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NEW RESULTS ON SEMIDEFINITE BOUNDS
FOR �1-CONSTRAINED NONCONVEX QUADRATIC

OPTIMIZATION ∗

Yong Xia

Abstract. In this paper, we show that the direct semidefinite pro-
gramming (SDP) bound for the nonconvex quadratic optimization
problem over �1 unit ball (QPL1) is equivalent to the optimal d.c. (dif-
ference between convex) bound for the standard quadratic program-
ming reformulation of QPL1. Then we disprove a conjecture about the
tightness of the direct SDP bound. Finally, as an extension of QPL1,
we study the relaxation problem of the sparse principal component
analysis, denoted by QPL2L1. We show that the existing direct SDP
bound for QPL2L1 is equivalent to the doubly nonnegative relaxation
for variable-splitting reformulation of QPL2L1.
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1. Introduction

Semidefinite programming (SDP) relaxation has recently gained much attention
due to its tractability in computation to derive both strong bounds and approxima-
tion algorithms for combinatorial optimization problems and nonconvex quadratic
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programs, see, for example, [11]. Generally, we have the lifting procedure [6] and
the Shor’s approach [10] to establish the primal and dual semidefinite relaxation,
respectively. But for the non-quadratic representable problems, these approaches
can not be automatically applied. In order to obtain SDP relaxations, more efforts
such as reformulation should be made firstly.

Pinar and Teboulle [9] obtained a direct SDP relaxation of the following opti-
mization problem, which maximizes a quadratic form over the �1 unit ball:

QPL1(Q) : max xT Qx

s.t. ‖x‖1 ≤ 1.

In the area of nonlinear programming, QPL1(Q) is known as an �1-norm trust-
region subproblem. In compressed sensing, ‖x‖1 is used to approximate ‖x‖0, the
number of nonzero elements of x. In particular, the former is the convex envelope
of the latter for x ∈ [−1, 1]n. If Q is negative semidefinite, QPL1(Q) is a convex
program. Besides, if Q is positive semidefinite, it remains trivial, see [9]. Otherwise,
it is difficult in general, see [8].

Moreover, it is easy to verify that the set of extreme points of {x : ‖x‖1 ≤ 1} is
simply {e1,−e1, · · · , en,−en}, where ei is the ith column of the identity matrix I.
Throughout this paper, we define

A := [e1, · · · , en,−e1, · · · ,−en] = [I − I] ∈ �n×2n,

Q̃ = AT QA =
[

Q −Q
−Q Q

]
.

Therefore, we can rewrite the �1 constrained set as

{x : ‖x‖1 ≤ 1} = {Ay : y ∈ Δ2n} , (1.1)

where Δ2n is the simplex in �2n, i.e.,

Δ2n :=
{
y ∈ �2n : eT y = 1, y ≥ 0

}
.

It follows that QPL1(Q) can be reformulated as

QPL1′
(
Q̃

)
: max

y∈Δ2n

yT Q̃y, (1.2)

which is referred to as standard quadratic program (QPS) in the literature. QPS
admits an exact copositive formulation [3] and has many well-known relaxations,
for example, the doubly nonnegative relaxation [3] and the optimal d.c. (difference
between convex) relaxation [1]. We refer the reader to the survey [4] for different
bounds.

An extension of QPL1(Q) is the following nonconvex quadratic program:

QPL2L1(Q) : max xT Qx

s.t. ‖x‖2 = 1
‖x‖2

1 ≤ k (1.3)
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which arises from a relaxation of the sparse principal component analysis (PCA)
problem

PCA(Q) : max xT Qx

s.t. ‖x‖2 = 1
Card(x) ≤ k,

where Card(x) denotes the cardinality of x, and is controlled by a positive param-
eter k. The equation (1.3) holds true since

‖x‖1 ≤
√

Card(x)‖x‖2 ≤
√

k,

where the first inequality follows from the Cauchy-Schwarz inequality.
d’Aspremont et al. [5] proposed an SDP relaxation for the penalized version of

QPL2L1(Q). A similar but direct SDP relaxation of QPL2L1(Q) is due to Luss
and Teboulle [7]. Applying the above variable-splitting approach for the �1 unit
ball, we can also derive similar SDP relaxations such as the doubly nonnegative
relaxation for QPL2L1(Q).

