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MULTIPERIOD SUPPLY CHAIN NETWORK
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Abstract. In this paper, we develop a supply chain network equi-
librium model in which electronic commerce in the presence of both
B2B (business-to-business) and B2C (business-to-consumer) transac-
tions, multiperiod decision-making and multicriteria decision-making
are integrated. The model consists of three tiers of decision-makers
(manufacturers, retailers and consumers at demand markets) who com-
pete within a tier but may cooperate between tiers. Both manufactur-
ers and retailers are concerned with maximization of profit as well as
minimization of risk, whereas consumers take both the prices charged
by manufacturers and retailers, along with the corresponding costs of
transacting, in making their consumption decisions. Increasing rela-
tionship levels are assumed to decrease costs of transacting as well as
risk costs. Establishing and maintaining these relationship levels incur
some costs that have to be borne by the various decision-makers. We
study the interaction among different tiers of decision-makers, describe
their multicriteria decision-making behavior and derive the optimality
conditions as well as the equilibrium conditions which are then shown
to satisfy a finite-dimensional variational inequality problem. We then
establish qualitative properties of the equilibrium model under some
reasonable assumptions and illustrate the model with several numeri-
cal examples.
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Introduction

With the development of the Internet and innovations in technology, the avail-
ability of electronic commerce (e-commerce) via the Internet has had a tremendous
effect on the manner in which the physical ordering of goods is replaced by elec-
tronic orders in the form of business-to-business (B2B) commerce and business-
to-consumer (B2C) commerce. In addition, the introduction of e-commerce had
opened up new opportunities for the management of supply chain networks (cf.
Nagurney and Dong [20], Kuglin and Rosenbaum [11], and the references therein).

The supply chain is a relationship network which integrates the movements
of goods between suppliers, manufacturers, distributors, retailers, and consumers
(see [31]). Indeed, supply chain network with e-commerce is a topic of growing in-
terest due to its practical importance. For example, Nagurney et al. [23] developed
a supply chain network model with three tiers of decision-makers in the presence
of e-commerce, where both B2B and B2C transactions were contained. Nagurney
and Toyasaki [26], in turn, developed a supply chain supernetwork model with
environmental criteria that also included e-commerce.

It is clear that equilibrium models have a long tradition in transportation mod-
eling as well as in economics (cf. Arrow and Intrilligator [1]). Nagurney et al. [24]
proposed the first supply chain network equilibrium model consisting of man-
ufacturers, retailers, and consumers at the demand markets. The supply chain
network equilibrium problem was formulated using the variational inequality ap-
proach (Nagurney et al., [23,24]). For an overview of finite-dimensional variational
inequality and applications based on network, see the book by Kinderlehrer and
Stampacchia [10], Nagurney [17], and the references therein.

The first contributor to the multicriteria decision-making of network was
Quandt [30] and a multicriteria traffic network equilibrium modeling could be
found in Nagurney and Dong [21] as well as Nagurney [18]. Nagurney et al. [22]
developed a multicriteria spatial network model but only the consumers at the
demand markets considered multicriteria decision-making. Dong et al. [6], in turn,
introduced multicriteria decision-making including the maximization of profit, the
minimization of transportation time and the maximization of service level in their
supply chain network model. Wakolbinger and Nagurney [33] developed a frame-
work for the modeling and analysis of supply chain network with e-commerce that
also included the role that relationship played. Furthermore, Li [12] presented a
multicriteria supply chain network with e-commerce, but the model was static.
Nagurney et al. [27] proposed a rigorous dynamic supernetwork theory for the
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integration of social networks and financial networks with intermediation in the
presence of electronic transactions, where relationship level was used for social
networks. Nagurney and Ladimer [25] developed a sustainable supply chain net-
work design model that allowed for the evaluation of environmental multicriteria
decision-making. Other applications of multicriteria decision-making in a spatial
context can be found in Stewart and Honert [32] and the references therein.

In fact, the supply chain is a typical dynamic system in which the relationship
among the various decision-makers is time-varying. Cai [3] had proposed a mul-
tiperiod supply chain network equilibrium model in which the time periods over
a finite planning horizon was discrete. Li et al. [14] developed a supply chain dy-
namic network model which was comprised of manufactures and wholesalers who
were involved in inventorying along with multiperiod decision-making. In addition,
Nagurney and Aronson [19] constructed a multiperiod spatial pricing equilibrium
model in which inventorying and backordering were allowed at the supply mar-
kets as well as the demand markets. Bernstein and Federgruen [2] studied retail
market competition in the case of a single supplier and multiple retailers in a mul-
tiperiod setting. More recently, Perakis and Sood [29] developed multiperiod pric-
ing at retail markets using a robust optimization approach. Liu and Nagurney [13]
established a multiperiod competitive supply chain network equilibrium model
which could be reformulated and solved as a transportation network equilibrium
problem. In those models, however, the decision-makers were faced with a single
criterion (e.g., profit maximization in the case of manufacturers and retailers) and
e-commerce was not considered.

Now, we have obtained three important characteristics (i.e., e-commerce, mul-
ticriteria decision-making including profit and risk, and multiperiod decision-
making) that are all centered on the supply chain network equilibrium model.
The relevant references with the above characteristics are briefly summarized and
presented in Table 1.

Here, in contrast, we build upon the work of Nagurney et al. [27] and Cai [3] to
formulate a theoretical framework of the supply chain network equilibrium with
the following notable features:

1. it is concerned with the multicriteria decision-making behavior which includes
the maximization of profit as well as the minimization of risk for the manufac-
turers and the retailers;

2. it considers e-commerce in the model due to its importance in practice. The
retailers may be physical or virtual in the case of e-commerce; consumers at
different markets can purchase the product from the manufacturers via the
Internet;

3. the relationship levels are assumed to be symmetric and establishing them in-
curs some costs that have to be borne by decision-makers in the network; unlike
most of the previous researches, these levels are regarded as factors but they
are not relevant to a separated criteria;

4. it includes multiperiod decision-making, that is, decisions involved in invento-
rying are made in discrete time periods over a finite planning horizon;
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Table 1. Summary of the relevant references with different characteristics.

Electronic Multicriteria decision-making Multiperiod

commerce profit risk relationship other decision-making

Nagurney
√ √

et al. (2002)

Dong et al.
√ √ √

(2002)

Nagurney and
√ √ √

Toyasaki (2004)

Li (2007)
√ √ √ √

Wakolbinger and
√ √ √ √

Nagurney (2004)

Nagurney et al.
√ √ √

(2006)

Nagurney and
√ √ √

Ladimer (2010)

Cai (2003)
√ √

Li et al.
√ √

(2006)

Nagurney and
√ √

Aronson (1988)

Liu and
√ √

Nagurney (2012)

This paper
√ √ √ √ √

5. it formalizes the incorporation of relationship levels which are assumed to reduce
the risk costs and the costs of transacting at the following time period but not
the current one;

6. it allows for solution of the equilibrium product flows and prices for some man-
agerial insights generated from the model or the numerical examples.

The paper is organized as follows. In Section 1, we describe the behavior of the
various decision-makers, develop the multiperiod supply chain equilibrium model
with e-commerce and multicriteria decision-making, and then establish the gov-
erning equilibrium conditions along with the corresponding variational inequality
formulation. In Section 2, we use the variational inequality formulation to ob-
tain qualitative properties regarding the existence as well as the uniqueness of the
equilibrium model under some reasonable conditions. Subsequently, in Section 3,
several numerical examples are presented for illustration purposes and discussed
for some managerial insights. Finally, we conclude the paper with Section 4, in
which we summarize our results obtained in this paper and provide suggestions
for future research.
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1. The formulation of the model structure

In this section, we develop the multiperiod supply chain network equilibrium
model with manufacturers, retailers, and consumers at demand markets in which
we explicitly synthesize e-commerce, risk and relationship levels between buyers
and sellers. The whole supply chain is assumed to be a non-cooperative and com-
petitive network structure, and then, the governing equilibrium conditions can be
formulated as a variational inequality (see Nagurney [16]). Specifically, we assume
that the demand function at each demand market is deterministic.

As the previous relevant papers use “transaction cost” in the process of modeling
almost without exception, it is necessary to define it in our paper. The term, “trans-
action cost” (Coase [4], Williamson [34]) included the cost of searching business
partners, the cost of the negotiations between the trading partners and the costs of
achieving the transaction. Compared with the traditional mode, it is accepted that
the e-commerce does reduce the corresponding transaction cost (Lucking-Reiley
and Spulber [15]). Maybe there are minor essential differences in the structure of
transaction cost between electronic and non-electronic modes, but the former has
a cost advantage over the latter. In contrast, there may be none advantage for
electronic transactions in the way of decreasing the delivery cost. In particular,
even though a retailer is virtual and the transaction takes place electronically, the
product is to be delivered physically.

In the work of Nagurney et al. [24], they considered that the transaction cost
was sufficiently general, for example, to include the transportation/shipping cost.
They also held that, in the case of an e-commerce link, the transaction costs could
include the cost associated with the use of such a link, congestion, etc. However,
we take a broader definition here, namely, the “cost of transacting” is solely the
broader definition of “transaction cost”. We define it as the cost that covers the
whole process including the preparation prior to purchase, the distribution and
delivery during transactions and monitoring after transactions. That is to say
the cost of transacting is composed of the transaction cost from Coase and the
corresponding delivery cost, which is assumed to be reduced with the increase of
relationship level.

As the risk in the model, from Cruz [5], it was defined as the possibility for com-
panies to suffer harm or loss for their activities and also for the activities of their
partners in the supply chain. Furthermore, Juttner et al. [9] suggested that supply
chain-relevant risk sources fall into three categories, that is, environmental risk
sources, organizational risk sources and network-related risk sources. Johnson [8]
and Norrman and Jansson [28] held that network-related risk was caused by the
interaction between organizations within the supply chain, e.g., due to insufficient
interaction and cooperation. Here, we define the risk in the multiperiod supply
chain equilibrium model as the risks within the supply chain and as the functions
of both the product transactions and relationship levels. High relationship lev-
els are assumed to reduce risk because trust decreases transactional uncertainty
(see [12, 27, 33]).
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Figure 1. The structure of the multiperiod supply chain network.

The activities in the supply chain network include manufacturing, shipment,
distribution, storage, and, ultimately, selling of the product to the consumers at
different demand markets. The model considers M manufacturers involved in the
production of a homogeneous product, who can sell directly to K demand markets
through the Internet (links represented by dotted arcs in Fig. 1) and can also
conduct their transactions with J retailers through the Internet (links represented
by dashed arcs in Fig. 1) or physically (links represented by solid arrows in Fig. 1).
The retailers can be either physical or virtual as in the case of e-commerce and
they are assumed to transact physically (links represented by solid arrows in Fig. 1)
with consumers.

We denote a typical manufacturer by i, a typical retailer by j, and a typical
demand market by k, respectively. We let l denote the type of transaction with
l = 1 representing a physical transaction and l = 2 denoting a virtual transaction
via the Internet. Moreover, the time planning horizon is discretized into T periods
with a typical period by t. It is assumed that the discreted value of the notation t
emerging in the paper ranges from 1 to T , namely, t = {1, 2, . . . , T}, except where
noted otherwise.

The top-tiered nodes in Figure 1 represent the manufacturers in the T time
periods with node i(t) denoting manufacturer i at time period t. A node j(t)
corresponds to retailer j at time period t. Manufacturer i can store the product as
his inventory between time period t and time period (t+1) with a link joining node
i(t) to node i(t+1). Retailer j can also store some product as the manufacturers do
with a link joining node j(t) to node j(t + 1) corresponding to his inventory from
time period t to time period (t+1). The consumers at different demand markets are
represented by the node k(t) in the bottom tier of the supply chain network. The
decision variables associated with the manufacturers and the retailers are defined in
Tables 2 and 4, respectively. Moreover, the majority of the cost functions related to
the model are given in Tables 3 and 5. The equilibrium solution is marked by “*”.

