

considered to represent the portfolio selection problem as a linear programming op-
timization problem. A risk measure is linear programming (LP) solvable, if it has a
linear formulation when the asset returns are represented by discrete random vari-
ables, i.e., they are defined by their realizations under specified scenarios. Konno
and Yamazaki [5] presented their LP solvable optimization model using mean ab-
solute deviation as the measure of risk, which is an l1 risk function. Young [14]
introduced a minimax LP solvable portfolio selection model based on risk defined
by the worst case scenario. Teo and Yang [11] and Cai et al. [3] presented their
minimax portfolio selection models by bi-criteria linear programming problems
using l∞ risk functions. Also, we can refer to LP solvable models considered by
Yitzhaki [13] and Rockafellar and Uryasev [9]. Mansini et al. [7] investigated a
systematic properties and computational comparison for LP solvable models.

Tütüncü [12] introduced a simple modification of Markowitz’s critical line
method which is commonly used for generating the mean-variance efficient frontier
to determine the tangency portfolio which maximizes the ratio (ρ− rf)/σ between
all feasible portfolios, where ρ and σ denote the mean and the standard deviation
of the return of a feasible portfolio and rf is the return of the riskless asset. Indeed
he has shown how this modification can be used to produce the tangency portfolio
as a by-product during the procedure of tracing out of the efficient frontier of risky
assets.

In the spirit of Tütüncü’s work, we suggest an approach which determines the
location of a tangency portfolio for mean-risk LP solvable portfolio selection prob-
lems. Also, the tangency portfolio can be obtained as a by-product in the proce-
dure of generating the efficient frontier of risky assets. Indeed, by this method, it is
enough to realize a tangency portfolio between two efficient portfolios, but not all
of them, which can be useful in large-scale portfolio selection problems. Moreover,
we show that how this method can be employed to trace out the efficient frontier
corresponding to a portfolio selection problem in the presence of a riskless asset
without involving the free asset in the problem directly.

The organization of the paper is as follows. In Section 2, a portfolio selection
problem is formulated as a LP solvable problem. In Section 3, we study some prop-
erty of a tangency portfolio employing nonsmooth optimization tools. In Section 4,
we describe how we can produce a tangency portfolio as a by-product during the
procedure of tracing out the efficient frontier of risky assets using a standard bi-
criteria linear programming optimization method. A numerical example is given
in Section 5.

2. LP solvable models

Consider a portfolio consists of n ≥ 2 risky assets with the random returns
r1, . . . , rn and the mean vector r̄ = (r̄1, . . . , r̄n)′. We denote each portfolio by
the vector of asset weights x = (x1, . . . , xn)′ ∈ R

n, where each xi is the weight
allocated to the ith asset. Here μ(x) = r̄′x and ϕ(x) denote the mean of return
and the risk associated to the portfolio, respectively. We consider the following LP
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solvable portfolio selection problem corresponding to a desired expected return ρ:

min
x

{ϕ(x) : r̄′x = ρ, A0x = b0, C0x ≥ d0}. (2.1)

A portfolio x is said to be feasible if it satisfies the last two conditions in prob-
lem (2.1).

We assume that problem (2.1) can be stated or approximated by an equivalent
linear programming as follows:

problem (ELP):
min
X

ϕ̄(X) = k′X

s.t. R̄′X = ρ,
AX = b,
CX ≥ d,

where k, R̄ ∈ R
N , b ∈ R

m, d ∈ R
p, A is an m×N , and C is a p×N matrix over

R. In the following each decision vector X ∈ R
N describes our adapted portfolio

and in the general case, a portfolio X is said to be feasible if it satisfies the last
two conditions in problem (ELP). By the Kuhn-Tucker optimality conditions, X∗

is a (primal) solution of problem (ELP), if and only if, there exist vectors λρ ∈ R,
λb ∈ R

m and λd ∈ R
p such that:

k − λρR̄ − A′λb − C′λd = 0,
R̄′X∗ = ρ, AX∗ = b, λ′

d(CX∗ − d) = 0,
CX∗ ≥ d, λd ≥ 0.

(2.2)

For any expected return ρ, let Ω(ρ) denotes the set of all primal-dual solutions
(X∗, Λ) of problem (ELP), satisfying (2.2), where Λ = (λρ, λd, λd). We call λρ an
optimal reward multiplier, which it is not necessarily unique.

