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ASPECTS OF IMPATIENCE IN A FINITE BUFFER
QUEUE

Medhi Pallabi1 and Amit Choudhury1

Abstract. In a multi server queuing system, buffer size is often larger
than the number of servers. This necessitates queuing and waiting for
some customers. Customers become impatient while waiting for service.
Additionally, they may also become impatient if service is not offered at
the desired rate. This paper analyses a finite buffer multi server queuing
system with the additional restriction that customers may balk as well
as renege. Closed form expressions of a number of performance measures
are presented. A design problem is discussed to demonstrate the results
derived.
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1. Introduction

Customers are often required to queue up and wait whenever they desire service.
The prospect of waiting induces impatience on all customers. An arriving customer
faced with the prospect of waiting may decide against joining the queue and leaving
it for good. In queuing parlance, this is known as balking. Haight [27] has provided
a rationale that might influence a person to balk. It relates to the perception of
the importance of being served which induces an opinion somewhere in between
urgency, so that a queue of certain length will not be joined, to indifference where
a non-zero queue is also joined. Even if a customer joins the queue, it is logical to
expect that the customer has a patience time beyond which he is not willing to
wait. If service is not over within this patience time, the customer will leave the
system also for good. The phenomenon of a customer joining the queuing system
and leaving it before completing service is known as reneging.
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Reneging can be of two types: reneging till beginning of service (henceforth
referred to as R BOS) and reneging till end of service (henceforth referred to
as R EOS). R BOS can be observed in queuing systems where a customer can
renege only as long as he is in queue. Once he begins receiving service, he cannot
renege. A common example is the barbershop. A customer can renege while he is
waiting in queue. However once service starts i.e. hair cut begins, the customer
does not leave till hair cutting is over. On the other hand, R EOS can be observed
in queuing systems where a customer can renege not only while waiting in queue
but also while receiving service. A serious patient in operation theatre (O.T.) is
one such example because in an O.T., a patient may expire even when the service
i.e. treatment is going on. Both these types of reneging are treated separately in
this paper.

It is not difficult to see that the implication of impatience is loss of business
not to mention the loss of good will. The management of any queuing system
would therefore be interested in having quantifiable measures which can gauge the
extent of business lost. Even though balking and reneging have been discussed in
the literature of queuing theory, useable closed form expressions are not always
available. This paper is an attempt in this direction.

In this paper, we analyze a multiserver Markovian queuing system with limited
waiting space under the assumption that customers may balk as well renege. In
particular, we shall assume that there are c servers with system capacity restricted
to k (k � c). The arrival process will be assumed to follow Poisson law with
parameter λ. Servers work independent of each other and service time of each server
follows Poisson law with parameter μ. We assume that balking is state dependent.
Specifically, it will be assumed that if the customer on arrival observes the system
to be in state ‘n’, the probability that he will balk is ‘(n−c+1)/(k−c+1)’, n = c,
c + 1,. . . , k. With this set up, the finite buffer restriction can also be seen as the
state from which customer balks with probability 1{= (k − c + 1)/(k − c + 1)}.
There is no balking from an empty queue. All customers who join the queuing
system will be assumed to be of reneging type with patience time also following
Poisson law with parameter ν. The patience time commences from the moment
the customer joins the system. Both types of reneging R BOS and R EOS will be
treated separately in this paper.

The subsequent sections of this paper are structured as follows. Section 2 con-
tains a brief review of the literature. Sections 3 and 4 contains the derivation
of steady state probabilities and performance measures respectively. We perform
sensitivity analysis in Section 5. A numerical example is discussed in Section 6.
Concluding statements are given in Section 7. Appendix A contains some deriva-
tions.

2. Literature survey

Barrer [9] carried out one of the early work on reneging where he consid-
ered deterministic reneging with single server Markovian arrival and service rates.
Customers were selected randomly for service. In his subsequents work, Barrer [10]
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also considered deterministic reneging (of both R BOS and R EOS type) in a multi
server scenario with FCFS discipline. The general method of solution was extended
to two related queuing problems. Another early work was by Haight [28]. Ancher
and Gafarian [5] carried out an early work on Markovian reneging with Markovian
arrival and service pattern. Ghosal [25] considered a D/G/1 model with deter-
ministic reneging. Gavish and Schweitzer [24] considered a deterministic reneging
model with the additional assumption that arrivals can be labeled by their ser-
vice requirement before joining the queue and arriving customers are admitted
only if their waiting plus service time do not exceed some fixed amount. Kok and
Tijms [32] considered a single server queuing system where a customer becomes
a lost customer when its service has not begun within a fixed time. Haghighi
et al. [26] considered a Markovian multiserver queuing model with balking as well
as reneging. Each customer had a balking probability which was independent of
the state of the system. Reneging discipline considered by them was R BOS. Liu
et al. [35] considered an infinite server Markovian queuing system with reneging
of type R BOS. Customers had a choice of individual service or batch service,
batch service being preferred by the customer. Brandt and Brandt [13] considered
a S-server system with two FCFS queues, where the arrival rates at the queues
and the service may depend on number of customers ‘n’ being in service or in
the first queue. Customers in the first queue were assumed impatient customers
with deterministic reneging. Boots and Tijms [11] considered an M/M/C queue
in which a customer leaves the system when its service has not begun within
a fixed interval after its arrival. They have given the probabilistic proof of ‘loss
probability’, which was expressed in a simple formula involving the waiting time
probabilities in the standard M/M/C queue. Ke and Wang [31] considered the
machine repair problem in which failed machines balk with probability (1-b) and
renege according to a negative exponential distribution. Another work using the
concepts of balking and reneging in machine interference queue has been carried
out by Al-Seedy and Al-Ibraheem [3]. Bae et al. [7] considered an M/G/1 queue
with deterministic reneging. They derived the complete formula of the limiting dis-
tribution of the virtual waiting time explicitly. Choi et al. [14] introduced a simple
approach for the analysis of the M/M/C queue with a single class of customers
and constant patience time by finding simple Markov process. Applying this ap-
proach, they analyzed the M/M/1 queue with two classes of customer in which
class 1 customer have impatience of constant duration and class 2 customers have
no impatience and lower priority than class 1 customers. Performance measures
of both M/M/C and M/M/1 queues were discussed. Zhang et al. [48] considered
an M/M/1/N framework with Markovian reneging where they derived the steady
state probabilities and formulated a cost model. Some performance measures were
also discussed. Choudhury [16] provided a detailed and lucid derivation of the
distribution of virtual waiting time in a single server Markovian queuing system
under R BOS.