In this section, we develop the multiperiod supply chain network model
with manufacturers, retailers and consumers located at the demand markets.
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Table 2. Decision variables of the manufacturers in multiperiod
supply chain network equilibrium model.

Decision Definition

variables

qt
i production output of manufactureriat time period t

qt I-dimensional column vector grouped by production outputs for all
manufacturers at time period t with component qt

i

q IT -dimensional column vector grouped by production outputs for all
manufacturers during the entire planning horizon with component qt

i

qt
ijl product shipments transacted with retailer j by manufacturer i via

model at time period t

Qt
1 2IJ -dimensional column vector grouped by shipments transacted be-

tween manufacturers and retailers with component qt
ijl

Q1 2IJT -dimensional column vector grouped by shipments transacted be-
tween manufacturers and retailers during the entire planning horizon
with component qt

ijl

qt
ik product shipments from manufacturer i to demand market k via the

Internet at time period t

Qt
2 IK -dimensional column vector grouped by product flows between man-

ufacturers and demand markets at time period t with component qt
ik

Q2 IKT -dimensional column vector grouped by product flows between
manufacturers and demand markets during the entire planning hori-
zon with component qt

ik

It
i inventory quantity of manufacturer i at the end of time period t

Qt
3 I-dimensional column vector grouped by inventories of manufacturers

at time period t with component It
i

Q3 IT -dimensional column vector grouped by inventories of manufacturers
during the entire planning horizon with component It

i

ht
ijl nonnegative relationship level between manufacturer i and retailer j

via mode l at time period t, t = 1, 2 . . . , T − 1; ht
ijl = 0 for t = 0, T

ht
1 2IJ -dimensional column vector grouped by nonnegative relationship

level for all manufacturer/retailer/mode combinations at time period
t, t = 1, 2 . . . , T − 1; ht

1 = 0 for t = 0, T

h1 2IJ (T+1)-dimensional column vector grouped by nonnegative relation-
ship level for all manufacturer/retailer/mode combinations for t =
0, 1 . . . , T

ht
ik nonnegative relationship level between manufacturer i and demand

market k at time period t, t = 1, 2 . . . , T − 1; ht
ik = 0 for t = 0, T

ht
2 IK -dimensional column vector grouped by nonnegative relationship

level for all manufacturer/demand market combinations at time period
t, t = 1, 2 . . . , T − 1; ht

2 = 0 for t = 0, T

h2 IK (T+1)-dimensional column vector grouped by nonnegative rela-
tionship level for all manufacturer/demand market combinations for
t = 0, 1 . . . , T
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Table 3. Cost functions of the manufacturers in the multiperiod
supply chain network equilibrium model.

Cost Definition

functions

f t
i production cost function of manufactureri at time period t. It depends

not only on the manufacturer’s output but also on those of the other
manufacturers at that time period. Hence, f t

i = f t
i

(
qt
)

, ∀i, t.

Ht
i inventory cost function for manufacturer i at the end of period t, Ht

i =
Ht

i

(
It

i

)
, ∀i, t.

vt
ijl relationship production cost functions depending on the relationship

level that manufacturer i wishes to achieve with retailer j when trans-
acting via mode l at time period t, vt

ijl = vt
ijl

(
ht

ijl

)
, ∀i, j, l, t.

vt
ik relationship production cost functions depending on the relationship

level that manufacturer i wishes to achieve with consumers at demand
market k via the Internet at time period t, vt

ik = vt
ik

(
ht

ik

)
, ∀i, k, t.

ct
ijl cost of transacting associated with a manufacturer and retailer pair via

mode l at time period t, ct
ijl = ct

ijl

(
qt

ijl, ht−1
ijl

)
, ∀i, j, l, t.

ct
ik cost of transacting associated with a manufacturer and demand market

pair via the Internet at time period t, ct
ik = ct

ik

(
qt

ik, ht−1
ik

)
, ∀i, k, t.

rt
ijl risk function for manufactureri transacting with retailerj via mode l at

time period t, rt
ijl = rt

ijl

(
qt

ijl, h
t−1
ijl

)
, ∀i, j, l, t.

rt
ik risk function for manufactureri transacting with demand market k via

the Internet at time period t, rt
ik = rt

ik

(
qt

ik, ht−1
ik

)
, ∀i, k, t.

As mentioned in the Introduction, these decision-makers are multicriteria ones
and e-commerce is also considered. We first focus on the manufacturers, then turn
to the retailers, and subsequently to the consumers at demand markets.

1.1. The behavior of the manufacturers and their optimality

conditions

The relationship levels determined by the manufacturers are assumed to take on
a value which lies in the range [0, 1]. No relationship is indicated by a level of zero,
whereas, the strongest possible level of relationship is indicated by a level of one.
We assume the initial value of the relationship level before transactions is equal to
zero, that is, h0

1 = h0
2 = 0. It is also necessary to interpret that because there is no

incentive in the last chance to do transactions at time period t = T , neither the
suppliers nor the buyers are willing to maintain relationship levels between them,
which leads to the corresponding relationship levels all equal to zero, notably,
hT

1 = hT
2 = 0. Moreover, we note that the cost of transacting functions as well

as risk cost functions listed in Table 3 are not only associated with the current
product flows but also relevant to the relationship level at the preceding time
period rather than the current one.
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Table 4. Decision variables of the retailers in the multiperiod
supply chain network equilibrium model.

Decision Definition

variables

qt
jk product shipments between retailer j and demand market k at time period t

Qt
4 JK -dimensional column vector grouped by shipments transacted between

retailers and demand markets at time period t with component qt
jk

Q4 JKT -dimensional column vector grouped by shipments transacted between
retailers and demand markets during the entire planning horizon with com-
ponent qt

jk

It
j inventory quantity of retailer j at the end of time period t

Qt
5 J-dimensional column vector grouped by inventories of all retailers at the

end of time period t with component It
j

Q5 JT -dimensional column vector grouped by inventories of all retailers during
the entire planning horizon with component It

j

ht
jk nonnegative relationship level between retailer j and demand market k at

time period t, t = 1, 2 . . . , T − 1; ht
jk = 0 for t = 0, T

ht
3 JK -dimensional column vector grouped by nonnegative relationship level

for all retailer/demand market combinations at time period t, t =
1, 2 . . . , T − 1; ht

3 = 0 for t = 0, T

h3 JK (T+1)-dimensional column vector grouped by nonnegative relationship
level for all retailer/demand market combinations for t = 0, 1 . . . , T

During the entire time planning horizon, the total costs incurred by manufac-
turer i are equal to the sum of the manufacturer’s production costs, the costs of
transacting, the inventory costs and the relationship production costs depending
on relationship levels. His revenue, on the other hand, is the income of selling the
product to both retailers and consumers at different demand markets.

Let ρt
1ijl denote the price charged for the product by manufacturer i to retailer j

via mode l at time period t and let ρt
1ik denote the price charged by manufacturer i

for the product to demand market k at time period t. We later discuss how to
recover such prices associated with the first tier of nodes in the supply chain
network. The profit maximization problem, hence, faced by manufacturer i can be
expressed as

Max
J∑

j=1

2∑
l=1

T∑
t=1

ρt
1ijlq

t
ijl +

K∑
k=1

T∑
t=1

ρt
1ikqt

ik −
T∑

t=1

f t
i

(
qt
)

−
J∑

j=1

2∑
l=1

T∑
t=1

ct
ijl

(
qt
ijl, h

t−1
ijl

)
−

K∑
k=1

T∑
t=1

ct
ik

(
qt
ik, ht−1

ik

)

−
T∑

t=1

Ht
i

(
It
i

)− K∑
k=1

T∑
t=1

vt
ik

(
ht

ik

)− J∑
j=1

2∑
l=1

T∑
t=1

vt
ijl

(
ht

ijl

)
(1.1)
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Table 5. Cost functions of the retailers in the multiperiod supply
chain network equilibrium model.

Cost Definition

functions

ct
j handling cost of retailer j including the display cost and the cost of

transacting at time period t. For the sake of generality and to enhance
the modeling of competition, we allow the function to depend on the
amounts of the product held by other retailers at that time period and,
therefore, ct

j = ct
j

(
Qt

1

)
, ∀j, t.

ĉt
ijl cost of transacting for retailer j transacting with manufacturer i via

mode l at time period t, ĉt
ijl = ĉt

ijl

(
qt

ijl, ht−1
ijl

)
, ∀i, j, l, t.

Ht
j inventory cost function of retailer j at the end of period t, Ht

j =
Ht

j

(
It

j

)
, ∀j, t.

v̂t
ijl relationship production cost functions depending on the relationship

level that retailer j wishes to achieve with manufacturer i via mode l
at time period t, v̂t

ijl = v̂t
ijl

(
ht

ijl

)
, ∀i, j, l, t.

vt
jk relationship production cost functions depending on the relationship

level that retailer j wishes to achieve with consumers at demand market
k at time period t, vt

jk = vt
jk

(
ht

jk

)
, ∀j, k, t.

r̂t
ijl risk function for retailer j transacting with manufacturer i via mode l

at time period t, r̂t
ijl = r̂t

ijl

(
qt

ijl, h
t−1
ijl

)
, ∀i, j, l, t.

rt
jk risk function for retailer j transacting with demand market k via the

Internet at time period t, rt
jk = rt

jk

(
qt

jk, ht−1
jk

)
, ∀j, k, t.

subject to: q1
i =

J∑
j=1

2∑
l=1

q1
ijl +

K∑
k=1

q1
ik + I1

i (1.2)

It−1
i + qt

i =
J∑

j=1

2∑
l=1

qt
ijl +

K∑
k=1

qt
ik + It

i , t = 2, . . . , T (1.3)

and the nonnegativity constraints that:

qt
i ≥ 0, qt

ijl ≥ 0, qt
ik ≥ 0, It

i ≥ 0, 0 ≤ ht
ijl ≤ 1, 0 ≤ ht

ik ≤ 1, ∀i, j, k, l, t.
(1.4)

Note that in the objective function (1.1), the first two terms represent the revenue,
whereas, the subsequent six terms represent the various costs. Constraints (1.2)
and (1.3) reflect that each manufacturer i must satisfy the conservation of flow
equation which states that at each period, the sum of product amount available
for distribution at that time period and inventory of the next time period, is equal
to the amount produced in that time period plus the inventory from the preceding
time period. There are zero inventories assumed before the first time period and
after the final time period.
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In addition to the criterion of profit maximization, each manufacturer is sup-
posed to seek to minimize his risk generated in the transactions to the next tier of
decision-makers, whether retailers or consumers at demand markets. The second
criterion corresponding to risk minimization faced by manufacturer i, thus, can be
expressed mathematically as

Min
J∑

j=1

2∑
l=1

T∑
t=1

rt
ijl

(
qt
ijl, h

t−1
ijl

)
+

K∑
k=1

T∑
t=1

rt
ik

(
qt
ik, ht−1

ik

)
(1.5)

subject to: qt
ijl ≥ 0, qt

ik ≥ 0, 0 ≤ ht−1
ijl ≤ 1, 0 ≤ ht−1

ik ≤ 1, ∀i, j, k, l, t. (1.6)

With regard to the relationship, most of the relevant papers involved in the mul-
ticriteria decision-making considered it as a single criterion (see [22, 27, 33]). Due
to the consideration of discrete time periods over a finite planning horizon, in con-
trast, it is reasonable to make the consideration of relationship as a factor rather
than the third criterion.