A feasible portfolio X is said to be efficient if there exists no feasible portfolio
Y such that

k′Y ≤ k′X, R̄′Y ≥ R̄′X,

and at least one of the inequalities holds strictly. Let ρmin be the expected return
of an efficient portfolio which has the minimum obtainable risk. Also let ρmax be
the highest obtainable expected return of feasible portfolios. Actually, any efficient
portfolio has expected return ρ ∈ [ρmin, ρmax]. The value of ρmax can be infinite.
The graph which plots the risk of any efficient portfolio against its expected return
is called the efficient frontier. As [12], we define function

φ : [ρmin, ρmax] −→ R

ρ �→ k′X∗; (2.3)

where (X∗, Λ) ∈ Ω(ρ). Indeed the efficient frontier is the set

E = {(ρ, φ(ρ)) ; ρ ∈ [ρmin, ρmax]}.
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φ is a convex function and the efficient frontier is a piecewise linear convex curve.
Note that φ is not necessarily smooth. Indeed, for any ρ, it might be more than
one subgradient of φ at ρ. Remind that the scaler c is a subgradient of φ at ρ, if
and only if

φ(ρ1) ≥ φ(ρ) + c(ρ1 − ρ)

for any ρ1 ∈ [ρmin, ρmax]. Also, the set of all such scalers, denoted by ∂φ(ρ), is
called the subdifferential of φ at ρ. We can see that there is a close connection
between subdifferential of φ at ρ and the set of optimal reward multipliers of
problem (ELP):

Proposition 2.1. ∂φ(ρ) is equal with the set of optimal reward multipliers of
problem (ELP).

Proof. See Chapter VII, Theorem 3.3.2 of [4]. �

3. Tangency portfolio

In this section we consider a new asset which is riskless with return rf to be
added in our portfolio described in the last section. We assume that rf < ρmin. We
consider such risks which in the presence of a riskless asset, the risk of each convex
combination of the riskless asset and a feasible risky portfolio can be represented
by the similar convex combination of corresponding risks, i.e., each portfolio can
be represented by a point on the line called the capital allocation line (CAL) con-
necting the feasible risky portfolio and the riskless asset in the mean-risk plane.
When borrowing is allowed, the efficient frontier is the straight line (which domi-
nates the other obtained lines) known as capital market line (CML), passing from
the rf on mean axis and a portfolio on the efficient frontier of risky assets known
as the tangency portfolio. The nature of CML implies that its slope is a subgradi-
ent of φ at the mean return of the tangency portfolio in the mean-risk framework.
In fact the CML has the lowest slope between all CALs; and tangency portfolio
maximizes the ratio

S(x) =
x′r̄ − rf

ϕ(x)
, (3.1)

among all feasible portfolios. When standard deviation is considered as the measure
of risk, S(x) indicates the Sharpe ratio [10].

Note that, since φ is not necessarily strictly convex, it is possible that there exist
more than one tangency portfolio. In the following let ρ(T ) = [ρ

T
, ρT ] (possibly the

single point ρT ) denotes the set of the expected returns of all tangency portfolios.

Lemma 3.1. Let (X∗, Λ) ∈ Ω(ρ), for which

λρ =
k′X∗

ρ − rf
,

then X∗ is a tangency portfolio.
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Proof. The proof follows from Proposition 2.1 and the simple fact that the slope
of the capital market line is φ(ρ)/(ρ − rf ). �

For (X∗, Λ) ∈ Ω(ρ) we define

θ(Λ) := rfλρ + b′λb + d′λd.

The sign of the above expression has a key role in our approach to determine the
location of a tangency portfolio.

Theorem 3.2. Let (X∗, Λ) ∈ Ω(ρ). If θ(Λ) = 0, then ρ ∈ ρ(T ). Also, if ρ ∈
(ρT , ρmax] (ρ ∈ [ρmin, ρT

)), then θ(Λ) < 0 (θ(Λ) > 0).