El-Paoumy [20] derived the analytical solution of Mx/M/2/N queue for batch
arrival system with Markovian reneging. Another paper on Markovian reneging
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was by Altman and Yechiali [2]. They derived the probability generating function
of number of customers present in the system and some performance measures were
discussed. Xiong et al. [44] considered a single server queue with a deterministic
reneging time motivated by the timeout mechanism used in application servers
in distributed computing environments. They had employed a Volterra integral
equation to study the M/G/1 queue with reneging using level crossing analysis.
They derived the probability generating function of number of customers present
in the system and some performance measures were discussed. Jouini et al. [30]
considered two multi-class call center models with and without reneging. They
assumed that customers had different priorities and the content of different types
of calls was assumed as similar allowing their service times to be identical. Xiong
and Altiok [43] have provided approximations for some performance measures of
a multi server queue with Poisson arrivals, general service time distribution and
deterministic reneging.

Altman and Yechiali [1] considered “queuing systems with server vacations
where each arriving customer who finds no servers on duty activates an indepen-
dent random impatience timer. If a server does not show up by the time the timer
expires, the customer abandons the queue”. Yechiali [45] considered a multi server
Markovian queue suffering occasional disaster breakdown. During such breakdown,
all customers in the system are cleared. New arrivals during the breakdown period
have an exponentially distributed patience time, such that if the service is not
reactivated during this patience time, the customer reneges.

Other attempts at modeling reneging phenomenon include those by Baccelli
et al. [8], Martin and Artalejo [36], Shawky [39], Choi et al. [15], and Singh
et al. [42], El-Sherbiny [23] and El-Paoumy and Ismail [22] etc.

An early work on balking was carried out by Haight [27]. Liu and Kulkarni [33]
considered an M/PH/1 queue with work load-dependent balking. They assumed
that an arriving customer joined the queue and stayed until served if and only if
the system workload was less than a fixed level at the time of his arrival. They
also obtained the mean and LST of the busy period in the M/PH/1 queue with
workload-dependent balking as a special limiting case of this fluid model. They
illustrate the results with the help of numerical examples. Liu and Kulkarni [34]
also considered the virtual queuing time (vqt, also known as work-in-system, or
virtual delay) process in an M/G/s queue with impatient customers. They focused
on the vqt-based balking model and related it to reneging behavior of the vqt
process. Jouini et al. [30] modeled a call center as an M/M/s+M queue with en-
dogenized customer reactions to announcements. They assumed that customers
react by balking upon hearing the delay announcement and may subsequently re-
nege if their realized waiting time exceeds the delay that has originally announced
to them. They calculated the waiting time distribution i.e. announcement cov-
erage and subsequent performance in terms of balking and reneging. Al-Seedy
et al. [4] presented an analysis for the M/M/c queue with balking and reneging.
They assumed that arriving customers balked with a fixed probability and re-
neged according to a negative exponential distribution. The generating function
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technique was used to obtain the transient solution of system those results in a
simple differential equation. Yue et al. [47] considered an M/M/2 queuing system
with balking and two heterogeneous servers, server 1 and server 2. They assumed
that customers arrived according to a Poisson process and form a single waiting
line where two parallel servers provided heterogeneous exponential service on a
first-come first-served basis. It is also assumed that server 1 is perfectly reliable
and server 2 is subject to breakdowns. They obtained the stationary condition
where the system reaches a steady state and derived the steady state probabili-
ties in a matrix form by using matrix-geometric solution method. They produced
explicit expressions of some performance measures such as the mean system size,
the average balking rate and the probabilities that server 2 is in various states.