In this paper, we theoretically compare the tightness of the above SDP relax-
ations. For QPL1(Q), we show the direct SDP bound proposed in [9] is equivalent
to the optimal d.c. bound [1] for QPL1′(Q̃) (1.2). We then disprove a conjecture [9]
stating that the direct SDP bound is tight when Qij ≥ 0, ∀i 	= j. For QPL2L1(Q),
we show the direct SDP bound presented in [7] is as tight as the doubly nonnegative
relaxation for the variable-splitting reformulation of QPL2L1(Q). The remainder
of this paper is organized as follows. In Section 1, we first present and then com-
pare the existing SDP relaxations for QPL1(Q). We disprove a conjecture stating
that the direct SDP relaxation is tight when all the off-diagonal elements of Q are
nonnegative. In Section 2, we compare the tightness of two SDP relaxations for
QPL2L1(Q). We give concluding remarks in Section 3.

Throughout the paper, let v(·) denote the optimal value of problem (·). We
denote by Sn the set of all n× n symmetric matrices. Notation A 
 (�)B implies
that the matrix A−B is positive (negative) semidefinite, whereas A ≥ 0 indicates
that A is componentwise nonnegative. The standard inner product on Sn is A•B =
trace (ABT ) =

∑n
i,j=1 aijbij . We denote a vector of arbitrary dimension with all

components equal to one by e and the identity matrix by I. For a matrix A and a
vector a, we denote by diag(A) the column vector with its components being the
diagonal elements of A, and Diag(a) the diagonal matrix with a being its diagonal
vector.

2. SDP relaxations of QPL1(Q)

In this section, we first present the existing SDP relaxations for QPL1(Q). Then
we compare their tightness. Finally, we disprove a conjecture in [9] stating that
(SDPL1) is an exact bound when Q ∈ Sn, Qij ≥ 0 for all i 	= j.
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2.1. A direct SDP relaxations of QPL1(Q)

Based on the variational representation of the �1-norm:

Lemma 2.1. ([9])

‖x‖2
1 = inf

{
xT Diag

(
v−1

)
x : v ∈ Γ

}
where v−1 = (v−1

1 , · · · , v−1
n )T and

Γ =
{
v : eT v ≤ 1, v > 0

}
(2.1)

Pinar and Teboulle [9] derived a direct SDP relaxation as follows:

v(QPL1(Q)) = max
{

xT Qx : inf
v∈Γ

xT Diag(v−1)x ≤ 1
}

≤ sup
x,v

{
xT Qx : xT Diag

(
v−1

)
x ≤ 1, v ∈ Γ

}
= sup

x,v

{
xT Qx : Diag(v) − xxT 
 0, v ∈ Γ

}
(2.2)

≤ max
X,v

{
Q • X : Diag(v) − X 
 0, X 
 0, eT v ≤ 1, v ≥ 0

}
(2.3)

:= v(SDPL1(Q)),

where (2.2) follows from Schur’s Lemma and the SDP relaxation (2.3) is obtained
from the lifting procedure.

Actually, SDPL1(Q) can be obtained more directly. Notice that for any x in the
�1 unit ball, it holds that

|xi| − x2
i = |xi|(1 − |xi|) ≥ |xi|

∑
j �=i

|xj | ≥
∑
j �=i

xixj .

According to the Gerschgorin circle theorem, we have

Diag(|x|) 
 xxT , (2.4)

which leads to the same relaxation as in (2.3).
Let (X∗, v∗) be an optimal solution to SDPL1(Q). Suppose eT v∗ < 1, then

(X∗, v∗ + 1−eT v∗
n e) remains optimal since the objective function of SDPL1(Q) is

independent of v. Notice that eT (v∗ + 1−eT v∗
n e) = 1. Then SDPL1(Q) (2.3) can be

rewritten as

v(SDPL1(Q)) = max
X,v

{
Q • X : Diag(v) − X 
 0, X 
 0, eT v = 1, v ≥ 0

}
. (2.5)

It follows that (2.1) in Lemma 2.1 can be strengthened to

Γ ′ =
{
v : eT v = 1, v > 0

}
.
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2.2. Comparision of the tightness of SDP relaxations

The standard Shor relaxation of QPL1′(Q̃) (1.2) reads:

SQPS(Q̃) : max Q̃ • Y

s.t.
(

1 yT

y Y

)

 0,

y ∈ Δ2n,

which is equivalent to the dual:

DQPS(Q̃) : min σ + μ

s.t.
(

σ sT

s −Q̃

)

 0,

2s − μe ≤ 0.

