
RAIRO-Oper. Res. 48 (2014) 75–102 RAIRO Operations Research

DOI: 10.1051/ro/2013054 www.rairo-ro.org

RECONFIGURABLE DYNAMIC CELLULAR
MANUFACTURING SYSTEM: A NEW BI-OBJECTIVE

MATHEMATICAL MODEL

Masoud Rabbani
1
, Mehran Samavati

1
, Mohammad Sadegh

Ziaee
2

and Hamed Rafiei
1

Abstract. Dynamic Cell Formation Problem (DCFP) seeks to cope
with variation in part mix and demands using machine relocation, repli-
cation, and removing; whilst from practical point of view it is too hard
to move machines between cells or invest on machine replication. To
cope with this deficiency, this paper addresses Reconfigurable Dynamic
Cell Formation Problem (RDCFP) in which machine modification is
conducted instead of their relocation or replication in order to enhance
machine capabilities to process wider range of production tasks. In this
regard, a mixed integer nonlinear mathematical model is proposed,
which is NP-hard. To cope with the proposed model’s intractability,
an Imperialist Competitive Algorithm (ICA) is developed, whose ob-
tained results are compared with those of Genetic Algorithm’s (GA’s),
showing superiority and outperformance of the developed ICA.

Keywords. Dynamic cell formation problem, genetic algorithm,
imperialist competitive algorithm, machine modification, reconfigurable
cellular manufacturing system.

Mathematics Subject Classification. 90B99.

Received December 5, 2012. Accepted September 30, 2013.

1 School of Industrial & Systems Engineering, College of Engineering, University of
Tehran, North Kargar St., P.O. Box: 11155-4563, Tehran, Iran. mrabani@ut.ac.ir;

mehran samavati@ut.ac.ir; hrafiei@ut.ac.ir

2 Faculty of Management, University of Tehran, Tehran, Iran. ziaee@ut.ac.ir

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2014

http://dx.doi.org/10.1051/ro/2013054
http://www.rairo-ro.org
http://www.edpsciences.org


76 M. RABBANI ET AL.

1. Introduction

Today, sophisticated competitive business environment has caused manufactur-
ers to control their relevant production costs in any involved aspects of process.
Among these aspects, facilities might be one of the fields requiring high level of
investment as estimated over $250 billion annually in the United States [1]. In this
regard, Group Technology (GT) is adopted by most of the companies to tackle
different manufacturing issues. GT is defined as the principle of grouping parts
upon their similarities in design and production process [2]. One of the concepts
introduced in GT is Cellular Manufacturing System (CMS) which attempts to
form manufacturing cells by grouping machines into physical cells which are able
to process specific families of parts. To do so, CMS takes advantages of both flow
shops and job shops with lower level of cycle time than job shops and higher level
of flexibility and job satisfaction than flow shops [2]. More recently, shorter prod-
uct life cycles and new product introduction have had direct influences on product
mix and demand volumes, resulting in reconfiguring the cells upon the changes.
To cope with this issue, Dynamic Cellular Manufacturing System (DCMS) was
firstly introduced by Rheault et al. [3]. In DCMS, machine grouping is updated
with respect to the changes of product mix and demands. To do so, one might
swap existing machines between cells (machine relocation), or add new machines
(machine replication), or remove existing machines [4]. Figure 1 shows a schematic
view of a DCMS including three cells in two consecutive time periods. As shown
in this figure, Machines 3, 4, and 5 are relocated from some cells to some others
in Period 2.

Although cell changes (machine relocation, removing, and replication) are uti-
lized in order to cope with the changes of demand mix and volumes, it seems
impossible or too costly to relocate heavy machines between cells. Also, machine
replication imposes purchasing costs of machines which are mostly expensive. With
respect to the skilled workers, workers are also relocated with machine relocation,
requiring costs of training and setup for the new tasks assigned to the workers.
On the other hand, if one decides to equip all cells with all types of machines
at the beginning of the planning horizon, high level of investment and property
taxes are suffered. Hence, it is inevitable to conduct some sorts of actions to both
cope with market changes and reduce capacity costs of system. In this regard, this
paper addresses a RDCFP for the first time. To do so, concept of machine mod-
ification is adopted, which was firstly introduced by Foulds et al. [5] in the case
of static Cell Formation Problem (CFP). Foulds and his colleagues called such a
CMS as a sustainable CMS. Since sustainability is mostly dedicated to environ-
mental issues, the authors decided to call the considered system as a reconfig-
urable dynamic cellular manufacturing system, because reconfigurable manufac-
turing system is defined as a system capable to rapidly rearrange/replace/modify
its structure/software/hardware in order to respond to sudden changes in market,
technology or regulatory requirements [6, 7].
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Figure 1. Schematic view of a three-cell DCMS in two consecutive periods.