Bae and Kim [6] considered a G/M/1 queue in which the patience time of the
customers is constant. The stationary distribution of the workload of the server,
or the virtual waiting time was derived by the level crossing argument. Boxma
et al. [12] considered an M/G/1 queue in which an arriving customer does not en-
ter the system whenever its virtual waiting time i.e. the amount of work seen upon
arrival, was larger than a certain random patience time. They determined the busy
period distribution for various choices of the patience time distribution. Cochran
and Brayles [19] proposed to enable strategic decision making on future Emer-
gency department (ED) based on patient safety (rather than congestion measure).
They hypothesized that the Leave without treatment (LWOT) reneging percent-
age is captured by the balking probability (pk) relationship of an M/M/1/K queue.
They derived the form of a binomial response nonlinear weighted regression model
that best fits pk for predicting LWOT to long term ED performance by means
of Gauss-Newton linearization. Yue and Yue [46] studied a two-server Markovian
network system with balking and a Bernoulli schedule under a single vacation pol-
icy server had different rates. After every service, only one server might take a
vacation or continued to stay in the system where the vacation time followed an
exponential distribution. They obtained the steady state condition, the stationary
distribution of the number of customers in the system and the mean system size
by using a matrix-geometric method. Choudhury and Medhi [17] analyzed a multi-
server Markovian queuing system under the assumption that customers may balk
as well as renege. Explicit closed form expressions were presented. A numerical
example with design aspects was also discussed to demonstrate results derived.
Choudhury and Medhi [18] also analyzed a single server finite buffer Markovian
queuing model M/M/1/K with the additional restriction that customers may balk
as well as renege. In this paper, balking along with position dependent reneging was
considered. Explicit closed form expressions of a number of performance measures
were presented. A typical problem was discussed to demonstrate the usefulness of
results derived.

Some other papers which have considered both balking and reneging are the
work by Shawky and El-Paoumy [40], El-Paoumy [20,21], El-Sherbiny [23], Shawky
and El-Paoumy [41], Pazgal et al. [37].
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3. The system state probabilities

In this section, the steady state probabilities are derived by the Markov process
method. We first analyze the case where customers renege only from the queue.
Under R BOS, let pn denote the probability that there are ‘n’ customers in the
system. The steady state probabilities under R BOS are

λp0 = μp1, (3.1)

λpn−1 + (n + 1)μpn+1 = λpn + nμpn; n = 1, 2, . . . , c − 1, (3.2)

λ{1 − (n − c)/(k − c + 1)}pn−1 + {cμ + (n − c + 1)ν} pn+1

= λ{1 − (n − c + 1)/(k − c + 1)}pn + {cμ + (n − c)ν} pn;
n = c, c + 1, . . . , k − 1 (3.3)

λ{1 − (k − c)/(k − c + 1)}pk−1 = {cμ + (k − c)ν} pk. (3.4)

Solving recursively, we get (under R BOS)

pn = {λn/(n!μn)}p0; n = 1, 2, . . . , c (3.5)

pn =

[
λn

n−c∏
r=1

{1 − r/(k − c + 1)}
/

{c!μc
n−c∏
r=1

(cμ + rν)}
]

p0;

n = c + 1, . . . , k, (3.6)

where p0 is obtained from the normalizing condition
k∑

n=0
pn = 1 and is given as

p0 =

[
c∑

n=0

λn/(n!μn)+
k∑

n=c+1

λn
n−c∏
r=1

{1 − r/(k − c + 1)}
/
{c!μc

n∏
r=c+1

(cμ + rν)}
]−1

.

(3.7)
The steady state probabilities satisfy the recurrence relation, under R BOS

pn = {λ/(nμ)} pn−1; n = 1, 2, . . . , c,

pn =
{
λ(1 − n − c/k − c + 1 )

/
(cμ + n − c ν)

}
pn−1; n = c + 1, . . . , k.

We shall denote by SR BOS the probability that an arriving unit has to wait on
arrival (under R BOS). Then

SR BOS =
k∑

n=c

pn. (3.8)
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Under R EOS where customer may renege from the queue as well as while
receiving service, let qn denote the probability that there are n customers in the
system. Applying the Markov theory, we obtain the following set of steady state
equations.

λq0 = (μ + ν)q1, (3.9)

λqn−1 + (n + 1) (μ + ν) qn+1 = λqn + n(μ + ν)qn; n = 1, 2, . . . , c − 1, (3.10)

λ{1 − (n − c)/(k − c + 1)}qn−1 + {cμ + (n + 1)ν} qn+1

= λ{1 − (n − c + 1)/(k − c + 1)}qn + {cμ + nν} qn;
n = c + 1, . . . , k − 1 (3.11)

λ{1 − (k − c)/(k − c + 1)}qk−1 = {cμ + kν} qk. (3.12)

Solving recursively, we get (under R EOS)

qn = [λn/{n!(μ + ν)n}]q0; n = 1, 2, . . . , c (3.13)

qn =

[
λn

n−c∏
r=1

{1 − r/(k − c + 1)}
/{

c!(μ + ν)c
n∏

r=c+1

(cμ + rν)

}]
q0;

n = c + 1, . . . , k, (3.14)

where q0 is obtained from the normalizing condition
k∑

n=0
qn = 1 and is given as

q0 =

[
c∑

n=0

λn/{n!(μ + ν)n}

+
k∑

n=c+1

λn
n−c∏
r=1

{1 − r/(k − c + 1)}/
{

c!(μ + ν)c
n∏

r=c+1

(cμ + rν)

}]−1

.

(3.15)

The steady state probabilities satisfy the recurrence relation, under R EOS

qn = [λ/{n(μ + ν)}] qn−1; n = 1, 2, . . . , c

qn =
{
λ(1 − n − c/k − c + 1 )

/
(cμ + nν)

}
qn−1; n = c + 1, . . . , k.

We shall denote by SR EOS the probability that an arriving unit has to wait on
arrival (under R EOS). Then

SR EOS =
k∑

n=c

qn. (3.16)
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4. Performance measures

An important performance measure is ‘L’ which denotes the mean number of
customers in the system. To obtain an expression for the same, we note that
L = P ′ (1) where

P ′(1) =
d
ds

P (s)|s=1.