As an improvement of v(SQPS(Q̃)), Anstreicher and Burer [1] derived an optimal
d.c. bound, denoted by DC(Q̃). Let Q̃ = S − T , where S � 0, T � 0. We have

v(QPL1(Q)) ≤ max
y∈Δ2n

yT Sy + max
y∈Δ2n

−yT Ty

= max
y∈Δ2n

yT Sy + max
i

{−Tii}

= max
y∈Δ2n

yT Sy + min {−θ : θ ≤ Tii}
= min σ + μ − θ (2.6)

s.t.
(

σ sT

s −S

)

 0

2s − μe ≤ 0
Q̃ − S 
 0

θe ≤ diag
(
S − Q̃

)
= max Q̃ • Y (2.7)

s.t.
(

1 yT

y Y

)

 0

Y � Diag(z) (2.8)
y ∈ Δ2n, z ∈ Δ2n,

:= v
(
DC

(
Q̃

))
,

where (2.6) holds since v(QPL1′(S)) = v(DQPS(S)) for convex QPL1′(S) and (2.7)
is the conic dual of (2.6). It was further observed in [1] that DC(Q̃) can be equiv-
alently simplified by setting y = z in (2.7).

Furthermore, as shown in [1], DC(Q̃) is dominated by the following double non-
negative relaxation (DNN), which is referred to as ‘strengthened Shor relaxation’
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of QPS:

DNN
(
Q̃

)
: min Q̃ • Y (2.9)

s.t.
(
eeT

) • Y = 1,

Y 
 0, Y ≥ 0.

Comparing the direct SDP relaxation SDPL1(Q) with the above bounds based on
QPS reformulation, we have

Theorem 2.2.

v(SDPL1(Q)) = v
(
DC

(
Q̃

))
≥ v

(
DNN

(
Q̃

))
≥ v(QPL1(Q)).

Proof. It is sufficient to prove the first equality. Let the optimal solution to DC(Q̃)
be (Y ∗, y∗, z∗). Define X = AY ∗AT . Then we have

v
(
DC

(
Q̃

))
= Q̃ • Y ∗ = trace

(
Q̃Y ∗T

)
= trace

(
QXT

)
= Q • X.

It follows from (2.8) that

X = AY ∗AT � ADiag (z∗)AT = Diag
(
z∗1 + z∗n+1, z

∗
2 + z∗n+2, · · · , z∗n + z∗2n

)
.

Define v = (z∗1 + z∗n+1, z
∗
2 + z∗n+2, · · · , z∗n + z∗2n)T . Since z∗ ∈ Δ2n, we have v ∈ Δn.

Therefore, (X, v) is feasible to SDPL1(Q) (2.3) and the corresponding objective
value is v(DC(Q̃)). It implies that v(SDPL1(Q)) ≥ v(DC(Q̃)).

Let (X∗, v∗) be an optimal solution to SDPL1(Q) (2.5). Then, v∗ ∈ Δn and

0 � X∗ � Diag (v∗) . (2.10)

Define D = Diag(
√

v∗). Let D+ be the Moore-Penrose generalized inverse of D,
i.e., D+ is diagonal and

D+
ii =

{
1/

√
v∗i if v∗i > 0

0 otherwise , i = 1, . . . , n.

Then, (2.10) implies that
0 � D+X∗D+ � I.

Moreover, suppose there is an index j such that v∗j = 0. Then Djj = D+
jj = 0.

It follows from (2.10) that X∗
jj = 0 and X∗

jk = X∗
kj = 0 for k = 1, . . . , j − 1, j +

1, . . . , n. Therefore, we have

X∗ = D
(
D+X∗D+

)
D. (2.11)

Let the eigenvalue decomposition of D+X∗D+ be UΛUT , where U is orthogonal,
Λ = Diag(λ1, . . . , λn) and the eigenvalues λi ∈ [0, 1], i = 1, . . . , n. Then, it is not
difficult to verify that[

1
4I 0

0 0

]
�

[
1
4I + 1

4Λ 1
2Λ

1
2Λ Λ

]
�

[
1
2I 1

2I
1
2I I

]
.
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Moreover, it implies that[
1
4D2 0