Assume that manufacturer i assigns a nonnegative weight αijl to the risk related
to transacting with retailers via mode l and a nonnegative weight αik to the risk
associated with transaction to demand market k, respectively, according to its
individual preference. The nonnegative weights measure the importance of risk and
transform its value into monetary units (see [5]). The weight associated with profit
maximization serves as the numeraire and is set equal to 1. Thus, the multicriteria
decision-making problem of manufacturer i can be expressed as

Max

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J∑
j=1

2∑
l=1

T∑
t=1

ρt
1ijlq

t
ijl +

K∑
k=1

T∑
t=1

ρt
1ikqt

ik −
T∑

t=1
Ht

i (It
i )

−
J∑

j=1

2∑
l=1

T∑
t=1

ct
ijl

(
qt
ijl, h

t−1
ijl

)
−

K∑
k=1

T∑
t=1

ct
ik

(
qt
ik, ht−1

ik

)

−
T∑

t=1
f t

i (qt) −
K∑

k=1

T∑
t=1

vt
ik (ht

ik) −
J∑

j=1

2∑
l=1

T∑
t=1

vt
ijl

(
ht

ijl

)

−
(

J∑
j=1

2∑
l=1

T∑
t=1

αijl · rt
ijl

(
qt
ijl, h

t−1
ijl

)
+

K∑
k=1

T∑
t=1

αik · rt
ik

(
qt
ik, ht−1

ik

))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.7)

subject to: the conservation of flow equation (1.2) and (1.3) and non-negativity
constraints (1.4).

It is necessary to assume that the continuously differentiable functions of f t
i ,

Ht
i , vt

ijl and vt
ik are convex and monotone increasing functions with respect to their

respective decision variables. The continuously differentiable functions of ct
ijl, ct

ik,
rt
ijl and rt

ik are convex and monotone increasing functions with regard to qt
ijl, qt

ik,
qt
ijl and qt

ik, whereas they are also a family of decreasing and convex functions of
the corresponding relationship levels at the preceding time period. Here, it is also
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assumed that the manufacturers compete in a noncooperative manner following
Nash (see e.g., Nagurney et al. [23] and Nagurney et al. [24]), which states that
each manufacturer will determine his optimal production quantity and transactions
given the optimal ones of the competitors. Hence, the optimality conditions of
all manufacturers simultaneously, can be compactly expressed as the following
inequality (MV I):

determine (q∗, Q∗
1, Q∗

2, Q∗
3, h∗

1, h∗
2) ∈ Ω1 satisfying

I∑
i=1

T∑
t=1

[
∂f t

i (qt∗)
∂qt

i

]
× [qt

i − qt∗
i

]
+

I∑
i=1

J∑
j=1

2∑
l=1

T∑
t=1

⎡
⎣∂ct

ijl

(
qt∗
ijl, h

(t−1)∗
ijl

)
∂qt

ijl

+αijl ·
∂rt

ijl

(
qt∗
ijl, h

(t−1)∗
ijl

)
∂qt

ijl

− ρt∗
1ijl

⎤
⎦× [qt

ijl − qt∗
ijl

]
+

I∑
i=1

K∑
k=1

T∑
t=1

⎡
⎣∂ct

ik

(
qt∗
ik , h

(t−1)∗
ik

)
∂qt

ik

+ αik ·
∂rt

ik

(
qt∗
ik , h

(t−1)∗
ik

)
∂qt

ik

− ρt∗
1ik

⎤
⎦× [qt

ik − qt∗
ik

]
+

I∑
i=1

T∑
t=1

[
∂Ht

i (It∗
i )

∂It
i

]
× [It

i − It∗
i

]

+
I∑

i=1

J∑
j=1

2∑
l=1

T−1∑
t=1

⎡
⎣∂c

(t+1)
ijl

(
q
(t+1)∗
ijl , ht∗

ijl

)
∂ht

ijl

+
∂vt

ijl

(
ht∗

ijl

)
∂ht

ijl

+ αijl ·
∂r

(t+1)
ijl

(
q
(t+1)∗
ijl , ht∗

ijl

)
∂ht

ijl

⎤
⎦× [ht

ijl − ht∗
ijl

]

+
I∑

i=1

K∑
k=1

T−1∑
t=1

⎡
⎣∂c

(t+1)
ik

(
q
(t+1)∗
ik , ht∗

ik

)
∂ht

ik

+
∂vt

ik (ht∗
ik)

∂ht
ik

+ αik ·
∂r

(t+1)
ik

(
q
(t+1)∗
ik , ht∗

ik

)
∂ht

ik

⎤
⎦

× [ht
ik − ht∗

ik

] ≥ 0

∀ (q, Q1, Q2, Q3, h1, h2) ∈ Ω1

where Ω1 ≡ {(q, Q1, Q2, Q3, h1, h2)|(q, Q1, Q2, Q3, h1, h2) ∈ R
T (2I+2IJ+2IK)
+

and (1.2), (1.3) hold} .
Referring to the above variational inequality, it can be easily seen that the

feasible region is defined on a nonnegative orthant. Proposition 1.4 of Nagurney [17]
indicates that this kind of variational inequality can be equivalently transformed
into a nonlinear complementarity problem. Hence, the formulation of the nonlinear
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complementarity model for the manufacturer is expressed by:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
∂f t

i (qt∗)
∂qt

i

− λt∗
i

]
× qt∗

i = 0

∂f t
i (qt∗)
∂qt

i

− λt∗
i ≥ 0

qt∗
i ≥ 0, ∀i, t.

(1.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λt∗
i +

∂ct
ijl

(
qt∗
ijl, h

(t−1)∗
ijl

)
∂qt

ijl

+ αijl ·
∂rt

ijl

(
qt∗
ijl, h

(t−1)∗
ijl

)
∂qt

ijl

− ρt∗
1ijl ≥ 0

⎡
⎣λt∗

i +
∂ct

ijl

(
qt∗
ijl, h

(t−1)∗
ijl

)
∂qt

ijl

+ αijl ·
∂rt

ijl

(
qt∗
ijl, h

(t−1)∗
ijl

)
∂qt

ijl

− ρt∗
1ijl

⎤
⎦

×qt∗
ijl = 0

qt∗
ijl ≥ 0, ∀i, j, l, t.

(1.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λt∗
i +

∂ct
ik

(
qt∗
ik , h

(t−1)∗
ik

)
∂qt

ik

+ αik ·
∂rt

ik

(
qt∗
ik , h

(t−1)∗
ik

)
∂qt

ik

− ρt∗
1ik ≥ 0⎡

⎣λt∗
i +

∂ct
ik

(
qt∗
ik , h

(t−1)∗
ik

)
∂qt

ik

+ αik ·
∂rt

ik

(
qt∗
ik , h

(t−1)∗
ik

)
∂qt

ik

− ρt∗
1ik

⎤
⎦

×qt∗
ik = 0

qt∗
ik ≥ 0, ∀i, k, t.

(1.10)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
∂Ht

i (It∗
i )

∂It
i

+ λt∗
i − λ

(t+1)∗
i

]
× It∗

i = 0

∂Ht
i (It∗

i )
∂It

i

+ λt∗
i − λ

(t+1)∗
i ≥ 0

It∗
i ≥ 0, ∀i, t = 1, 2 . . . , T − 1.

(1.11)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
∂HT

i

(
IT∗
i

)
∂IT

i

+ λT∗
i

]
× IT∗

i = 0

∂HT
i

(
IT∗
i

)
∂IT

i

+ λT∗
i ≥ 0

IT∗
i ≥ 0, ∀i, t = T.

(1.12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂c
(t+1)
ijl

(
q
(t+1)∗
ijl , ht∗

ijl

)
∂ht

ijl

+
∂vt

ijl

(
ht∗

ijl

)
∂ht

ijl

+ αijl ·
∂r

(t+1)
ijl

(
q
(t+1)∗
ijl , ht∗

ijl

)
∂ht

ijl

≥ 0

⎡
⎣∂c

(t+1)
ijl

(
q
(t+1)∗
ijl , ht∗

ijl

)
∂ht

ijl

+
∂vt

ijl

(
ht∗

ijl

)
∂ht

ijl

+ αijl ·
∂r

(t+1)
ijl

(
q
(t+1)∗
ijl , ht∗

ijl

)
∂ht

ijl

⎤
⎦

×ht∗
ijl = 0

ht∗
ijl ≥ 0, ∀i, j, l, t.

(1.13)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂c
(t+1)
ik

(
q
(t+1)∗
ik , ht∗

ik

)
∂ht

ik

+
∂vt

ik (ht∗
ik)

∂ht
ik

+ αik ·
∂r

(t+1)
ik

(
q
(t+1)∗
ik , ht∗

ik

)
∂ht

ik

≥ 0⎡
⎣∂c

(t+1)
ik

(
q
(t+1)∗
ik , ht∗

ik

)
∂ht

ik

+
∂vt

ik (ht∗
ik)

∂ht
ik

+ αik ·
∂r

(t+1)
ik

(
q
(t+1)∗
ik , ht∗

ik

)
∂ht

ik

⎤
⎦

×ht∗
ik = 0

ht∗
ik ≥ 0, ∀i, k, t.

(1.14)

It is worth noting that λt
i is the Lagrange multiplier associated with con-

straints (1.2) and (1.3) for manufacturer i at time period t. Such a Lagrange
multiplier also has an interpretation as a shadow price.

The economic interpretations of the above nonlinear complementarity condi-
tions are now highlighted.

From condition (1.8) we can see that, if manufacturer i produces a positive
amount of the product at time period t, then his marginal production cost should
be equal to the minimum supply cost that he is willing to pay for a unit of the
product at time period t. Otherwise, manufacturer i will produce zero volume of
the product at that time period.

Condition (1.9) states that, if there is a positive shipments of the product trans-
acted either in a classical manner or via the Internet from manufacturer i to re-
tailer j at time period t, then the sum of his minimum supply cost, marginal
cost of transacting (relevant to the quantity of product transaction) and weighted
marginal risk cost (relevant to the quantity of product transaction) must be equal
to the price that retailer j is willing to pay for a unit product at time period t.
Otherwise, there will be zero volume of the product flow between the particular
manufacturer and retailer pair at time period t. Condition (1.10) has a similar
interpretation.

It can be shown from conditions (1.11) and (1.12) that, for each manufacturer,
the marginal inventory cost plus the minimum supply cost at time period t does
not exceed the minimum supply cost at the next time period (t + 1). Otherwise
he will not stock any product at period t

Furthermore, conditions (1.13) and (1.14) note that if there is a positive level
of relationship, then the marginal relationship production cost (relevant to the
relationship level at the preceding time period) of establishing relationship level
is equal to the marginal cost of transacting (relevant to the relationship level
at the preceding time period) plus the weighted marginal cost (relevant to the
relationship level at the preceding time period).