Here P (S) is the p.g.f. of the steady state probabilities. The derivation of P ′ (1)
is given in the appendix. From (A.5) and (8.2.4), the mean system size under two
reneging rules are

LR BOS = [1/{λ + ν(k − c + 1)}][λk − c(μ − ν)(k − c + 1)SR BOS

+ {λ − (μ − ν)(k − c + 1)}MR BOS + λ(c − 1)(SR BOS − 1)] (4.1)

where

MR BOS =
c−1∑
n=1

npn (4.2)

and SR BOS is given in (3.8).

LR EOS = [1/{λ + ν(k − c + 1)}][λk + {λ − μ(k − c + 1)}MR EOS

− cμ(k − c + 1)SR EOS + λ(c − 1)}(SR EOS- 1)] (4.3)

where

MR EOS =
c−1∑
n=1

nqn (4.4)

and SR EOS is given in (3.16).

Mean queue size can now be obtained and are given by

Lq(R BOS) =
k∑

n=c+1

(n − c)pn

= LR BOS −
c∑

n=1

npn − c + c

c∑
n=0

pn

= [1/{λ + (k − c + 1)ν}] [λk − {λ + μ(k − c + 1)}cSR BOS

−μ(k − c + 1)MR BOS + λ(c − 1)(SR BOS − 1)] ,

Lq(R EOS) =
k∑

n=c+1

(n − c)qn

=LR EOS −
c∑

n=1

nqn − c + c

c∑
n=0

qn

= [1/{λ + (k − c + 1)ν}][λk − (μ + ν)(k − c + 1)MR EOS

− {λ + (μ + ν)(k − c + 1)}cSR EOS + λ(c − 1)(SR EOS − 1)].
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Customers arrive into the system at the rate λ. However all the customers
who arrive do not join the system because of balking or because of finite buffer
restriction. The effective arrival rate into the system is thus different from the
overall arrival rate and is given by

λe
(R BOS) = λ

c−1∑
n=0

pn + λ

k−1∑
n=c

{1 − (n − c + 1)/(k − c + 1)}pn

= λ(1 − SR BOS) + λ(SR BOS − pk) − {λ/(k − c + 1)}
× [LR BOS − (k − c + 1)pk − MR BOS − SR BOS(c − 1)]

= {λ/(k − c + 1)}[(k − c + 1) − LR BOS + MR BOS + (c − 1)SR BOS].
(4.5)

Similarly in case of R EOS

λe
(R EOS) = {λ/(k−c+1)}[(k−c+1) – LR EOS +MR EOS +(c−1)SR EOS]. (4.6)

We have assumed that each customer has a random patience time following
exp(ν). Clearly then, the reneging rate of the system would depend on the state of
the system as well as the reneging rule. The average reneging rate under the two
reneging rules are given by

Avg rr(R BOS) =
k∑

n=c+1

(n − c) νpn

= νLq(R BOS)

= [ν/{λ + ν(k − c + 1)}][λk − μ(k − c + 1)MR BOS

− {λ + μ(k − c + 1)}cSR BOS + λ(c − 1)(SR BOS − 1)]. (4.7)

Avg rr(R EOS) =
k∑

n=1

nνqn

= νLR EOS

= [ν/{λ + ν(k − c + 1)}][λk − cμ(k − c + 1)SR EOS

+ {λ − μ(k − c + 1)}MR EOS + λ(c − 1)(SR EOS − 1) ]. (4.8)

In a real life situation, customers who balk or renege represent the business lost.
Customers are lost to the system in three ways, due to balking, due to reneging
and due to finite buffer restriction. Management would like to know the proportion
of total customers lost in order to have an idea of total business lost.

Hence the mean rate at which customers are lost (under R BOS) is

λ − λe
(R BOS) + avg rr(R BOS)

= {λ/(k − c + 1)}[LR BOS − MR BOS − (c − 1)SR BOS]
+ [ν/ {λ + ν(k − c + 1)}] [λk − μ(k − c + 1)MR BOS

−{λ + μ(k − c + 1)}cSR BOS + λ(c − 1)(SR BOS − 1)] , (4.9)
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and the mean rate at which customers are lost (under R EOS) is

λ − λe
(R EOS) + avg rr(R EOS)

= {λ/(k − c + 1)}[LR EOS − MR EOS − (c − 1)SR EOS]
+ [ν/ {λ + ν(k − c + 1)}] [λk − cμ(k − c + 1)SR EOS

+{λ − μ(k − c + 1)}MR EOS + λ(c − 1)}(SR EOS − 1)] . (4.10)

These rates helps in the determination of proportion of customers lost which is
of interest to the system manager as also an important measure of business lost.
This proportion (under R BOS) is given by

{λ − λe
(R BOS) + avg rr(R BOS)}/λ

= {1/(k − c + 1)}[LR BOS − MR BOS − (c − 1)SR BOS]
+ [ν/λ{λ + ν(k − c + 1)}] [λk − μ(k − c + 1)MR BOS

−{λ + μ(k − c + 1)}cSR BOS + λ(c − 1)(SR BOS − 1)] ,

and the proportion (under R EOS) is given by

{λ − λe
(R EOS) + avg rr(R EOS)}/λ

= {1/(k − c + 1)}[LR EOS − MR EOS − (c − 1)SR EOS]
+ [ν/λ{λ + ν(k − c + 1)}] [λk − cμ(k − c + 1)SR EOS

+{λ− μ(k − c + 1)}MR EOS + λ(c − 1)}(SR EOS − 1)] .