Proof. Let (X∗, Λ) ∈ Ω(ρ). Multiply the first row of (2.2) by X∗′ and use the
second row of (2.2) to obtain

ϕ̄(X∗) = λρρ + b′λb + d′λd = λρ(ρ − rf ) + θ(Λ). (3.2)

If θ(Λ) = 0, then

λρ =
φ(ρ)

ρ − rf
·

Then ρ ∈ ρ(T ) by Lemma 3.1. If ρ ∈ (ρT , ρmax], we have

λρ >
φ(ρ)

ρ − rf
·

Thus, by (3.2) we get θ(Λ) < 0. The proof of the rest of the claim is similar. �

Corollary 3.3. Let (X∗, Λ) ∈ Ω(ρmax) (Ω(ρmin)). If θ(Λ) > 0 (θ(Λ) < 0), then
ρmax ∈ ρ(T ) (ρmin ∈ ρ(T )).

Proof. Let (X∗, Λ) ∈ Ω(ρmax) and θ(Λ) > 0. Suppose that, on the contrary, ρmax �∈
ρ(T ). Then, by Theorem 3.2 we have θ(Λ) < 0, which contradicts the assumption.
Thus, ρmax ∈ ρ(T ). The other statement can be proved similarly. �

4. Applying Aneja-Nair method

We employ the method of Aneja and Nair [1], initially proposed for a bi-objective
(transportation) optimization problem, in order to tracing out the efficient frontier
of problem (ELP). Their procedure generates all efficient extreme points on the
objective space rather than on the decision space (the method was adapted in [6] to
find an approximation of the efficient extreme points). For a given pair of efficient
extreme point, a single objective problem (see problem (i)) is solved and this
problem leads to either a new efficient extreme point or changes the direction of
search in the objective space.

We summarize the Aneja-Nair method (corresponding to our case) as follows:
We label the mean axis and the risk axis by Z1 and Z2, respectively, in the
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Figure 1. The efficient frontier of problem (ELP) computed by
Aneja-Nair method.

objective space (see Fig. 1). The procedure first finds two efficient extreme points
z(1) corresponding to a portfolio which has the lowest risk among the portfolios
with the highest obtainable return; and z(2) corresponding to a portfolio which
has the highest return among the portfolios with the lowest obtainable risk. In
fact the procedure first solves problem (ELP) for ρ = ρmax and ρ = ρmin. To
obtain the i’th efficient extreme point (i ≥ 3), using the two efficient extreme
points z(r) = (z(r)

1 , z
(r)
2 ) and z(s) = (z(s)

1 , z
(s)
2 ) considered by the algorithm, the

following problem is used:

problem (i):

min
X

αiZ2(X) − βiZ1(X) = αik′X− βiR̄′X

s.t. AX = b,
CX ≥ d,

where αi = |z(r)
1 − z

(s)
1 | and βi = |z(r)

2 − z
(s)
2 |. If there are alternative optima, a

portfolio with highest return is chosen. Now, problem (i) produces a new efficient
extreme point, if the location of a chosen solution dose not coincide with z(r) or
z(s) in the objective space. The algorithm terminates when no extreme point or
no improving direction is available.

Let Ωi denotes the set of all primal-dual solutions (X∗, Λ̂) of Problem (i), where
Λ̂ = (λ̂b, λ̂d) in which λ̂b and λ̂d are the Lagrangian multipliers corresponding to
the first and the second constraint, respectively. Note that applying the SIMPLEX
method enables us to extract the dual solutions from its tableau, see [2]. Moreover,
most of LP solvers in mathematical softwares such as MATLAB, compute dual
solutions as well as primal solutions.
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Lemma 4.1. Let (X∗, Λ̂) ∈ Ωi. Then (X∗, λρ, λb, λd) ∈ Ω(ρ), where ρ = Z1(X∗),
λρ = βi/αi and (λb, λd) = (1/αi)Λ̂.

Proof. Let (1/αi)Λ̂ = (λb, λd). Since (X∗, Λ̂) ∈ Ωi then

αik − βiR̄ − A′λ̂b − C′λ̂d = 0,

AX∗ = b, λ̂′
d(CX∗ − d) = 0,

CX∗ ≥ d, λ̂d ≥ 0.

(4.1)

Now, by positivity of αi and (4.1) we have

k − (βi/αi)R̄ − A′λb − C′λd = 0,

AX∗ = b, λ′
d(CX∗ − d) = 0,

CX∗ ≥ d, λd ≥ 0.