1.2. The behavior of the retailers and their optimality conditions

The retailers, in turn, also have to bear some costs to establish and maintain
relationship levels with manufacturers and consumers. These relationship levels



MULTIPERIOD SUPPLY CHAIN NETWORK EQUILIBRIUM MODEL 267

are assumed to be nonnegative and to take on a value from 0 to 1. As what we
do in section 1.1, we also observe that the cost of transacting functions as well as
risk cost functions listed in Table 5 are relative to not only the current product
flows but also the relationship level at the preceding time period rather than the
current one. Similarly, it is also worth noting that h0

1, h0
2, hT

1 and hT
2 are all equal

to zero.
Let ρt

2jk denote the price charged for the product by retailer j to demand
market k at time period t. As in the case of the manufacturers, we later discuss
how to recover such prices associated with the second tier of nodes in the supply
chain network. Then, the optimization problem of profit maximization faced by
retailer j can be expressed as

Max
K∑

k=1

T∑
t=1

ρt
2jkqt

jk −
I∑

i=1

2∑
l=1

T∑
t=1

ρt
1ijlq

t
ijl −

T∑
t=1

ct
j

(
Qt

1

)

−
I∑

i=1

2∑
l=1

T∑
t=1

ĉt
ijl

(
qt
ijl, h

t−1
ijl

)
−

K∑
k=1

T∑
t=1

ct
jk

(
qt
jk, ht−1

jk

)

−
T∑

t=1

Ht
j

(
It
j

)− I∑
i=1

2∑
l=1

T∑
t=1

v̂t
ijl

(
ht

ijl

)− K∑
k=1

T∑
t=1

vt
jk

(
ht

jk

)
(1.15)

subject to :
I∑

i=1

2∑
l=1

q1
ijl =

K∑
k=1

q1
jk + I1

j (1.16)

It−1
j +

I∑
i=1

2∑
l=1

qt
ijl =

K∑
k=1

qt
jk + It

j , t = 2, . . . , T (1.17)

and the nonnegativity constraints:

qt
ijl ≥ 0, qt

jk ≥ 0, It
j ≥ 0, 0 ≤ ht

ijl ≤ 1, 0 ≤ ht
jk ≤ 1, ∀i, j, k, l, t. (1.18)

The first term in the objective function (1.15) represents the revenue of retailer j,
whereas the rest of terms represent, respectively, payouts to the manufacturers, the
handling costs, the costs of transacting (from the perspective of the retailer), the
relationship production costs and the inventory costs. Constraints (1.16) and (1.17)
show that each retailer j must satisfy the conservation of flow equation which states
that at each time period, the sum of the amount obtained in that time period from
manufacturers plus the inventory from the preceding period must be equal to the
sum of the amount of product available for the demand markets at that time
period plus the inventory at the next time period. What’s more, note that λt

j is
the Lagrange multiplier associated with constraints (1.16) and (1.17) for retailer j.
These Lagrange multipliers can also be interpreted as shadow prices. For further
background on such a derivation, see [21].
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In addition to the criterion of profit maximization, each retailer is supposed to
be concerned with risk minimization associated with dealing with manufacturer or
consumers at demand markets. Thus, the second criterion corresponding to risk
minimization faced by retailer j can be expressed as

Min
I∑

i=1

2∑
l=1

T∑
t=1

r̂t
ijl

(
qt
ijl, h

t−1
ijl

)
+

K∑
k=1

T∑
t=1

rt
jk

(
qt
jk, ht−1

jk

)
(1.19)

subject to:

qt
ijl ≥ 0, qt

jk ≥ 0, 0 ≤ ht−1
ijl ≤ 1, 0 ≤ ht−1

jk ≤ 1, ∀i, j, k, l, t. (1.20)

As mentioned earlier, it is also reasonable to regard relationship as a factor
rather than the third criterion as a result of the consideration of discrete time
periods in the supply chain network. In particular, we assume that retailer j assigns
a nonnegative weight βijl to the risk related to transacting with manufacturers via
mode l and a nonnegative weight βjk to the risk associated with transactions
to demand market k, respectively, according to its individual preference. As in
the case of the manufacturers, the weight associated with profit maximization is
set equal to 1 and serves as the numeraire (see also [5]). Then the multicriteria
decision-making problem of retailer j can be expressed mathematically as

Max

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K∑
k=1

T∑
t=1

ρt
2jkqt

jk −
I∑

i=1

2∑
l=1

T∑
t=1

ρt
1ijlq

t
ijl −

I∑
i=1

2∑
l=1

T∑
t=1

ĉt
ijl

(
qt
ijl, h

t−1
ijl

)

−
K∑

k=1

T∑
t=1

ct
jk

(
qt
jk, ht−1

jk

)
−

T∑
t=1

ct
j (Qt

1) −
T∑

t=1
Ht

j

(
It
j

)

−
I∑

i=1

2∑
l=1

T∑
t=1

v̂t
ijl

(
ht

ijl

)
−

K∑
k=1

T∑
t=1

vt
jk

(
ht

jk

)

−
I∑

i=1

2∑
l=1

T∑
t=1

βijl · r̂t
ijl

(
qt
ijl, h

t−1
ijl

)
+

K∑
k=1

T∑
t=1

βjk · rt
jk

(
qt
jk, ht−1

jk

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.21)

subject to: conservation of flow equations (1.16) and (1.17) and non-negativity
constraints (1.18).

It is assumed that the continuously differentiable functions of ct
j , H

t
j , v̂t

ijl and
vt

jk are convex and monotone increasing functions with respect to their respective
decision variables. The continuously differentiable functions of ĉt

ijl, r̂t
ijl and rt

jk

are convex and monotone increasing functions with regard to qt
ijl, qt

ijl and qt
jk,

while they are also a family of decreasing and convex functions concerning the
corresponding relationship levels at the preceding time period. We assume that
the retailers compete in a noncooperative manner in the sense of Nash (see also
Nagurney et al. [23] and Nagurney et al. [24]), then, under the above imposed
assumptions on the underlying functions, the optimality conditions of all retailers
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simultaneously can be compactly expressed as the following variational inequality
(RV I):

determine (Q∗
1, Q

∗
2 , Q∗

4, h
∗
1, h

∗
3) ∈ Ω2 satisfying

I∑
i=1

J∑
j=1

2∑
l=1

T∑
t=1

⎡
⎣∂ĉt

ijl

(
qt∗
ijl, h

(t−1)∗
ijl

)
∂qt

ijl

+
∂ct

j (Qt∗
1 )

∂qt
ijl

+ ρt∗
1ijl

+βijl ·
∂r̂t

ijl

(
qt∗
ijl, h

(t−1)∗
ijl

)
∂qt

ijl

⎤
⎦× [qt

ijl − qt∗
ijl

]
+

J∑
j=1

K∑
k=1

T∑
t=1

⎡
⎣∂ct

jk

(
qt∗
jk, h

(t−1)∗
jk

)
∂qt

jk

+ βjk ·
∂rt

jk

(
qt∗
jk, h

(t−1)∗
jk

)
∂qt

jk

− ρt∗
2jk

⎤
⎦× [qt

jk − qt∗
jk

]

+
J∑

j=1

T∑
t=1

[
∂Ht

j

(
It∗
j

)
∂It

j

]
× [It

j − It∗
j

]
+

I∑
i=1

J∑
j=1

2∑
l=1

T−1∑
t=1

⎡
⎣∂ĉt+1

ijl

(
q
(t+1)∗
ijl , ht∗

ijl

)
∂ht

ijl

+
∂v̂t

ijl

(
ht∗

ijl

)
∂ht

ijl

+ βijl ·
∂r̂t+1

ijl

(
q
(t+1)∗
ijl , h

(t+1)∗
ijl

)
∂ht

ijl

⎤
⎦× [ht

ijl − ht∗
ijl

]

+
J∑

j=1

K∑
k=1

T−1∑
t=1

⎡
⎣∂ct+1

jk

(
q
(t+1)∗
jk , ht∗

jk

)
∂ht

jk

+
∂vt

jk

(
ht∗

jk

)
∂ht

jk

+ βjk ·
∂rt+1

jk

(
q
(t+1)∗
jk , ht∗

jk

)
∂ht

jk

⎤
⎦× [ht

jk − ht∗
jk

] ≥ 0

∀ (Q1, Q2, Q4, h1, h3) ∈ Ω2

where Ω2 ≡ {(Q1, Q2, Q4, h1, h3) | (Q1, Q2, Q4, h1, h3) ∈ R
T (J+2IJ+2JK)
+

and (1.16), (1.17) hold}. As the space is limited, the nonlinear complementar-
ity conditions equivalent to the above variational inequality and their economic
interpretations similar with those of the manufacturers are omitted here.

1.3. The consumers at the demand markets and equilibrium conditions

We now describe the behavior of the consumers at different demand markets,
who take into account in making their consumption decisions not only the charged
price by the sellers but also the cost of transacting associated with obtaining the
product from their perspective.
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Let ĉt
jk denote the cost of transacting associated with demand market k obtain-

ing the product from retailer j at time period t, which is assumed to be continuous
and of the general form: ĉt

jk = ĉt
jk

(
qt
jk, ht−1

jk

)
, ∀j, k, t. Hence, the cost of trans-

acting, from the perspective of the consumers, depends on the current volume of
the product transacted as well as the level of relationship formed at the preceding
time period.

Let ĉt
ik denote the cost of transacting associated with obtaining the product

electronically from manufacturer i by the consumers at demand market k at time
period t, where we assume that it is also continuous and of the general form:
ĉt
ik = ĉt

ik

(
qt
ik, ht−1

ik

)
, ∀i, k, t.

Denote the demand of the product at demand market k at time period t by
dt

k and assume, as given, the continuous function: dt
k = dt

k (ρt
3) , ∀k, t. Here, ρt

3

is the o-dimensional column vector with the component of ρt
3k which denotes the

price of demand market k for obtaining the product at time period t.
The convex and continuous functions ĉt

jk and ĉt
ik are monotone increasing func-

tions concerning shipments of qt
jk and qt

ik, respectively, but they are also monotone
decreasing functions regarding the corresponding relationship levels at the preced-
ing time period. In addition, the function, dt

k, is monotone decreasing with respect
to the price ρt

3. Hence, the equilibrium conditions for consumers at demand market
k take the following form: for all retailers, j = 1, 2 . . . , J :

ρt∗
2jk + ĉt

jk

(
qt∗
jk, h

(t−1)∗
jk

)⎧⎪⎨
⎪⎩

= ρt∗
3k, if qt∗

jk > 0,

≥ ρt∗
3k, if qt∗

jk = 0, (1.22)

and for all manufacturers, i = 1, 2 . . . , I:

ρt∗
1ik + ĉt

ik

(
qt∗
ik , h

(t−1)∗
ik

)⎧⎨
⎩

= ρt∗
3k, if qt∗

ik > 0,

≥ ρt∗
3k, if qt∗

ik = 0. (1.23)

In addition, we must have that:

dt
k

(
ρt∗
3

)
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

=
J∑

j=1

qt∗
jk +

I∑
i=1

qt∗
ik , if ρt∗

3k > 0,

≤
J∑

j=1

qt∗
jk +

I∑
i=1

qt∗
ik , if ρt∗

3k = 0.
(1.24)

Conditions (1.22) state that, in equilibrium, the consumers at demand market k
will purchase the product from retailer j at time period t, if the price charged
by retailer j plus the cost of transacting (from the perspective of the consumers)
does not exceed the price that the consumers are willing to pay at time period t.
Conditions (1.23) state the analogue, but for the case of electronic transactions
with the manufacturers. On the other hand, conditions (1.24) state that if the
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equilibrium price the consumers are willing to pay for the product is positive, then
the quantity of product consumed at demand market k at time period t is precisely
equal to the demand for the product at the same time period.

These conditions correspond to the well-known spatial price equilibrium condi-
tions (cf. [6,17]) and also have been used in various supply chain network equilib-
rium problems (e.g., [23]). Clearly, conditions (1.22), (1.23) and (1.24) must hold
for all demand markets and can be formulated as a variational inequality (DV I),
given by (e.g., [20]):

determine (Q∗
2, Q

∗
4, ρ

∗
3) ∈ R

T (JK+IK+K)
+ satisfying

I∑
i=1

K∑
k=1

T∑
t=1

[
ρt∗
1ik + ĉt

ik

(
qt∗
ik , h

(t−1)∗
ik

)
− ρt∗

3k

]
× [qt

ik − qt∗
ik

]

+
K∑

k=1

J∑
j=1

T∑
t=1

[
ρt∗
2jk + ĉt

jk

(
qt∗
jk, h

(t−1)∗
jk

)
− ρt∗

3k

]
× [qt

jk − qt∗
jk

]

+
K∑

k=1

T∑
t=1

⎡
⎣ J∑

j=1

qt∗
jk +

I∑
i=1

qt∗
ik − dt

k

(
ρt∗
3

)⎤⎦× [ρt
3k − ρt∗

3k

] ≥ 0

∀ (Q2, Q4, ρ3) ∈ R
T (JK+IK+K)
+ .