In the considered problem, it is revealed whether machine modification or ma-
chine replication is cost effective; whilst it is not possible to add new machines
to the cells whose capacity is totally utilized. Some instances of such systems are
reported in [5, 8]. Grahl [8] reported a case study in ceramic industry in which
machine modification could have improved firm productivity of %15; on the other
hand, some manufacturing firms used machine modification instead of machine
replication to perform wider range of production processes, such as Skoda (http://
www.skoda.cz) [5]. To tackle the considered RDCFP, a bi-objective mixed-integer
nonlinear mathematical model is proposed. In order to cope with the multi-
objective structure of the proposed model, Goal Programming (GP) approach
is adopted. Additionally and with respect to NP-hardness of CFP, large-size in-
stances of the proposed model are intractable upon which an ICA is developed.
ICA has been deployed in some problems so far, such as flow shop scheduling and
hub covering location; while no cases are reported in the field of CMS and CFP
(relevant literature review is presented in Sect. 2). Moreover, the adopted algo-
rithm is developed to cope with discrete structure of the proposed model, since
the classic ICA is suitable for the continuous problem instances. Finally, results of
the developed algorithm are compared with those of GA to validate the developed
algorithm. Remainder of the paper is as follows. Section 2 reviews literature body
of DCFP. Section 3 elaborates objective functions of the proposed mathematical
model as well as the GP approach adopted to tackle the mathematical model.
An example of the considered RDCFP is described in Section 4. Sections 5 and 6
explain the improved ICA and the utilized GA, respectively, in order to validate
obtained results of the developed algorithm. Section 7 reports numerical experi-
ments conducted to validate solution quality of the improved ICA and Section 8
provides some notable conclusions and future research directions.

http://www.skoda.cz
http://www.skoda.cz
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2. Literature review

CFP literature body might be reviewed from different points of view. For in-
stance, mathematical programming has been used even in remote literature for
modeling the CMS problems [9–12]; or, Song and Hitomi [13] developed a method
by considering production planning and cellular layout for a long-run planning
horizon, where flexible manufacturing cells are designed.

Moreover, previous investigations have been done in the content of modelling
and methodology of the CFP in dynamic environment. For example, Safaei
et al. [14] proposed a mixed-integer programming model of CMS under dynamic
condition. The advantages of the proposed model are to consider inter/intra-cell
material handling in specific batches by assuming the sequence of operations, con-
sidering alternative process routes for part types, and considering replication of
machines. Their aim is to minimize the sum of the inter/intra-cell movements,
reconfiguration costs, constant costs, and variable costs of the machines. Another
mixed-integer programming model was developed by Ghotboddini et al. [15]. Their
mathematical model minimizes costs of over time and human resource, and also
maximizes utilization rate of human resource. Also, Wang et al. [16] presented a
nonlinear multi-objective programming model for DCFP considering three con-
flicting objectives: minimizing machine relocation costs, minimizing machine uti-
lization, and minimizing total number of inter-cell movements. Bajestani et al. [17]
presented a multi-objective program of DCMS to deal with two objectives including
minimizing total cell load variation, and minimizing miscellaneous costs (inter-cell
material handling costs, machine costs, and machine relocation costs). Recently,
some researches have been conducted in dynamic environment such as Saxena
and Jain [4] and Mahdavi et al. [18], which presented a mixed-integer nonlinear
programming model to design a CMS. Saxena and Jain [4] integrated different
production aspects among which machines’ breakdown effect and part inventory
holding are the primary ones differentiating their research from the others. The
aim of the proposed model by Mahdavi et al. [18] is to minimize hiring, firing and
salary costs, holding and backorder costs, inter-cell material handling costs, and
machine and reconfiguration costs.

Satoglu and Suresh [19] proposed a multi-objective mathematical programming
model to design hybrid CMSs in dual resource constrained environments for real
world problems. They used GP approach to deal with the conflicting objective
functions. Among the considered assumptions of DMS, some assumptions, specifi-
cally, machine purchasing costs and machine relocation costs have not been taken
into account in some papers such as [14, 20–26].

Due to the fact that CFP is a NP-hard problem, solving the relevant model us-
ing classical optimization approaches needs a long computational time. There are
many researches discussing solving CFP using some classical metaheuristics, such
as GA, Simulated Annealing (SA), Neural Networks (NNs), Tabu Search (TS), and
Scatter Search (SS). To solve their DCMS models, Wang et al. [16] developed an
SS approach and checked the efficiency of proposed SS by comparing it with GA.
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Bajestani et al. [17] also designed a multi-objective scatter search (MOSS) for find-
ing Pareto-optimal frontier and compared the developed MOSS with two salient
multi-objective GAs (SPEA-II and NSGA-II) based on some comparison metrics to
show the efficiency of their proposed algorithm. Tavakkoli–Moghaddam et al. [21]
discussed solving DCFP using three metaheuristics GA, SA and TS. They con-
cluded that the SA algorithm mainly found better solutions than GA and TS
in less computational times. Arkat et al. [27] presented an integrated method-
ology based on a new concept of similarity coefficient to design a CMS. They
used SA method to solve the problem, and compared the proposed SA with GA.
Aljaber et al. [28] modelled the CFP based on graph theory, and proposed a
TS to cope with the problem complexity. Spiliopoulos and Sofianopoulou [29],
Logendran and Karim [30], Wu et al. [31], Lei and Wu [32] have also applied
TS algorithm to the field of CFP. Additionally, NN is another solution method
which has been applied in numerous instances due to its robust and adaptive na-
ture. Papers [22, 33–35] are some examples of recent researches addressing CFP
using NNs.