(4.2)

Considering (4.2) and the fact that R̄′X∗ = Z1(X∗), we see that
(X∗, βi/αi, λb, λd) satisfies the Kuhn-Tucker optimality conditions for prob-
lem (ELP) for the expected return ρ = R̄′X∗. This completes the proof. �

Note. Obviously βi/αi is equal to the slope of the line connected two points
z(r) or z(s) and the slope of the optimal line proposed by Problem (i). Note that
Lemma 4.1 and Proposition 2.1 confirm the last case (see Fig. 1).

For (X∗, Λ̂) ∈ Ωi let

θ̂(Λ̂) = βirf + b′λ̂b + d′λ̂d.

Now we have the following version of Theorem 3.2.

Theorem 4.2. Let (X∗, Λ̂) ∈ Ωi. If θ̂(Λ̂) = 0, then Z1(X∗) ∈ ρ(T ). Also, if
Z1(X∗) ∈ (ρT , ρmax] (Z1(X∗) ∈ [ρmin, ρT

)), then θ̂(Λ̂) < 0 (θ̂(Λ̂) > 0).

Proof. The proof is a straightforward result of Lemma 4.1 and Theorem 3.2. �

Note that since the efficient frontier is piecewise linear, we can relate a tan-
gency portfolio to an efficient extreme point. Using the Aneja-Nair method and
Theorem 4.2 and Corollary 3.3, we can recognize a tangency portfolio and produce
it as a by-product in the procedure of tracing out the efficient frontier correspond-
ing to risky assets. At the first step, we examine the sign of θ(Λ) at z(1) and z(2)

corresponding to ρ = ρmax and ρ = ρmin, respectively. If θ(Λ) ≥ 0, then z(1) can be
considered as a tangent point. If θ(Λ) ≤ 0 at z(2), then ρmin ∈ ρ(T ). Otherwise, If
we met an efficient extreme point in which θ̂(Λ̂) = 0, then this point corresponds
to a tangency portfolio. In the last case, if we recognize two adjacent efficient ex-
treme points for which θ̂(Λ̂) takes different sign, then the point which maximizes
the ratio (3.1) corresponds to a tangency portfolio. In fact, this method enables
us to compare the value of (3.1) only between two points. This property is quite
useful, specially for large-scale portfolio selection problems which produce a large
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number of efficient extreme points. Obviously, the procedure can be stopped after
finding a tangency portfolio if the identifying of a tangency portfolio is interested
only.

We can employ this method to trace out the efficient frontier of a portfolio
selection problem for which a riskless asset is involved. In the following we consider
a portfolio as a tangency portfolio if its return is equal to ρ̄T . In fact we can lead
the procedure of finding the location of a tangency portfolio to the direction for
which θ̂(Λ̂) takes negative sign. By this, we can give up the generator efficient
extreme points z(r) and z(s) (and other efficient extreme points located between
them) for which θ̂(Λ̂) is positive in both points and focus on pairs (z(r), z(s)) whit
nonpositive sign of θ̂(Λ̂). Obviously the efficient extreme points located on the left
side of a tangent point should be removed at the end of the procedure.

5. Illustrative example

In this section the method is described by an example considering the MAD
model proposed by Konno and Yamazaki [5], where risk is measured by absolute
deviation. Using historical data, the MAD model measures the risk as follows:

ϕ(x) = E

(∣∣∣∣∣
n∑

i=1

rixi − E(
n∑

i=1

rixi)

∣∣∣∣∣
)

=
1
T

T∑
t=1

∣∣∣∣∣
n∑

i=1

(rit − r̄i)xi

∣∣∣∣∣ ,
where rit is the observed rate of return of asset i at time period t(t = 1, . . . , T )
and r̄i = (

∑T
t=1 rit)/T . Let ait = rit − r̄i for t = 1, . . . , T and i = 1, . . . , n. Now

the MAD portfolio selection problem

min
x

{
ϕ(x) =

1
T

T∑
t=1

∣∣∣∣∣
n∑

i=1

aitxi

∣∣∣∣∣ : r̄′x = ρ, A0x = b0, C0x ≥ d0

}

is equivalent to the following LP problem (see Konno and Yamazaki [5]):

min
X=(x,y)

ϕ̄(X) =
1
T

T∑
t=1

yt

s.t. r̄′x = ρ,

A0x = b0,

C0x ≥ d0,

yt +
∑n

i=1 aitxi ≥ 0, t = 1, . . . , T,

yt −
∑n

i=1 aitxi ≥ 0, t = 1, . . . , T.