0 0

]
=

[
DU 0

0 DU

] [
1
4I 0

0 0

] [
UT D 0

0 UT D

]
(2.12)

�
[

DU 0

0 DU

] [
1
4I + 1

4Λ 1
2Λ

1
2Λ Λ

][
UT D 0

0 UT D

]

=

[
1
4D2 + 1

4X∗ 1
2X∗

1
2X∗ X∗

]

�
[

DU 0

0 DU

] [
1
2I 1

2I
1
2I I

][
UT D 0

0 UT D

]

=

[
1
2D2 1

2D2

1
2D2 D2

]
, (2.13)

where (2.11) is used in the first inequality. Define

Y =

[
1
4D2 + 1

4X∗ 1
4D2 − 1

4X∗

1
4D2 − 1

4X∗ 1
4D2 + 1

4X∗

]

and

B =

[
I 0

I −I

]
∈ �2n×2n.

The above inequalities (2.12)–(2.13) imply that

B

[
1
4v∗v∗T 1

4v∗v∗T

1
4v∗v∗T 1

4v∗v∗T

]
BT =

[
1
4v∗v∗T 0

0 0

]
�

[
1
4D2 0

0 0

]
(2.14)

� BY BT � B

[
1
2D2 0

0 1
2D2

]
BT , (2.15)

where the inequality in (2.14) follows from (2.4). Since B is nonsingular, the in-
equalities (2.14)–(2.15) are equivalent to[

1
2v∗

1
2v∗

][
1
2v∗

1
2v∗

]T

� Y �
[

1
2Diag(v∗) 0

0 1
2Diag(v∗)

]
.

Define yT = zT = [1/2v∗T 1/2v∗T ]. Then, (Y, y, z) is a feasible solution of DC(Q̃)
and the corresponding objective function value is Q̃ • Y = Q • (AY AT ) = Q •
X∗ = v(SDPL1(Q)). It follows that v(DC(Q̃)) ≥ v(SDPL1(Q)). The proof is
complete. �
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2.3. The exactness of v(SDPL1(Q))

The contribution of this subsection is to disprove a conjecture raised in [9]
stating that v(SDPL1(Q)) = v(QPL1(Q)) under the following assumption:

Assumption 2.3.
Q ∈ Sn, Qij ≥ 0, ∀i 	= j.

Proposition 2.4. Under Assumption 2.3, if −Q 
 0, then v(QPL1(Q)) = 0.
Otherwise,

0 < v(QPL1(Q)) = v(QPS(Q)) := max
x∈Δn

xT Qx.

Proof. Assumption 2.3 implies that

xT Qx =
n∑

i=1

Qiix
2
i + 2

n∑
i<j

Qijxixj ≤
n∑

i=1

Qii|xi|2 + 2
n∑

i<j

Qij |xi||xj |.

Then QPL1(Q) is reduced to

v(QPL1(Q)) = max xT Qx

s.t. eT x ≤ 1, x ≥ 0.

Since x = 0 is feasible, v(QPL1(Q)) ≥ 0. Suppose x∗ is the optimal solution
but 0 < eT x∗ < 1, then y = ( x∗

i

eT x∗ ) ∈ Δn and yT Qy = x∗T Qx∗

(eT x∗)2 > x∗T Qx∗ if
x∗T Qx∗ > 0. Therefore,

v(QPL1(Q)) = max
{

0, max
x∈Δn

xT Qx

}
. (2.16)

If −Q 
 0, then
xT (−Q)x ≥ 0, ∀x ≥ 0.

It follows that maxx∈Δn xT Qx ≤ 0. By (2.16), v(QPL1(Q)) = 0. Now we assume
that −Q 	
, i.e., there is a vector y 	= 0 such that

0 > yT (−Q)y = −yT Qy ≥ −|y|T Q|y|.

Clearly, eT |y| > 0. Let z = |y|/(eT |y|). We have

z ∈ Δn, zT Qz > 0.

It follows from (2.16) that

v(QPL1(Q)) = max
{

0, max
x∈Δn

xT Qx

}
> 0.