The proportion of customers completing receipt of service can now be easily
determined from the above proportion.

The customers who leave the system from the queue do not receive service.
Consequently, only those customers who reach the service station constitute the
actual load of the server. From the server’s point of view, this provides a measure
of the amount of work he has to do. Let us call the rate at which customers reach
the service station as λs. Then under R BOS
λs

(R BOS) = λe
(R BOS)(1-proportion of customers lost due to reneging out of

those joining the system)

= λe
(R BOS)

{
1 −

k∑
n=c+1

(n − k)νpn/λe
(R BOS)

}

= λe
(R BOS) − avg rr(R BOS)

= {λ/(k − c + 1)}{(k − c + 1) − LR BOS + MR BOS

+ (c − 1)SR BOS} – [ν/{λ + ν(k − c + 1)}][λk − μ(k − c + 1)MR BOS

− {λ + μ(k − c + 1)}cSR BOS + λ(c − 1)(SR BOS − 1)].

In case of R EOS, one needs to recall that customers may renege even while be-
ing served and only those customers who renege from the queue will not constitute
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any work for the server. Then
λs

(R EOS) = λe
(R EOS) (1-proportion of customers lost due to reneging from the

queue out of those joining the system)

= λe
(R EOS)

{
1 −

k∑
n=c+1

(n − k)νqn/λe
(R EOS)

}

= λe
(R EOS) − ν

{
LR EOS −

c∑
n=1

nqn

}
+ νc

(
1 −

c∑
n=0

qn

)

= λe
(R EOS) − νLR EOS + νMR EOS + νcSR EOS)

= {λ/(k − c + 1)}{(k − c + 1) − LR EOS + MR EOS

+ (c − 1)SR EOS} − νLR EOS + ν(MR EOS + cSR EOS).

5. Sensitivity analysis

It is interesting to examine and understand how server utilization varies in
response to change in system parameters. The system parameters of interest are
λ, μ, ν, k, c We place below the effect of change in these system parameters on
server utilization. For this purpose, we shall follow the following convention in the
rest of this section.

pn (λ, μ, ν, k, c) and qn (λ, μ, ν, k, c) will denote the probability that there are ‘n’
customers in a system with parameters λ, μ, ν, k, c in steady state under R BOS
and R EOS respectively.

It can be shown that:

(i) if λ1>λ0, then p0(λ1,μ,ν,k,c)
p0(λ0,μ,ν,k,c) < 1.

This is because p0 (λ1, μ, ν, k, c) − p0 (λ0, μ, ν, k, c) < 0

⇔ (λ0 − λ1)
μ

+ . . . +
(λc

0 − λc
1)

c!μc

+
{1 − 1/(k − c + 1)}(λc+1

0 − λc+1
1 )

c!μc(cμ + ν)
+ . . .

+
{1 − 1/(k − c + 1)} . . . {1 − (k − c)/(k − c + 1)}(λk

0 − λk
1)

c!μc(cμ + ν) . . . {cμ + (k − c)ν} < 0.

Hence p0 ↓ as λ ↑;

(ii) if μ1>μ0, then p0(λ,μ1,ν,k,c)
p0(λ,μ0,ν,k,c) > 1.
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This is because p0 (λ, μ1, ν, k, c) − p0 (λ, μ0, ν, k, c) > 0

⇔λ

(
1
μ0

− 1
μ1

)
+ . . . +

λc

c!

(
1
μc

0

− 1
μc

1

)

+
λc+1

c!

{{1 − 1/(k − c + 1)}
μc

0(kμ0 + ν)
− {1 − 1/(k − c + 1)}

μc
1(kμ1 + ν)

}
+ . . .

+
λk

c!

{{1 − 1/(k − c + 1)} . . . {1 − (k − c)/(k − c + 1)}
μc

0(cμ0 + ν) . . . {cμ0 + (k − c)ν}

−{1 − 1/(k − c + 1)} . . . {1 − (k − c)/(k − c + 1)}
μc

1(cμ1 + ν) . . . {cμ1 + (k − c)ν}
}

> 0.

Hence p0 ↑ as μ ↑;
(iii) if ν1>ν0, then p0(λ,μ,ν1,k,c)

p0(λ,μ,ν0,k,c) > 1.

This is because p0 (λ, μ, ν1, k, c) − p0 (λ, μ, ν0, k, c) > 0

⇔λc+1

c!μc

{{1 − 1/(k − c + 1)}
(cμ + ν0)

− {1 − 1/(k − c + 1)}
(cμ + ν1)

}

+
λk

c!μc

{{1 − 1/(k − c + 1)} . . . {1 − (k − c)/(k − c + 1)}
(cμ + ν0) . . . {cμ + (k − c)ν0}

−{1 − 1/(k − c + 1)} . . . {1 − (k − c)/(k − c + 1)}
(cμ + ν1){cμ + (k − c)ν1)

}
> 0.

Hence p0 ↑ as ν ↑;
(iv) if k1>k0 then p0(λ,μ,ν,k1,c)

p0(λ,μ,ν,k0,c) < 1.

This is because p0 (λ, μ, ν, k1, c) − p0 (λ, μ, ν, k0, c) < 0

⇔
k0∑

n=c+1

λn
n−c∏
r=1

{1 − r/(k0 − c + 1)}
n−c∏
r=1

(cμ + rν)
−

k1∑
n=c+1

λn
n−c∏
r=1

{1 − r/(k1 − c + 1)}
n−c∏
r=1

(cμ + rν)
< 0.