1.4. The equilibrium conditions of the supply chain network

Definition 1.1 (multiperiod supply chain network equilibrium with electronic
commerce and multicriteria decision-making). The equilibrium state of the mul-
tiperiod supply chain network equilibrium with electronic commerce and multi-
criteria decision-making is one where the product flows between three tiers of the
decision-makers coincide and the product outputs, shipments, inventories, relation-
ship levels and prices satisfy the sum of the optimality conditions (MV I), (RV I),
and the equilibrium conditions (DV I).

The equilibrium state is equivalent to the following:

Theorem 1.2 (variational inequality formulation). In terms of introducing the
vector of X = (q, Q12345 , h123, ρ3) where Q12345 = (Q1, Q2, Q3, Q4, Q5) and
h123 = (h1, h2, h3), the equilibrium conditions governing the multiperiod supply
chain network equilibrium with electronic commerce and multicriteria decision-
making according to Definition 1.1 are equivalent to the solution of the variational
inequality problem (SV I) given by:

determine X∗ = (q∗, Q∗
12345, h

∗
123, ρ

∗
3) ∈ Ω satisfying
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I∑
i=1

T∑
t=1

[
∂f t

i (qt∗)
∂qt

i

]
× [qt

i − qt∗
i

]
+

I∑
i=1

J∑
j=1

2∑
l=1

T∑
t=1

⎡
⎣∂ct

ijl

(
qt∗
ijl, h

(t−1)∗
ijl

)
∂qt

ijl

+
∂ct

j (Qt∗
1 )

∂qt
ijl

+
∂ĉt

ijl

(
qt∗
ijl, h

(t−1)∗
ijl

)
∂qt

ijl

+ αijl ·
∂rt

ijl

(
qt∗
ijl, h

(t−1)∗
ijl

)
∂qt

ijl

+ βijl ·
∂r̂t

ijl

(
qt∗
ijl, h

(t−1)∗
ijl

)
∂qt

ijl

⎤
⎦× [qt

ijl − qt∗
ijl

]
+

I∑
i=1

K∑
k=1

T∑
t=1

⎡
⎣∂ct

ik

(
qt∗
ik , h

(t−1)∗
ik

)
∂qt

ik

+ĉt
ik

(
qt∗
ik , h

(t−1)∗
ik

)
+ αik ·

∂rt
ik

(
qt∗
ik , h

(t−1)∗
ik

)
∂qt

ik

− ρt∗
3k

⎤
⎦× [qt

ik − qt∗
ik

]

+
I∑

i=1

T∑
t=1

[
∂Ht

i (It∗
i )

∂It
i

]
× [It

i − It∗
i

]

+
J∑

j=1

T∑
t=1

[
∂Ht

j

(
It∗
j

)
∂It

j

]
× [It

j − It∗
j

]
+

K∑
k=1

J∑
j=1

T∑
t=1

⎡
⎣∂ct

jk

(
qt∗
jk, h

(t−1)∗
jk

)
∂qt

jk

+ĉt
jk

(
qt∗
jk, h

(t−1)∗
jk

)
+ βjk ·

∂rt
jk

(
qt∗
jk, h

(t−1)∗
jk

)
∂qt

jk

− ρt∗
3k

⎤
⎦× [qt

jk − qt∗
jk

]

+
I∑

i=1

J∑
j=1

2∑
l=1

T−1∑
t=1

⎡
⎣∂c

(t+1)
ijl

(
q
(t+1)∗
ijl , ht∗

ijl

)
∂ht

ijl

+
∂vt

ijl

(
ht∗

ijl

)
∂ht

ijl

+
∂ĉ

(t+1)
ijl

(
q
(t+1)∗
ijl , ht∗

ijl

)
∂ht

ijl

+ αijl ·
∂r

(t+1)
ijl

(
q
(t+1)∗
ijl , ht∗

ijl

)
∂ht

ijl

+
∂v̂t

ijl

(
ht∗

ijl

)
∂ht

ijl

+βijl ·
∂r̂

(t+1)
ijl

(
q
(t+1)∗
ijl , ht∗

ijl

)
∂ht

ijl

⎤
⎦× [ht

ijl − ht∗
ijl

]
+

I∑
i=1

K∑
k=1

T−1∑
t=1

⎡
⎣∂c

(t+1)
ik

(
q
(t+1)∗
ik , ht∗

ik

)
∂ht

ik

+
∂vt

ik (ht∗
ik)

∂ht
ik

+ αik ·
∂r

(t+1)
ik

(
q
(t+1)∗
ik , ht∗

ik

)
∂ht

ik

⎤
⎦× [ht

ik − ht∗
ik

]

+
J∑

j=1

K∑
k=1

T−1∑
t=1

⎡
⎣∂c

(t+1)
jk

(
q
(t+1)∗
jk , ht∗

jk

)
∂ht

jk

+
∂vt

jk

(
ht∗

jk

)
∂ht

jk

+ βjk ·
∂r

(t+1)
jk

(
q
(t+1)∗
jk , ht∗

jk

)
∂ht

jk

⎤
⎦

× [ht
jk − ht∗

jk

]
+

K∑
k=1

T∑
t=1

⎡
⎣ n∑

j=1

qt∗
jk +

m∑
i=1

qt∗
ik − dt

k

(
ρt∗
3

)⎤⎦× [ρt
3k − ρt∗

3k

] ≥ 0

∀X ∈ Ω where
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Ω ≡ {(q, Q12345 , h123, ρ3)|(q, Q12345 , h123, ρ3) ∈ R
T (2I+2IJ+2IK+2JK+J+K)
+ ;

and (1.2), (1.3), (1.16), (1.17) hold }.
For easy reference in the subsequent sections, variational inequality (SV I) can

be rewritten in standard variational inequality form as follows: determine X∗ ∈ Ω
satisfying:

〈F (X∗) , X − X∗〉 ≥ 0, ∀X ∈ Ω. (1.25)

where

F (X) =
(
Fit, Fijlt, Fikt, FHit , Fjklt, FHjt , Fhijlt

, Fhikt
, Fhjklt

, Fkt

)
for

i = 1, 2 . . . , I; j = 1, 2 . . . , J ; k = 1, 2 . . . , K; l = 1, 2; t = 1, 2 . . . , T

and the specific components of F are given by the function terms preceding the
multiplication signs in (SV I). The term 〈·, ·〉 denotes the inner product in N -
dimensional Euclidean space.

We now describe how to recover the manufacturers’ equilibrium prices, ρt∗
1ijl

and ρt∗
1ik, and the retailers’ equilibrium prices, ρt∗

2jk, from the nonlinear complemen-
tarity conditions which are equivalent to the corresponding variational inequality.
First note that from (1.9), we have that (as already discussed briefly) if qt∗

ijl > 0,
then the price

ρt∗
1ijl =

⎡
⎣λt∗

i +
∂ct

ijl

(
qt∗
ijl, h

(t−1)∗
ijl

)
∂qt

ijl

+ αijl ·
∂rt

ijl

(
qt∗
ijl, h

(t−1)∗
ijl

)
∂qt

ijl

⎤
⎦

or, equivalently to the following equation from the nonlinear complementarity
conditions corresponding to the variational inequality (RV I),

ρt∗
1ijl =

⎡
⎣λt∗

j −
∂ĉt

ijl

(
qt∗
ijl, h

(t−1)∗
ijl

)
∂qt

ijl

− ∂ct
j (Qt∗

1 )
∂qt

ijl

− βijl ·
∂r̂t

ijl

(
qt∗
ijl, h

(t−1)∗
ijl

)
∂qt

ijl

⎤
⎦ ·

In addition, we can acquire the first tier prices associated with consumers at the
demand market after solving variational inequality (SV I) either set

ρt∗
1ik =

⎡
⎣λt∗

i +
∂ct

ik

(
qt∗
ik , h

(t−1)∗
ik

)
∂qt

ik

+ αik ·
∂rt

ik

(
qt∗
ik , h

(t−1)∗
ik

)
∂qt

ik

⎤
⎦

for any i, k, t such that qt∗
ik > 0, or (cf. (1.23)) for any qt∗

ik > 0, set

ρt∗
1ik =

[
ρt∗
3k − ĉt

ik

(
qt∗
ik , h

(t−1)∗
ik

)]
.



274 G. LIU AND S. XU

The price ρt∗
2jk can be obtained either from the nonlinear complementarity condi-

tions corresponding to the variational inequality (RV I),

ρt∗
2jk =

⎡
⎣∂ct

jk

(
qt∗
jk, h

(t−1)∗
jk

)
∂qt

jk

+ βik ·
∂rt

jk

(
qt∗
jk, h

(t−1)∗
jk

)
∂qt

jk

+ λt∗
j

⎤
⎦

for any j, k, t such that qt∗
jk > 0, or (cf. (1.22)) for any qt∗

jk > 0, set ρt∗
2jk =[

ρt∗
3k − ĉt

jk

(
qt∗
jk, h

(t−1)∗
jk

)]
.

2. Qualitative properties

Before attempting to solve any variational inequality, it is important to discuss
whether a solution exists. From Nagurney [16], a variational inequality admits at
least one solution if the entering function F is continuous, and the feasible set is
compact. While F in (2.1) may be not continuous, the feasible region Ω is not
compact. However, it is possible to impose a weak condition on Ω to guarantee
existence. Let

Ωb = {(q, Q1, Q2, Q3, Q4, Q5, h1, h2, h3, ρ3)|0 ≤ q ≤ b0, 0 ≤ Q1 ≤ b1,

0 ≤ Q2 ≤ b2; 0 ≤ Q3 ≤ b3, 0 ≤ Q4 ≤ b4, 0 ≤ Q5 ≤ b5,

0 ≤ ρ3 ≤ b6, 0 ≤ h1 ≤ 1, 0 ≤ h2 ≤ 1, 0 ≤ h3 ≤ 1}

where b = (b0, b1, b2, b3, b4, b5, b6) ≥ 0 and q ≤ b0, Q1 ≤ b1, Q2 ≤ b2, Q3 ≤
b3, Q4 ≤ b4, Q5 ≤ b5, ρ3 ≤ b6 mean that qt ≤ b0, Qt

1 ≤ b1, Qt
2 ≤ b2, Qt

3 ≤
b3, Qt

4 ≤ b4, Qt
5 ≤ b5, ρt

3 ≤ b6. Then, Ωb is a bounded, closed convex subset of
RT (2I+2IJ+2IK+2JK+J+K). Thus, the following variational inequality:

〈
F
(
Xb
)
, X − Xb

〉 ≥ 0, ∀X ∈ Ωb (2.1)

admits at least one solution. Therefore, following Nagurney et al. [24] we have:

Lemma 2.1. Variational inequality (1.25) admits a solution if and only if there
exists a b > 0 such that variational inequality (2.1) admits a solution in Ωb with

qb < b0, Q
b
1 < b1, Q

b
2 < b2, Q

b
3 < b3, Q

b
4 < b4, Q

b
5 < b5, ρ

b
3 < b6. (2.2)

Theorem 2.2 (existence). Suppose that there exist positive constants M, N, R
with R > Msuch that:

∂f t
i (qt)
∂qt

i

≥ R, ∀q with qt
i ≥ N, ∀i, t. (2.3)
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∂ct
ijl

(
qt
ijl, h

t−1
ijl

)
∂qt

ijl

+ αijl ·
∂rt

ijl

(
qt
ijl, h

t−1
ijl

)
∂qt

ijl

+
∂ĉt

ijl

(
qt
ijl, h

t−1
ijl

)
∂qt

ijl

+
∂ct

j (Qt
1)

∂qijl (t)
+ βijl ·

∂r̂t
ijl

(
qt
ijl, h

t−1
ijl

)
∂qt

ijl

≥ R,

∀Q1 with qt
ijl ≥ N, ∀i, j, l, t. (2.4)

∂ct
ik

(
qt
ik, ht−1

ik

)
∂qt

ik

+ αik · ∂rt
ik

(
qt
ik, ht−1

ik

)
∂qt

ik

+ ĉt
ik

(
qt
ik, ht−1

ik

) ≥ R,

∀Q2 with qt
ik ≥ N, ∀i, k, t. (2.5)

∂Ht
i (It

i )
∂It

i

≥ R, ∀Q3 with It
i ≥ N, ∀i, t. (2.6)

∂ct
jk

(
qt
jk, ht−1

jk

)
∂qt

jk

+ βjk ·
∂rt

jk

(
qt
jk, ht−1

jk

)
∂qt

jk

+ ĉt
jk

(
qt
jk, ht−1

jk

)
≥ R,

∀Q4 with qt
jk ≥ N, ∀j, k, t.