�
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For any Q ∈ Sn, DNN(Q), defined in (2.9), is the double nonnegative relaxation
of QPS(Q), i.e., v(DNN(Q)) ≥ v(QPS(Q)). For n ≤ 4, it holds that v(DNN(Q)) =
v(QPS(Q)), see [2]. Generally, this is not true. We choose Q ∈ Sn such that

v
(
DNN

(
Q

))
> v

(
QPS

(
Q

))
. (2.17)

Then, for sufficient large α ∈ �, we have(
Q + αeeT

)
ij

= Qij + α ≥ 0, ∀i 	= j

eT
(−Q − αeeT

)
e = eT

(−Q
)
e − n2α < 0.

Therefore, Assumption 2.3 holds for Q + αeeT and −(Q + αeeT ) 	
 0. According
to Proposition 2.4, we have

v
(
QPL1

(
Q + αeeT

))
= v

(
QPS

(
Q + αeeT

))
= v

(
QPS

(
Q

))
+ α. (2.18)

It is not difficult to verify that

v
(
DNN

(
Q + αeeT

))
= max

eeT •X=1,X�0,X≥0

(
Q + αeeT

) • X

= max
eeT •X=1,X�0,X≥0

Q • X + α

= v
(
DNN

(
Q

))
+ α. (2.19)

It follows from (2.17), (2.18) and (2.19) that

v
(
DNN

(
Q + αeeT

))
> v

(
QPL1

(
Q + αeeT

))
. (2.20)

Let X∗ be an optimal solution to DNN(Q + αeeT). It follows from the Gerschgorin
circle theorem that

Diag(Xe) 
 X.

Therefore, (X∗, v) = (X∗, Xe) is a feasible solution to SDPL1(Q + αeeT)). The
corresponding objective function value is (Q + αeeT ) • X∗ = v(DNN(Q + αeeT)).
Then it holds that

v
(
SDPL1

(
Q + αeeT

)) ≥ v
(
DNN

(
Q + αeeT

))
. (2.21)

Consequently, the conjecture v(SDPL1(Q)) = v(QPL1(Q)) under Assumption 2.3
is disproved according to (2.20)–(2.21).

3. SDP relaxations of QPL2L1(Q)

In this section, we first present the efficient SDP bound for QPL2L1(Q) due
to Luss and Teboulle [7], denoted by SDPL2L1(Q). Then we show it is equivalent
to the double nonnegative relaxation for the variable-splitting reformulation of
QPL2L1(Q).

Define
Us = {U ∈ Sn : |U |ij ≤ s, ∀i, j} .
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Lemma 3.1. ([7])

‖x‖2
1 = max

{
xT Ux : U ∈ U1

}
.

Then, it holds that

v(QPL2L1(Q)) = max
{

xT Qx : ‖x‖2 = 1, max
U∈U1

xT Ux ≤ k

}
≤ min

s≥0
max

‖x‖2=1

{
xT Qx − s max

U∈U1
xT Ux

}
+ sk

}
= min

s≥0

{
sk + max

‖x‖2=1
min

{
xT (Q + U)x : U ∈ Us

}}
≤ min

{
sk + max

‖x‖2=1

{
xT (Q + U)x

}
: s ≥ 0, U ∈ Us

}
= min

U∈Sn

{
k max

ij
|Uij | + λmax(Q + U)

}
:= v(SDPL2L1(Q)).

Equivalently, SDPL2L1(Q) can be reformulated as:

SDPL2L1(Q) : min ks + t

s.t. Q + U � tI

|Uij | ≤ s, ∀i, j

U ∈ Sn.

It was observed in [7] that the conic dual of (SDPL2L1) reads

max Q • X

s.t. trace(X) = 1
eT |X |e ≤ k

X 
 0,

which was first proposed by d’Aspremont et al. [5] based on semidefinite relaxation
lifting.

Now we present the variable-splitting reformulation of QPL2L1(Q) and the
double nonnegative relaxation. Similar to the reformulation (1.1), we have

{
x : ‖x‖2

1 ≤ k
}

=
{√

kAy : y ∈ Δ2n

}
.

Notice that the linear constraint y ∈ Δ2n can be equivalently rewritten as the
quadratic constraints yT eeT y = 1, yiyj ≥ 0, ∀i, j, if the other constraints and
the objective are all even functions. Therefore, we can reformulate (QPL2L1) as
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the following homogenious quadratic constrained quadratic program:

QPL2L1′(Q̃) : max kyT Q̃y (3.1)
s.t. kyT AT Ay = 1 (3.2)

yT eeT y = 1, (3.3)
yiyj ≥ 0, ∀i, j. (3.4)

The Lagrangian dual of QPL2L1′(Q̃) is

inf
μ,λ,S≥0

sup
y

{
L(y, μ, λ, S) := yT (kQ̃ − μkAT A − λeeT + S)y + μ + λ

}
which has the following new SDP reformulation:

DNNL2L1(Q̃) : min μ + λ

s.t. kQ̃ − μkAT A − λeeT + S � 0 (3.5)
S ∈ S2n, S ≥ 0.