Example 5.1. In this example we consider the MAD model with feasible region
S = {x ∈ R

n :
∑n

i=1 xi = 1; xi ≥ 0, i = 1, . . . , n} and the following data set
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Table 1. Efficient extreme points corresponding to Example (5.1).

z(1) z(5) z(6) z(4) z(7) z(3) z(10) z(9) z(11) z(8)

Mean (%) 4.72 4.51 4.1921 3.882 3.6713 3.6452 3.4383 3.2321 3.1479 2.9074

Risk (%) 2.898 2.4252 1.7943 1.2306 0.9856 0.9564 0.782 0.628 0.5818 0.4886

θ(Λ); θ̂(Λ̂)(10−5) −4351.55 −29.87 −20.89 −33.02 −3.62 −27.61 −3.14 −3.47 −0.41 −0.18

z(14) z(13) z(12) z(16) z(15) z(17) z(2)

Mean(%) 2.7109 2.611 2.4089 2.1452 1.8963 1.8247 1.7422

Risk(%) 0.4256 0.4003 0.3631 0.3175 0.2863 0.2835 0.2831

θ(Λ); θ̂(Λ̂)(10−5) 0.19 0.6 2.36 1.13 1.59 0.43 284.45

of the asset rate of returns (expressed in %) for n = 11 assets over T = 10 time
periods:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.04 0.84 0.19 2.38 4.02 1.94 0.89 −0.19 0.04 −0.02
−0.25 0.03 1.26 2.82 1.77 0.87 0.74 2.99 2.9 −0.13
5.4 −4.8 0.12 3.54 5.91 3.39 0.08 6.62 2.78 −6.83
5.85 5.53 3.67 4.57 2.1 2.15 1.89 −2.18 −2.45 −3.63
−3.84 0.64 4.28 4.49 3.74 3.56 2.92 4.09 7.34 6.87
0.61 −0.67 2.77 5.42 6.67 11.93 5.17 1.68 6.32 7.3
0.68 8.31 5.7 −1.75 −1.77 6.24 −0.67 0.29 −6.26 −3.43
5.87 5.07 7 6.8 5.09 −3.03 −4.37 −5.22 −4.39 −1.99
1.02 2.59 0.49 −0.51 0.97 4.47 6.94 −0.06 0.56 1.37
7.44 5.6 4.42 3.69 4.78 4.74 0.06 −1.27 1.67 −0.19
3.6 7.51 0.53 −2.71 −0.95 3.22 5.13 3.24 5.56 2.33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the i’th row corresponds to the observations of the i’th asset. The primal-
dual solutions are computed using SIMPLEX method in MATLAB. The efficient
extreme points obtained by Aneja-Nair method and their corresponding amount of
θ̂(Λ̂) corresponding to rf = .015 are represented in Table 1 (Also, see Fig. 2). Note
that θ(Λ) is only computed for z(1) and z(2) and θ̂(Λ̂) is computed for the other
efficient extreme points. The i’th efficient point is shown by z(i) and is obtained
from two closest points with the lower labels at its left and its right sides. For
example z(8) is obtained from z(3) and z(2). As we can see, the sign of θ̂(Λ̂) is
changed between z(8) and z(14). Then, at the end of the procedure of finding
efficient extreme points, we can also introduce z(8) as the tangency portfolio. Note
that, if we are only interested in the tangency portfolio, then we can stop the
procedure after z(14) and introduce the points z(1) − z(8) and z(0) = (.015, 0) as
the set of efficient extreme points corresponding to the MAD portfolio selection
problem consisting of the above n risky assets (with the feasible region S) and a
riskless asset whit rf = .015 for which borrowing is not allowed.



158 R. KEYKHAEI AND M.T. JAHANDIDEH

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.005

0.01

0.015

0.02

0.025

0.03

mean

ris
k

Figure 2. The efficient frontier of Example (5.1).
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