(2.7)

∂Ht
j

(
It
j

)
∂It

j

≥ R, ∀Q5 with It
j ≥ N, ∀j, t. (2.8)

dt
k

(
ρt
3

) ≤ N, ∀ρ3 with ρt
3k > M, ∀k, t. (2.9)

Then variational inequality (1.25) admits at least one solution.

Proof. Follows using analogous arguments as the proof of existence for Theorem
2 in Hammond and Beullens [7].

Choose b0 = b1 = b2 = b3 = b4 = b5 = b > N, b6 > N1 where N1 =
max Q4≤b, 0≤h3≤1

{
ĉt
jk

(
qt
jk, ht−1

jk

)}
. If it can be proved qb < b0, Qb

1 < b1, Qb
2 <

b2, Qb
3 < b3, Qb

4 < b4, Qb
5 < b5, ρb

3 < b6 respectively, then by Lemma 2.1, it is
possible to establish the existence of solution to inequality (1.25).

(1) Suppose that there exists a manufacturer denoted by i at a certain time period
t such that qt,b

i = b > N . This would require ∂f t,b
i

(
qt,b
)
/∂qt,b

i ≤ 0. This
contradicts assumption (2.3).

(2) Suppose also there exists a retailer denoted by j transacting with a manufac-
turer denoted by i via the physical mode (l = 1) at a certain time period t
such that qt,b

ij1 = b > N . This would require ∂ct,b
ij1/∂qt,b

ij1 + αij1 · ∂rt,b
ij1/∂qt,b

ij1 +
∂ĉt,b

ij1/∂qt,b
ij1 + ∂ct,b

j /∂qt,b
ij1 + βij1 · ∂r̂t,b

ij1/∂qt,b
ij1 ≥ R, which contradicts (2.4). Sim-

ilarly, we can prove the rationality of the assumption (2.5).
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(3) Suppose also there exists a manufacturer denoted by i at a certain time period
t such that It,b

i = b > N . This would require ∂Ht,b
i (It,b

i )/∂It,b
i ≤ 0. This

contradicts the assumption (2.6). Similarly, we can prove the rationality of the
assumption (2.8).

(4) Suppose also there exists a retailer denoted by j transacting with consumers at
a demand market denoted by k at a certain time period t such that qt,b

jk = b >

N . This would require R < ĉt,b
jk

(
qt,b
jk , h

(t−1),b
jk

)
≤ ρt,b

3 . Inequality (1.24) would

then require
J∑

j=1

qt
jk +

I∑
i=1

qt
ik ≤ dt

k (ρt
3), then we can know dt

k (ρt
3) > N . By the

assumption (2.9), it follows that ρt,b
3k ≤ M < R. This contradicts (2.7).

(5) Now since we have established that Qb
4 < b, it follows that ρt,b

3k ≤ ĉt
jk(qt

jk, ht−1
jk ).

From the definition of N1, we conclude that ρt,b
3k ≤ N1 < b6.

Under the conditions of Theorem 2.1, it is possible to construct b0, b1, b2, b3, b4, b5

and b6 large enough so that the restricted variational inequality (2.1) will satisfy
the boundedness condition (2.2). Therefore, by Lemma 2.1, there exists a solution
to the original variational inequality (1.25).

The existence of the positive constants M , N and R is reasonable from an
economics perspective.

If any of the manufacturer’s production quantity at a certain time period is
high, the marginal production cost would be expected to exceed some positive
lower bound. If any of the product shipments between a manufacturer and retailer
pair at a certain time period is large, we can expect the corresponding sum of the
associated marginal cost associated with transacting, handling and weighted risk
to exceed a positive lower bound.

Similarly, if any of the product flows between a manufacturer and demand
market pair at a certain time period is large, we can expect the corresponding
sum of the associated marginal cost of transacting and the marginal weighted risk
cost to exceed a positive lower bound. When the product flow between a retailer
and demand market pair at a certain time period is high, we can expect the sum
of the marginal cost of transacting and the marginal weighted risk cost to be
nonnegative and to exceed a lower bound.

Also, in the case where the inventory quantity of a manufacturer or a retailer at
a certain time period is high, then the marginal inventory cost would be expected
to exceed some positive lower bound. Moreover, at each period, when the price
that consumers at a demand market have to pay is high, we can expect the demand
for the product to be low at that consumer market. �

Theorem 2.3 (uniqueness). Under the assumptions of cost functions mentioned
earlier, the function that enters the variational inequality (1.25) has a unique so-
lution in Ω.
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Figure 2. The structure of the multiperiod supply chain network for examples.

Proof. Suppose that X1 and X2 are both solutions and X1 	= X2, then since both
X1 and X2 are solutions, they must satisfy:〈

F
(
X1
)

, X − X1
〉 ≥ 0, ∀X ∈ Ω. (2.10)〈

F
(
X2
)

, X − X2
〉 ≥ 0, ∀X ∈ Ω. (2.11)

After substituting X2 for X in (2.10) and X1 for X in (2.11) and adding the
resulting inequalities, one obtains:〈

F
(
X1
)− F

(
X2
)
, X2 − X1

〉 ≥ 0 (2.12)

but inequality (2.12) is in contradiction to the definition of strict monotonicity.
Hence, X1 = X2. �

3. Numerical examples

In this section, we apply Lingo 9.0 to three numerical examples which have the
network structure consisting of two manufacturers, two retailers, and two demand
markets, with both B2B and B2C transactions permitted. In addition, we consid-
ered three time periods for the planning horizon, that is, T = 3. The structure
of the multiperiod supply chain network for the examples is depicted in Figure 2.
The detailed description is given below.

Example 3.1. The data for this example were constructed for easy interpretation
purpose and to serve as a base line.

The production cost functions for the two manufacturers were:

f1

(
qt
)

= 2.5
(
qt
1

)2 + qt
1q

t
2 + 2qt

1, ∀t.

f2

(
qt
)

= 2.5
(
qt
2

)2 + qt
1q

t
2 + 2qt

2, ∀t.
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The costs of transacting faced by the two manufacturers when transacting with
the two retailers were, respectively, given by:

ct
ij1

(
qt
ij1, h

t−1
ij1

)
=
(
0.5 − 0.3ht−1

ij1

) (
qt
ij1

)2 +
(
3.5 − ht−1

ij1

)
qt
ij1, ∀i, j, t.

ct
ij2

(
qt
ij2, h

t−1
ij2

)
=
(
0.5 − 0.2ht−1

ij2

) (
qt
ij2

)2 +
(
3 − ht−1

ij2

)
qt
ij2, ∀i, j, t.

The costs of transacting of the two manufacturers when dealing with consumers
at the two demand markets via the Internet were:

ct
ik

(
qt
ik, ht−1

ik

)
=
(
qt
ik

)2 + 2qt
ik − 2ht−1

ik , ∀i, k, t.

The handling cost functions of the two retailers, in turn, were given by:

ct
j

(
Qt

1

)
= 0.5

[
2∑

i=1

2∑
l=1

qt
ijl

]2

, ∀j, t.

The costs of transacting of the two retailers when transacting with the two man-
ufacturers via mode 1 and mode 2 were:

ĉt
ijl

(
qt
ijl, h

t−1
ijl

)
= 1.5

(
qt
ijl

)2 + 3qt
ijl − 0.5ht−1

ijl , ∀i, j, l, t.

The costs of transacting for consumers at the two demand market when transacting
with the two retailers were:

ĉt
jk

(
qt
jk, ht

jk

)
= qt

jk − ht
jk + 5, ∀j, k, t.

The risk functions faced by the two manufacturers when transacting with the two
retailers were, respectively, given by:

rt
ij1

(
qt
ij1, h

t−1
ij1

)
=
(
qt
ij1

)2 +
(
1.5 − ht−1

ij1

)
qt
ij1, ∀i, j, t.

rt
ij2

(
qt
ij2, h

t−1
ij2

)
=
(
qt
ij2

)2 +
(
2 − ht−1

ij2

)
qt
ij2, ∀i, j, t.

The risk cost functions faced by the two retailers when transacting with the two
manufacturers were:

r̂t
ijl

(
qt
ijl, h

t−1
ijl

)
=
(
qt
ijl

)2 + 2qt
ijl − 0.5ht−1

ijl , ∀i, j, l, t.

The relationship production cost functions faced by the manufacturers when trans-
acting with the retailers were given by:

vt
ij1

(
ht

ij1

)
= 10ht

ij1 + 3, ∀i, j, t = 1, 2.

vt
ij2

(
ht

ij2

)
= 10ht

ij2 + 1, ∀i, j, t = 1, 2.

The inventory cost functions of the manufacturers and retailers, respectively, were
given by:

Ht
i = 0.025

(
It
i

)2 + 0.5It
i , ∀i, t.

Ht
j = 0.005

(
It
j

)2 + 1, ∀j, t.
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The demand functions at the two demand markets were:

d1

(
ρt
3

)
= −2ρt

31 − 1.5ρt
32 + 1000, ∀t.

d2

(
ρt
3

)
= −2ρt

32 − 1.5ρt
31 + 1000, ∀t.

We set all other functions equal to zero (see [12, 33]). Moreover, we assumed that
the weights associated with the risk cost functions for the two retailers were all
equal to zero.

Since this paper emphasized the impacts of e-commerce and relationship level
on the decision-making of supply chain players with different weights concerning
risk, in the following examples we assumed that αij1 = 0 and αij2 = 1, that is,
the mode 1 was associated with risk-neutral preference of the manufacturers while
the mode 2 was related to slight risk-averse preference of them. It implied that
in the first example the two manufacturers were involved in profit maximization
exclusively when transacting through physical mode (l = 1), whereas they were
concerned with both profit maximization and risk minimization through electronic
mode (l = 2).

The Lingo converged in 10145 iterations and yielded the following equilibrium
pattern which was given in Table 6.

It was easy to verify that the equilibrium conditions were satisfied with good
accuracy. Note that there was a larger volume of product transacted physically
than electronically in this example. As expected, we noted that the prices at the
two demand markets exceeded the prices for the product at the retailer layer. This
was mainly due to the fact that the prices increased as the product propagated
down through the supply chain when costs accumulated. Clearly, in this example,
consumers preferred to conduct their transactions directly with the manufacturers
in electronic manner.

We would conduct numerous simulations by modifying manufacturers’ associ-
ated weights of risk through different modes and investigate the effects on the
equilibrium product transactions and product prices.