We remark that if we remove (3.2) and set k = 1, QPL2L1’(Q̃) reduces to
QPL1(Q), and DNNL2L1(Q̃) reduces to the conic dual of DNN(Q) (2.9).

Theorem 3.2.
v(SDPL2L1(Q)) = v

(
DNNL2L1

(
Q̃

))
.

Proof. Let (μ, λ, S) be any feasible solution to DNNL2L1(Q̃). Since AAT = 2I and
Ae = 0, it follows from (3.5) that

0 
 A
(
kQ̃ − μkAT A − λeeT + S

)
AT = 4kQ − 4kμI + ASAT

Notice that for any i, j, A(ei + en+i) = A(ej + en+j) = 0. Based on (3.5), we have

0 ≥ (ei + en+i)T
(
kQ̃ − μkAT A − λeeT + S)(ej + en+j

)
= −4λ + (ei + en+i)T S(ej + en+j)

≥ −4λ + |(ei − en+i)T S(ej − en+j)|
= −4λ +

∣∣∣(ASAT
)

ij

∣∣∣ .
Therefore, DNNL2L1(Q̃) can be further relaxed to the following lower bound:

LB(Q) : min μ + λ

s.t. Q − μI +
1
4k

ASAT � 0

λ ≥
∣∣∣∣14 (

ASAT
)

ij

∣∣∣∣ , ∀i, j,

S ∈ S2n, S ≥ 0.
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Let the optimal solution to LB(Q) be (μ∗, λ∗, S∗), define U = 1
4kAS∗AT , t = μ∗

and s = λ∗
k . Then (s, t, U) is feasible to SDPL2L1(Q̃) and ks + t = μ∗ + λ∗. It

follows that v(LB(Q)) = μ∗ + λ∗ ≥ v(SDPL2L1(Q̃)).
Now it is sufficient to show v(DNNL2L1(Q̃)) ≤ v(SDPL2L1(Q)). Let the optimal

solution to (SDPL2L1(Q)) be (s∗, t∗, U∗), define μ = t∗, λ = ks∗ and

S =

[
ks∗eeT + kU∗ ks∗eeT − kU∗

ks∗eeT − kU∗ ks∗eeT + kU∗

]
∈ S2n.

Since |U∗|ij ≤ s∗, we have S ≥ 0. Define

B =
[

I I
I −I

]
∈ S2n.

Then we have

BAT =

[
0

2I

]
, Be =

[
2e

0

]
, BSBT =

[
4ks∗eeT 0

0 4kU∗

]
.

Therefore,

B
(
kQ̃ − μkAT A − λeeT + S

)
BT =

[
0 0
0 4k (Q − t∗I + U∗)

]
� 0.

Since B is nonsingular, it holds that

kQ̃ − μkAT A − λeeT + S � 0.

Hence, (μ, λ, S) is feasible to DNNL2L1(Q̃). We have v(SDPL2L1(Q)) = t∗ + ks∗ ≥
v(DNNL2L1(Q̃)). The proof is complete. �

4. Conclusion

In this paper, we first study semidefinite programming relaxations for the
quadratic optimization over �1 unit ball, denoted by QPL1(Q). We show the di-
rect SDP bound presented in [9] is equivalent to the optimal d.c. bound [1] for
the standard quadratic programming reformulation of QPL1(Q). Then we dis-
prove a conjecture in [9] stating that the direct SDP relaxation is an exact bound
when Qij ≥ 0, ∀i 	= j. Finally, we study semidefinite programming relaxations
for QPL2L1(Q), which arises from the relaxation of the sparse principal compo-
nent analysis and can be regarded as an extension of QPL1(Q). We show that
the efficient SDP bound proposed in [7] is equivalent to the double nonnegative
relaxation for the variable-splitting reformulation of QPL2L1(Q). Thus, the SDP
bound can be further improved by using the approaches strengthening the double
nonnegative relaxation, see for example, [4] and [12].
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