Hence p0 ↓ as k ↑ .

The following can similarly be shown:

(v) q0 ↓ as λ ↑;
(vi) q0 ↑ as μ ↑;
(vii) q0 ↑ as ν ↑;
(viii) q0 ↓ as k ↑;



ASPECTS OF IMPATIENCE IN A FINITE BUFFER QUEUE 201

Under R BOS, these results state that an increase in arrival rate would result in
lowering of the fraction of time the server is idle. An increase in service rate would
mean the server is able to work efficiently so that it can process same amount of
work quickly. This translates to higher server idle time. An increase in reneging
rate would mean the server has fewer work to do and hence higher fraction of idle
time. An increase in system size translates to lowering of the fraction of time the
server is idle. Similar conclusions can be drawn under R EOS [18].

6. Numerical example

To illustrate the use of our results, we apply them to a queuing problem. We
quote below an example from Ravindran et al. [38], page 338.

“Consider a barbershop with two chairs, two barbers and no room for customers
to wait. Say that the state of system is the number of customers in the shop: 0, 1
or 2. If there is an empty chair when a customer arrives, he enters the shop and
his haircut begins. If both chairs are occupied when he arrives, he does not enter
the shop. As soon as a customer’s haircut is completed, he leaves the shop instan-
taneously. The barbers do not assist one another when there is only one customer
in the shop. On the average a customer arrives every 10 min and each haircut
takes an average of 15 min”. Let us suppose that the barber shop is examining the
implication of adding a few chairs for waiting customers. How many chairs should
be added?

This is a design problem. Here λ = 6/h and μ = 4/h. Though not explicitly men-
tioned, it is necessary to assume reneging and balking. Let us consider a possible
Markovian reneging rates of ν = 1/h. Given the fact that service in a barbershop
is being analyzed, clearly the reneging rule would be R BOS. We further assume
that the probability of balking by an arriving customer is dependent on state of
the system and is taken as ‘{(n − c + 1)/(k − c + 1)}’, n = c, c + 1, . . . , k where n
is the state of the customer observes the system to be in on its arrival.

Various performance measures of interest computed are given in Table 1. These
measures were arrived at using a FORTRAN 77 program coded by the authors.
Different choices of k were considered (all rates in the table are per hour rates).

From Table 1 we can say that when there is no waiting space i.e. k = 2 the
proportion of customers lost is 31% . If we add three more chairs, this proportion
reduces to 20%. The proportion of customers lost reduces by half (1/2) if k = 11.

7. Conclusion

The analysis of a multiserver Markovian finite buffer queuing system with state-
dependent balking and Markovian reneging has been presented. Though these con-
cepts were discussed in literature, explicit expressions for M/M/c/K system are not
available. This paper makes a contribution in this direction. Closed form expres-
sions of number of performance measures have been presented. To study the change
in the system corresponding to change in system parameters sensitivity analysis
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Table 1. Performance measures assuming λ = 6/h, μ = 4/h, c = 2 and ν = 1/h.

Performance measure
Number of chairs

k = 2 k = 5 k = 11

Proportion of customers completing service 0.68966 0.80052 0.84672

Fraction of time that all server is idle (p0) 0.27586 0.22835 0.20855

Average length of system 1.03448 1.42206 1.66539

Average length of queue 0 0.22128 0.39531

Mean reneging rate 0 0.22128 0.39531

Rate of loss due to balking and finite buffer. 1.86207 0.97561 0.52437

Effective arrival rate 4.13793 5.02439 5.47563

Proportion of customers lost 0.31034 0.19948 0.15328

(due to balking, reneging and finite buffer)

has also been presented. A numerical example with design connotations has been
presented to demonstrate results derived. The limitations of this work stem from
the Markovian assumptions. Extension of our results for general distribution is a
pointer to future research. We have assumed that the reneging distribution is po-
sition independent. In many scenarios, customers are aware of their position in the
queue. This invariably causes waiting customers to have higher rates of reneging
if their position in the queue is far away from the server compared to those who
are near the server. This aspect has not been covered.

Acknowledgements. The authors wish to profusely thank the anonymous referee for his
detailed, careful and exhaustive comments. These have led to very substantial improve-
ment of the paper in the realm of conceptual exposition and presentation.

Appendix A

A.1. Derivation of P ′(1) under R BOS

Let P (s) denote the probability generating function, defined by

P (s) =
∞∑

n=0
pnsn.

From equation (3.2) we have

λpn−1 + (n + 1)μpn+1 = λpn + nμpn; n = 1, 2. . . , c − 1.

Multiplying both sides of the equation by sn and summing over n

λs

k−1∑
n=1

pn−1s
n−1 − λ

k−1∑
n=1

pnsn =
k−1∑
n=1

μpnsn − 1
s
μ

k−1∑
n=1

(n + 1)pn+1s
n+1. (A.1)
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From (3.3) we have

λ{1 − (n − c)/(k − c + 1)}pn−1 + {cμ + (n − c + 1)ν} pn+1

= λ{1 − (n − c + 1)/(k − c + 1)}pn + {cμ + (n − c)ν} pn

n = c, c + 1, . . . , k − 1.