Example 3.2. Example 3.2 was constructed from Example 3.1 as follows. We kept
the data as in the first example and increased the weights associated with the two
manufacturers transacting with the two retailers through physical mode, that is,
αij1 = αij2 = 1. This meant that both manufacturers weighted the criterion of risk
minimization equally to that of net revenue maximization. The Lingo converged in
1900 iterations and yielded the following equilibrium flow and price pattern which
was given in Table 7.

Note that, in comparison to the fact that the two manufacturers were risk-
neutral about transacting with retailers through traditionally physical mode
(l = 1) in Example 3.1, we observed that the manufacturers were both risk-averse
in Example 3.2.

From the results in Table 7, we could obtain that the volume of the product
transacted physically between the two manufacturers and the two retailers de-
creased. However, the volume transacted electronically through Internet increased
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Table 6. Equilibrium solutions of Example 3.1.

t = 1 t = 2 t = 3

qt∗
i q1∗

1 = q1∗
2 = 36 .65

q2∗
1 = 36 .68

q2∗
2 = 36.68

q3∗
1 = 36 .69

q3∗
2 = 36.65

qt∗
ijl

q1∗
111 = q1∗

121 = q1∗
211

= q1∗
221 = 3.52

q1∗
112 = q1∗

122 = q1∗
212

= q1∗
222 = 2.45

q2∗
111 = q2∗

121 = q2∗
211

= q2∗
221 = 3 .50

q2∗
112 = q2∗

122 = q2∗
212

= q2∗
222 = 2.44

q3∗
111 = q3∗

121 = q3∗
211

= q3∗
221 = 3.50

q3∗
112 = q3∗

122 = q3∗
212

= q3∗
222 = 2.44

ht∗
ijl

h1∗
111 = h1∗

121 = h1∗
211

= h1∗
221 = 0.00

h1∗
112 = h1∗

122 = h1∗
212

= h1∗
222 = 0.00

h2∗
111 = h2∗

121 = h2∗
211

= h2∗
221 = 0.00

h2∗
112 = h2∗

122 = h2∗
212

= h2∗
222 = 0.00

h3∗
111 = h3∗

121 = h3∗
211

= h3∗
221 = 0.00

h3∗
112 = h3∗

122 = h3∗
212

= h3∗
222 = 0.00

qt∗
ik

q1∗
11 = q1∗

12 = q1∗
21

= q1∗
22 = 12.35

q2∗
11 = q2∗

21 = 12.32

q2∗
12 = q2∗

22 = 12.46

q3∗
11 = q3∗

12 = 12.41

q3∗
21 = q3∗

22 = 12.34

ht∗
ik

h1∗
11 = h1∗

21 = 1.00

h1∗
12 = h1∗

22 = 0.91

h2∗
11 = h2∗

12 = 1.00

h2∗
21 = h2∗

22 = 0.17

h3∗
11 = h3∗

12 = h3∗
21

= h3∗
22 = 0.00

It∗
i I1∗

1 = 0 .00 I1∗
2 = 0.00 I3∗

1 = 0 .00

I2∗
1 = 0 .00 I2∗

2 = 0.00 I3∗
2 = 0.00

qt∗
jk

q1∗
11 = q1∗

12 = 5.84

q1∗
21 = q1∗

22 = 5.81

q2∗
11 = q2∗

21 = 6.25

q2∗
12 = q2∗

22 = 5.95

q3∗
11 = q3∗

22 = 6.17

q3∗
12 = q3∗

21 = 5.75

ht∗
jk

h1∗
11 = h1∗

21 = 0.92

h1∗
12 = h1∗

22 = 0.00

h2∗
11 = h2∗

22 = 0.43

h2∗
12 = h2∗

21 = 0.00

h3∗
11 = h3∗

22 = h3∗
12

= h3∗
21 = 0.00

It∗
j I1∗

1 = I1∗
2 = 0.30 I2∗

1 = I2∗
2 = 0.00 I3∗

1 = I3∗
2 = 0.00

ρt∗
1ijl

ρ1∗
1111 = ρ1∗

1121 = ρ1∗
1211

= ρ1∗
1221 = 228.94

ρ1∗
1112 = ρ1∗

1122 = ρ1∗
1212

= ρ1∗
1222 = 234.28

ρ2∗
1111 = ρ2∗

1121 = ρ2∗
1211

= ρ2∗
1221 = 229.07

ρ2∗
1112 = ρ2∗

1122 = ρ2∗
1212

= ρ2∗
1222 = 234.39

ρ3∗
1111 = ρ3∗

1121 = ρ3∗
1211

= ρ3∗
1221 = 229.05

ρ3∗
1112 = ρ3∗

1122 = ρ3∗
1212

= ρ3∗
1222 = 234.30

ρt∗
1ik

ρ1∗
111 = ρ1∗

112 = ρ1∗
121

= ρ1∗
122 = 261.98

ρ2∗
111 = ρ2∗

121 = 262.02

ρ2∗
112 = ρ2∗

122 = 262.45

ρ3∗
111 = ρ3∗

112 = 262.33

ρ3∗
121 = ρ3∗

122 = 261.94

ρt∗
2jk

ρ1∗
211 = ρ1∗

212 = 264.49

ρ1∗
221 = ρ1∗

222 = 264.52

ρ2∗
211 = ρ2∗

212 = 264.49

ρ2∗
221 = ρ2∗

222 = 264.52

ρ3∗
211 = ρ3∗

212 = 264.49

ρ3∗
221 = ρ3∗

222 = 264.50

ρt∗
3k ρ1∗

31 = ρ1∗
32 = 275.33 ρ2∗

31 = ρ2∗
32 = 275.19 ρ3∗

31 = ρ3∗
32 = 275.24
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Table 7. Equilibrium solutions of Example 3.2.

t = 1 t = 2 t = 3

qt∗
i q1∗

1 = q1∗
2 = 36.45

q2∗
1 = 36.46

q2∗
2 = 36 .44

q3∗
1 = q3∗

2 = 36 .44

qt∗
ijl

q1∗
111 = q1∗

112 = q1∗
211

= q1∗
212 = 2 .79

q1∗
121 = q1∗

122 = q1∗
221

= q1∗
222 = 2.76

q2∗
111 = q2∗

112 = 2.79

q2∗
121 = q2∗

122 = 2 .76

q2∗
211 = q2∗

212 = 2.80

q2∗
221 = q2∗

222 = 2.77

q3∗
111 = q3∗

112 = q3∗
211

= q3∗
212 = 2.79

q3∗
121 = q3∗

221 = q3∗
222

= q3∗
122 = 2 .77

ht∗
ijl

h1∗
111 = h1∗

121 = h1∗
211

= h1∗
221 = 0.00

h1∗
112 = h1∗

122 = h1∗
212

= h1∗
222 = 0.00

h2∗
111 = h2∗

121 = h2∗
211

= h2∗
221 = 0.00

h2∗
112 = h2∗

122 = h2∗
212

= h2∗
222 = 0.00

h3∗
111 = h3∗

121 = h3∗
211

= h3∗
221 = 0.00

h3∗
112 = h3∗

122 = h3∗
212

= h3∗
222 = 0.00

qt∗
ik

q1∗
11 = q1∗

12 = q1∗
21

= q1∗
22 = 12.67

q2∗
11 = q2∗

21 = 12.64

q2∗
12 = q2∗

22 = 12.68

q3∗
11 = q3∗

21 = 12.66

q3∗
12 = q3∗

22 = 12.65

ht∗
ik

h1∗
11 = h1∗

21 = h1∗
22

= 0.00

h1∗
12 = 1.00

h2∗
11 = h2∗

12 = h2∗
21

= h2∗
22 = 0.00

h3∗
11 = h3∗

12 = h3∗
21

= h3∗
22 = 0.00

It∗
i I1∗

1 = 0 .00 I1∗
2 = 0 .00 I3∗

1 = 0 .00

I2∗
1 = 0 .00 I2∗

2 = 0 .00 I3∗
2 = 0 .00

qt∗
jk

q1∗
11 = q1∗

12 = 5.18

q1∗
21 = q1∗

22 = 5.53

q2∗
11 = q2∗

12 = 5.98

q2∗
21 = q2∗

22 = 5.38

q3∗
11 = q3∗

22 = 5.89

q3∗
12 = q3∗

21 = 5.39

ht∗
jk

h1∗
11 = h1∗

12 = 0.00

h1∗
21 = h1∗

22 = 0.00

h2∗
11 = h2∗

22 = 0.63

h2∗
21 = h2∗

22 = 0.25

h3∗
11 = h3∗

22 = h3∗
21

= h3∗
22 = 0.000

It∗
j I1∗

1 = 0.80 I1∗
2 = 0.00 I3∗

1 = I3∗
2 = 0.00

I2∗
1 = 0.00 I2∗

2 = 0.29

ρt∗
1ijl

ρ1∗
1111 = ρ1∗

1112 = ρ1∗
1211

= ρ1∗
1212 = 234.10

ρ1∗
1121 = ρ1∗

1122 = ρ1∗
1221

= ρ1∗
1222 = 234.02

ρ2∗
1111 = ρ2∗

1112

= 233.11

ρ2∗
1121 = ρ2∗

1122

= 234.01

ρ2∗
1211 = ρ2∗

1212

= 234.05

ρ2∗
1221 = ρ2∗

1222

= 233.95

ρ3∗
1111 = ρ3∗

1112

= 233.01

ρ3∗
1121 = ρ3∗

1122

= 233.94

ρ3∗
1211 = ρ3∗

1212

= 234.01

ρ3∗
1221 = ρ3∗

1222

= 233.94

ρt∗
1ik

ρ1∗
111 = ρ1∗

112 = ρ1∗
121

= ρ1∗
122 = 261.64

ρ2∗
111 = ρ2∗

121 = 261.61

ρ2∗
112 = ρ2∗

122 = 262.26

ρ3∗
111 = ρ3∗

121 = 261.62

ρ3∗
112 = ρ3∗

122 = 261.59

ρt∗
2jk

ρ1∗
211 = ρ1∗

212 = 265.27

ρ1∗
221 = ρ1∗

222 = 264.89

ρ2∗
211 = ρ2∗

212 = 265.24

ρ2∗
221 = ρ2∗

222 = 264.85

ρ3∗
211 = ρ3∗

212 = 265.14

ρ3∗
221 = ρ3∗

222 = 264.85

ρt∗
3k ρ1∗

31 = ρ1∗
32 = 275.41 ρ2∗

31 = ρ2∗
32 = 275.22 ρ3∗

31 = ρ3∗
32 = 275.26
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(relative to those obtained in Ex. 3.1), that is, the shortages in the physical product
flows were partially compensated by electronic transactions. Given that the manu-
facturers were both concerned with the physical product transactions which their
risk functions could demonstrate, an increase in the electronic product transac-
tions was expected. As a result, the value of prices charged by both manufacturers
increased accordingly.

One would expect that the more risk-averse preference of the manufacturers
(i.e., larger, that is, higher weights of risk) would imply that the associated equi-
librium value of the relationship levels involved would be reached more higher.
For this example, we noted that the equilibrium relationship levels were all equal
to zero, that is, the whole relationship levels among decision-makers in the sup-
ply chain network were at the lowest levels, although both manufacturers were
risk-averse to the electronic transactions. Note that these results did not follow
intuition that increasing of the weights of risk was expected to affect the relation-
ship level and the behavior of decision-makers in the network and, therefore, the
system.

From condition (1.13) and (1.14), we could obtain that the decision on whether
to maintain the current relationship (t = 1, 2) depended on whether the marginal
relationship production cost for maintaining relationship levels was less than the
sum of the marginal cost of transacting and the marginal risk cost. Under the
premise that the decision-making members were not risk-neutral, if the former
was less than the latter, he would choose to maintain the relationship and the
corresponding relationship level was nonnegative.