Similarly multiplying both sides of the equation by sn and summing over n

λs

k−1∑
n=c

{1 − (n − c)/(k − c + 1)}pn−1s
n−1

− λ

k−1∑
n=c

{1 − (n − c + 1)/(k − c + 1)}pnsn

=
k−1∑
n=c

{cμ + (n − c)ν}pnsn − 1
s

k−1∑
n=c

{cμ + (n − c + 1)ν}pn+1s
n+1. (A.2)

From (3.4) we have

λ{1 − (k − c)/(k − c + 1)}pk−1 = {cμ + (k − c)ν} pk.

Multiplying both sides of the equation by sk

λs{1 − (k − c)/(k − c + 1)}pk−1s
k−1 = {cμ + (k − c)ν} pksk. (A.3)

Adding (A.1)–(A.3)

⇒ λs

[
c−1∑
n=1

pn−1s
n−1 +

k−1∑
n=c

{1 − (n − c)/(k − c + 1)}pn−1s
n−1

+{1 − (k − c)/(k − c + 1)}pk−1s
k−1

]
− λ

[
c−1∑
n=1

pnsn

+
k−1∑
n=c

{1 − (n − c + 1)/(k − c + 1)}pnsn

]

= μs
c−1∑
n=1

npnsn−1 +
k−1∑
n=c

{cμ + (n − c)ν}pnsn + {cμ + (k − c)pksk}

−1
s

[
μ

c−1∑
n=1

(n + 1)pn+1s
n+1 +

k−1∑
n=c

{cμ + (n − c + 1)ν}pn+1s
n+1

]
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⇒ λs
[
p0s

0 + p1s
1 + . . . + pc−1s

c−1 + {1 − 1/(k − c + 1)}pcs
c + . . .

+{1 − (k − c)/(k − c + 1)}pk−1s
k−1
]

−λ [p1s
1 + . . . + pc−1s

c−1 + {1 − 1/(k − c + 1)}pcs
c + . . .

+{1 − (k − c)/(k − c + 1)}pk−1s
k−1]

= μs

{
P ′(s) −

k∑
n=c

npnsn−1

}
+ cμ

{
P (s) −

c−1∑
n=0

pnsn

}

+ νs
{
(c + 1)pc+1s

c + . . . + kpksk−1
}− νc

{
pc+1s

c+1 + . . . + pksk
}

1
s

[
μs

{
P ′(s) − p1 −

k∑
n=c+1

npnsn−1

}
+ cμ

{
P (s) −

c−1∑
n=0

pnsn

}

+νs
{
(c + 1)pc+1s

c + . . . + kpksk−1
}− νc

{
pc+1s

c+1 + . . . + pksk
}]

⇒ λs[
{
P (s) − pksk

}− {s/(k − c + 1)}{cpcs
c−1 + . . . + (k − 1)pk−1s

k−2
}

+ {(c − 1)/(k − c + 1)}{pcs
c + . . . + pk−1s

k−1}]
−λ[

{
P (s) − p0 − pksk

}− {s/(k − c + 1)}{cpcs
c−1 + . . . + (k − 1)pk−1s

k−2
}

+ {(c − 1)/(k − c + 1)}{pcs
c + . . . + pk−1s

k−1}]

= μs

{
P ′(s) −

k∑
n=c

npnsn−1

}
+ cμ

{
P (s) −

c−1∑
n=0

pnsn

}

+ νs

{
P ′(s) −

c∑
n=1

npnsn−1

}
− cν

{
P (s) −

c∑
n=0

pnsn

}

−μ

{
P ′(s) − p1 −

k∑
n=c+1

npnsn−1

}
− cμ

s

{
P (s) −

c−1∑
n=0

pnsn

}

−ν

{
P ′(s) −

c∑
n=1

npnsn−1

}
+

cν

s

{
P (s) −

c∑
n=0

pnsn

}

⇒ λs
{
P (s) − pksk

}− {λs2/(k − c + 1)}
{

P ′(s) − kpksk−1

−
c−1∑
n=1

npnsn−1

}
+ {λs(c − 1)/(k − c + 1)}

{
P (s) − pksk −

c−1∑
n=0

pnsn

}

−λ
{
P (s) − p0 − pksk

}
+ {λs/(k − c + 1)}

{
P ′(s) − kpksk−1

−
c−1∑
n=1

npnsn−1

}
−
{

λ(c − 1)/(k − c + 1)}{P (s)− pksk −
c−1∑
n=0

pnsn

}

= μs

{
P ′(s) −

k∑
n=c

npnsn−1

}
+ cμ

{
P (s) −

c−1∑
n=0

pnsn

}

+ νs

{
P ′(s) −

c∑
n=1

npnsn−1

}
− cν

{
P (s) −

c∑
n=0

pnsn

}
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−μ

{
P ′(s) − p1 −

k∑
n=c+1

npnsn−1

}
− cμ

s

{
P (s) −

c−1∑
n=0

pnsn

}

− ν

{
P ′(s) −

c∑
n=1

npnsn−1

}
+

cν

s

{
P (s) −

c∑
n=0

pnsn

}

⇒ {λsP ′(s)(1 − s)}/(k − c + 1) + μP ′(s)(1 − s) + νP ′(s)(1 − s)

= − cμP (s){(1/s) − 1} + cνP (s){(1/s) − 1} + λP (s)(1 − s)

+{λ(c − 1)/(k − c + 1)}P (s)(1 − s) + λspksk − λspksk

+ {λs(1 − s)/(k − c + 1)}
c−1∑
n=1

npnsn−1 − λpksk + λpksk

−{λ(c − 1)(1 − s)/(k − c + 1)}
c−1∑
n=0

pnsn + μ(1 − s)