In addition, both manufacturers’ risk-averse preference about physical transac-
tions resulted in an overall decrease of the amount of product supplied by the two
manufacturers. It was worth noting that since the prices charged by the manufac-
turers to the retailers increased, the prices charged by the retailers to consumers
also increased. Because consumers at the two demand markets could satisfy their
demand either through the manufacturers electronically or through the retailers
physically, the change in ultimate prices was insignificant.

Interestingly, the increase of weights did not change the relationship levels.
It might be due to the fact that the manufacturers were more sensitive to the
demand from consumers located at the two demand markets or the manufacturers
were more concerned about whether it was economic to establish relationship with
retailers when transacting with those through physical product flows. It might
also because relationship was not one-way but two-way. If the retailers did not
choose to maintain their relationship levels for the economic purpose, even though
manufacturers chose, the relationship levels between them would not change in
significant ways.

As to the inventory of each retailer at each time period (t = 1, 2), it was worth
noting that I1∗

1 = 0.80 and I2∗
2 = 0.29, which demonstrated that the difference

between its production output and the total product shipments would be treated
as his inventory at that time period. Similarly, we could obtain the inventory of
each retailer at each time period.
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Example 3.3. We then modified Example 3.2 as follows. All the data were as
in the Example 4.2 except that we increased the risk weights associated with
electronic transaction, αij2, which were all equal to 2. This meant that, in effect,
the two manufacturers were more risk-averse to the transactions to the retailers
through the Internet than that in Example 3.2. The Lingo converged in 9365
iterations and yielded the following equilibrium flow and price pattern (see Tab. 8):

Unlike Example 3.2 in which the risk weights associated with electronic transac-
tions through mode 2 were equal to those related to physical transactions through
mode 1, both manufacturers were more risk-averse to retailers when the transac-
tions were conducted electronically in this example. An interesting fact to note here
was that even though the change in the mode of transactions appeared only with
manufacturers and retailers, it affected the entire supply chain network system
and the prices throughout the entire system.

From the results in Table 8, we could observe that the more risk-averse prefer-
ence of both manufactures resulted in an overall decrease of the product provided
by the two manufacturers. Note that there were more transactions conducted elec-
tronically than physically between the two manufacturers and the two retailers
at each time period. The effect on the corresponding prices of product was the
opposite. At the time period t = 2, in contrast to relationship levels h2∗

ij1 which
were all greater than zero, relationship levels h2∗

ij2 remained at zero. It might seem
counterintuitive that weights of the risk were not sufficient condition to guaran-
tee the relevant relationship levels nonnegative. As the analysis in example 3.2,
however, this had the interpretation that the decision on whether to maintain the
current relationship levels was dependent on whether the sum of the marginal
cost of transacting and the marginal cost of risk (which were both reduced by
relationship) exceeded the marginal relationship production cost for maintaining
relationship levels or not.

Compared with the results in Table 7, we obtained that product flows between
the two manufacturers and the two demand markets at three time periods, qt∗

ik ,
were all larger than those obtained in Example 3.2. It might be due to the fact
that the sum of the increased volume of qt∗

ij1 and the decreased volume of qt∗
ij2 was

still greater than zero. From the equilibrium solution in Table 8, what’s more, the
relationship levels between the two manufacturers and the two demand markets at
time period t = 2 were all larger than those at time period t = 1. This would result
in the increasing of the cost of transacting as well as the risk costs at time period
t = 2 (which were both decreasing in the relationship levels of the preceding time
period). Then, it made sense for the manufacturers to increase the amounts of their
product flows related to consumers at different demand markets. On the contrary,
the manufacturers increased electronic transactions relevant to consumers at time
period t = 3, which was largely the result of the decreased relationship levels
between such decision-makers.

The results also showed that when the sum of the marginal inventory cost of
each manufacturer or retailer and the shadow price at time period t exceeded the
shadow price at the next time period (t + 1), he would not stock any product at
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Table 8. Equilibrium solutions of Example 3.3.

t = 1 t = 2 t = 3

qt∗
i q1∗

1 = q1∗
2 = 36 .29

q2∗
1 = 36 .32

q2∗
2 = 36 .32

q3∗
1 = 36 .40

q3∗
2 = 36 .41

qt∗
ijl

q1∗
111 = q1∗

211 = 3.01

q1∗
121 = q1∗

221 = 3.03

q1∗
112 = q1∗

212 = 2.20

q1∗
122 = q1∗

222 = 2.22

q2∗
111 = q2∗

211 = 2.98

q2∗
112 = q2∗

212 = 2.19

q2∗
121 = q2∗

221 = 3.01

q2∗
122 = q2∗

222 = 2 .21

q3∗
111 = q3∗

121 = q3∗
211

= q3∗
221 = 3 .33

q3∗
112 = q3∗

122 = q3∗
212

= q3∗
222 = 2 .09

ht∗
ijl

h1∗
111 = h1∗

121 = h1∗
211

= h1∗
221 = 0 .00

h1∗
112 = h1∗

122 = h1∗
212

= h1∗
222 = 0 .00

h2∗
111 = h2∗

121 = h2∗
211

= h2∗
221 = 0.95

h2∗
112 = h2∗

122 = h2∗
212

= h2∗
222 = 0 .00

h3∗
111 = h3∗

121 = h3∗
211

= h3∗
221 = 0 .00

h3∗
112 = h3∗

122 = h3∗
212

= h3∗
222 = 0 .00

qt∗
ik

q1∗
11 = q1∗

12 = q1∗
21

= q1∗
22 = 12.92

q2∗
11 = q2∗

21 = 12.93

q2∗
12 = q2∗

22 = 12.98

q3∗
11 = q3∗

21 = 12.79

q3∗
12 = q3∗

22 = 12.82

ht∗
ik

h1∗
11 = h1∗

12 = 1.00

h1∗
21 = h1∗

22 = 0.87

h2∗
11 = 1.00

h2∗
12 = 0.00

h2∗
21 = 0.82

h2∗
22 = 0.69

h3∗
11 = h3∗

12 = h3∗
21

= h3∗
22 = 0.00

It∗
i I1∗

1 = 0 .00 I2∗
1 = 0 .01 I3∗

1 = 0 .00

I1∗
2 = 0 .00 I2∗

2 = 0 .06 I3∗
2 = 0 .00

qt∗
jk

q1∗
11 = q1∗

12 = 5.21

q1∗
21 = q1∗

22 = 4.97

q2∗
11 = q2∗

21 = 5.38

q2∗
12 = q2∗

22 = 5.29

q3∗
11 = q3∗

21 = 5.46

q3∗
12 = q3∗

22 = 5.37

ht∗
jk

h1∗
11 = h1∗

12 = 0.00

h1∗
21 = 0.99

h1∗
22 = 0.42

h2∗
11 = h2∗

12 = 0.00

h2∗
21 = 1.00

h2∗
22 = 0.01

h3∗
11 = h3∗

12 = h3∗
21

= h3∗
22 = 0.00

It∗
j

I1∗
1 = 0.00

I1∗
2 = 0.57

I2∗
1 = I2∗

2 = 0.00 I3∗
1 = I3∗

2 = 0.00

ρt∗
1ijl

ρ1∗
1111 = ρ1∗

1121 = 233.77

ρ1∗
1112 = ρ1∗

1212 = 237.78

ρ1∗
1121 = ρ1∗

1221 = 233.83

ρ1∗
1122 = ρ1∗

1222 = 237.86

ρ2∗
1111 = ρ2∗

1121 = 233.87

ρ2∗
1112 = ρ2∗

1212 = 237.50

ρ2∗
1121 = ρ2∗

1221 = 233.96

ρ2∗
1122 = ρ2∗

1222 = 237.97

ρ3∗
1111 = ρ3∗

1121 = 231.44

ρ3∗
1112 = ρ3∗

1212 = 237.76

ρ3∗
1121 = ρ3∗

1221 = 231.82

ρ3∗
1122 = ρ3∗

1222 = 237.96

ρt∗
1ik

ρ1∗
111 = ρ1∗

112 = ρ1∗
121

= ρ1∗
122 = 261.51

ρ2∗
111 = ρ2∗

121 = 261.72

ρ2∗
112 = ρ2∗

122 = 261.86

ρ3∗
111 = ρ3∗

121 = 261.78

ρ3∗
112 = ρ3∗

122 = 261.84

ρt∗
2jk

ρ1∗
11 = ρ1∗

12 = 265.22

ρ1∗
21 = ρ1∗

22 = 265.46

ρ2∗
11 = ρ2∗

12 = 265.10

ρ2∗
21 = ρ2∗

22 = 265.47

ρ3∗
11 = ρ3∗

12 = 264.90

ρ3∗
21 = ρ3∗

22 = 265.37

ρt∗
3k ρ1∗

31 = ρ1∗
32 = 275.43 ρ2∗

31 = ρ2∗
32 = 275.27 ρ3∗

31 = ρ3∗
32 = 275.25
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time period t. Similar with Example 3.2, consumers at the various demand markets
could purchase product either from the manufacturers electronically or from the
retailers physically, thus the consumers’ willing-to-pay prices in general did not
respond significantly.

In summary, such results revealed important managerial insights for supply
chain decision-makers. The supply chain administrators should first evaluate the
risk of the firm by using the above principles. If the firm was more concerned about
risk they should try to confirm whether it was economic to develop or maintain
relationship or not. If so, they should make no spare to strengthen the relationship
level with their business partners since high relationship level would reduce their
cost of transacting as well as risk costs. Furthermore, they should also maintain
certain production capacity especially when relationship levels were high enough.

Obviously, the above examples are stylized but they demonstrate the efficacy of
the model. Indeed, different input data and dimensions of the problems solved will
affect the equilibrium outputs, transactions, inventories, relationship levels and
price patterns. One could also explore the effects of data as well as the effects of
changes in the number of manufacturers, retailers, and demand markets.

4. Conclusion and directions for future research

In this paper, a framework for the formulation and analysis of the multiperiod
supply chain network equilibrium problem was proposed. We allowed for physical
as well as electronic transactions between the various decision-makers in the pres-
ence of both B2B e-commerce and B2C e-commerce. The decision-makers were:
manufacturers, retailers and consumers at different demand markets, who might
compete within a tier but cooperate between tiers. We described their multicriteria
decision-making behavior including the maximization of profit as well as the min-
imization of risk. The manufacturers and the retailers were permitted to weight
their objective functions according to their individual preferences. In addition, the
relationship levels were assumed to reduce not only the risk cost but also the asso-
ciated cost of transacting. Consequently, the remarkable feature of the paper was
the integration of e-commerce, multicriteria decision-making and the discrete time
planning along with inventorying, namely, multiperiod decision-making. Compared
with other relevant references, in addition, the paper regarded relationship as an
influencing factor rather than the third criterion on account of considering time
periods over a finite planning horizon.

We discussed behavior of the various decision-makers, established the optimality
conditions for the manufacturers and the retailers, along with the equilibrium
conditions, and provided the finite-dimensional variational inequality formulation.
Qualitative properties of the equilibrium model, notably, the existence as well
as the uniqueness under suitable assumptions on the underlying functions, were
established. Finally, several illustrative examples were considered to verify the
rationality of the model and obtain some managerial insight to manufacturers
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and retailers involved in different decision-making, such as producing, transacting,
inventorying, establishing relationship and so on.

For further research, the model may include the consideration of different cost
of transacting structures between electronic and non-electronic modes, computing
risk functions and calibrating those parameters of weights associated with risk
costs. Moreover, an application of the algorithm to concrete numerical examples
and the continuous time planning should also be integrated into the modeling. It
is the author’s intention to explore such areas in future work.
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