×
k∑

n=c
npnsn−1 + cμ{(1/s)− 1}

×
c∑

n=0
pnsn + ν(1 − s)

c∑
n=1

npnsn−1 − νc{(1/s) − 1}

×
c∑

n=0
pnsn − cμpcs

c{(1/s)− 1}

⇒ P ′(s)[{λs + (μ + ν)(k − c + 1)}/(k − c + 1)] = [{λs(c − 1) + λs(k − c + 1)

− c(μ − ν)(k − c + 1)}/(k − c + 1)s]P (s)

+{λs/(k − c + 1)}
c−1∑
n=0

npnsn−1

−{λ(c − 1)/(k − c + 1)}
c−1∑
n=0

pnsn + μ
k∑

n=c
npnsn−1

+ (cμ/s)
c−1∑
n=0

pnsn+ν
c∑

n=1
npnsn−1 − (cν/s)

c∑
n=0

pnsn.

Now

⇒ lim
s→1−

P ′(s)[{λs + (μ + ν)(k − c + 1)}/(k − c + 1)]

= lim
s→1−

[{λs(c − 1) + λs(k − c + 1) − c(μ − ν)(k − c + 1)}/(k − c + 1)s]P (s)

+ {λs/(k − c + 1)}
c−1∑
n=0

npnsn−1 − {λ(c − 1)/(k − c + 1)}
c−1∑
n=0

pnsn

+ μ
k∑

n=c
npnsn−1 + (cμ/s)

c−1∑
n=0

pnsn+ν
c∑

n=1
npnsn−1 − (cν/s)

c∑
n=0

pnsn
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⇒ P ′(1)[{λ + (μ + ν)(k − c + 1)}/(k − c + 1)]

= [{λk − c(μ − ν)(k − c + 1)}/(k − c + 1)]

+{λ/(k − c + 1)}
c−1∑
n=0

npn − {λ(c − 1)/(k − c + 1)}
c−1∑
n=0

pn

+ μ
k∑

n=c
npn + cμ

c−1∑
n=0

pn+ν
c∑

n=1
npn − cν

c∑
n=0

pn

⇒ P ′(1) = [1/{λ + (μ + ν)(k − c + 1)}]
[
{λk − c(μ − ν)(k − c + 1)}

+ λ
c−1∑
n=0

npn − λ(c − 1)
c−1∑
n=0

pn + μ(k − c + 1)
{

P ′(1) −
c−1∑
n=0

npn

}

+cμ(k − c + 1)
c−1∑
n=0

pn + ν(k − c + 1)
c∑

n=1
npn − cν(k − c + 1)

c∑
n=0

pn

]

⇒ P ′(1) = [1/{λ + ν(k − c + 1)}]
[
{λk − c(μ − ν)(k − c + 1)}

+ {λ − μ(k − c + 1)}
c−1∑
n=0

npn + {cμ(k − c + 1) − λ(c − 1)}
c−1∑
n=0

pn

+ ν(k − c + 1)
c∑

n=1
npn − cν(k − c + 1)

c∑
n=0

pn

]
.

(A.4)

Using (3.8) and (4.2) in (8.1.4) we get

⇒ P ′(1) = [1/{λ + ν(k − c + 1)}][{λk − c(μ − ν)(k − c + 1)}SR BOS

+ {λ − (μ − ν)(k − c + 1)}MR BOS + λ(c − 1)}(SR BOS − 1)].
(A.5)

A.2 Derivation of Q́(1) under R EOS

From equation (3.10) we have,

λqn−1 + (n + 1) (μ + ν) qn+1 = λqn + n(μ + ν)qn; n = 1, 2, . . . , c − 1.

Multiplying both sides of this equation by sn and summing over n from we get

λs

c−1∑
n=1

qn−1s
n−1 −λ

c−1∑
n=1

qnsn = (μ + ν)
c−1∑
n=1

nqnsn − 1
s
(μ + ν)

c−1∑
n=1

(n + 1)qn+1s
n+1.

(A.6)
From equation (3.11)

λ{1 − (n − c)/(k − c + 1)}qn−1 + {cμ + (n + 1)ν} qn+1

= λ{1 − (n − c + 1)/(k − c + 1)}qn + (cμ + nν)qn;
n = c, c + 1, . . . , k − 1.
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Multiplying both sides of this equation by sn and summing over n from we get

λs

k−1∑
n=c

{1−(n− c)/(k − c + 1)}qn−1s
n−1−λ

k−1∑
n=c

{1 − (n − c + 1)/(k − c + 1)}qnsn

=
k−1∑
n=c

{cμ + nν}qnsn − 1
s

k−1∑
n=c

{cμ + (n + 1)ν}qn+1s
n+1. (A.7)

From (3.12) we have

λ{1 − (k − c)/(k − c + 1)}qk−1 = (cμ + kν)qk.

Multiplying both sides of the equation by sk

λs{1 − (k − c)/(k − c + 1)}qk−1s
k−1 = (cμ + kν)qksk. (A.8)

Adding (A.6), (A.7) and (A.8) and proceeding in a manner similar to
Section A.1, we obtain,

⇒Q′(1) = [1/{λ + ν(k − c + 1)}][{λk + {λ − μ(k − c + 1)}MR EOS

− cμ(k − c + 1)SR EOS + λ(c − 1)}(SR BOS − 1)]. (A.9)
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