GAs have been widely used in the literature of the CFP, among which the
first instance backs to the one applied by Venugopal and Narendran [36]. Pierreval
et al. [37] reviewed the application of GA in CMS. Defersha and Chen [38] proposed
a mathematical programming model with the objective function of minimizing
several different kinds of costs. Their model involved many different elements such
as alternative routings, sequence of operations, workload balancing and machine
separation requirements. For large-size problems, the authors developed an efficient
heuristic method based on GA. They evaluated the proposed heuristic using some
sort of computational results comparing optimal solutions of the heuristic with
the optimal solutions of small and medium sized problems. They also obtained the
optimal solution of a large-size problem under certain assumptions. Solimanpur
et al. [35], Wu et al. [39], Yasuda et al. [40] are other research samples using GA
for CMS.

In this paper, an ICA is adopted in order to tackle problem complexity. ICA is
an evolutionary algorithm firstly introduced by Atashpas–Gargari and Lucas [41].
This new method has been applied to a number of different problems such as
flow shop scheduling problem and hub covering location problem. For solving var-
ious NP-hard problems, there are several researches indicating the superiority of
ICA over other metaheuristics including SA, GA, and particle swarm optimiza-
tion (PSO). Despite this superiority, ICA has not been considered significantly
in the literature of CMS. The only research has been conducted by Sarayloo and
Tavakkoli–Moghaddam [42] in which the authors considered DCFP with produc-
tion planning where the objective function was to minimize constant machine
costs, variable machine costs, production planning costs, reconfiguration costs,
and intra/inter-cell movement costs. To expand the application of this algorithm
in CFP, we adopt ICA to cope with intractability of the proposed mathematical
model.
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3. Proposed model

In this section, a bi-objective mixed-integer programming model is formulated
for the proposed RDCFP under the following assumptions.

3.1. Assumptions

(1) All the machines are purchased at the beginning of the first period.
(2) All the machines can be modified, and each modified machine can be changed

to its primary situation.
(3) Capacity of each machine type is calculated upon its time capacity.
(4) Machine Modification and returning to its primary situation are not performed

in the same period.
(5) Purchased machines are allocated to cells in the first period, and subsequent

periods do not involve adding, removing, or relocating machines.
(6) Each part type has a specific number of operations.
(7) The processing time of all operations on different machine types are known

and deterministic.
(8) Demands are known and deterministic.
(9) Parts are moved between cells as batch.
(10) A lower bound is not considered for the cell size, because smaller cells are

more suitable. Also, maximal cell size is known in advance.
(11) All machine types are single purpose.
(12) All demands must be satisfied in the given period, that is, backorders are not

allowed.
(13) Setup times are not considered.
(14) No queuing in production is considered.
(15) Machine modification cost is less than their purchasing cost.
(16) Batch size for every part type is constant.
(17) The maximum number of cells that can be formed in each period is specified

in advance.
(18) A modified machine cannot perform as its primary state.
(19) Machines cannot be modified more than once in each period.
(20) If a particular machine needs to be used as two distinct machine types in

different periods, it is changed to its primary situation before the second mod-
ification. For example, assume that a particular machine of type m, in cell c,
has been modified in period t − 1 to be used as machine type h, and we also
need to modify this machine in period t to perform as machine type d, so, in
period t, we first have to change the machine to its primary situation, which
is included a cost, and then modify that to perform as machine type d.
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3.2. Notation

Indexes

c index for manufacturing cells (c = 1; . . . ; C )
m index for machine types (m = 1; . . . ;M )
p index for part types (p = 1; . . . ; P)
t index for time periods (t = 1; . . . ;T )
j index for operations of part p (j = 1; . . . ;Op)
h index for modified machine types (h = 1; . . . ;M )
k index for the number of each machine type in each cell (k = 1; . . . ; N kc)

Input parameters

P number of part types
Op number of operations for part p

M maximum number of machine types
C maximum possible number of cells
Dpt demand for part p in period t

γ inter-cell movement cost per batch
Tm maximal time-capacity of machine type m

S maximal cell size
tjpm processing time required to perform operation j of part type p on machine

type m

ajpm 1 if operation j of part p can be done on machine type m; 0 otherwise
G modification cost
U cost of changing each machine to its primary situation
pm purchasing price of machine type m

Decision variables

Nmc number of machine type m allocated to cell c

Xjpmct 1 if operation j of part type p is done on machine type m in cell c in period
t; 0 otherwise

zmkhct 1 if kth machine of type m in cell c, is modified to perform as machine
type h in period t; 0 otherwise

lmkct 1 if kth machine of type m, in cell c, is changed to its primary situation
in period t; 0 otherwise

yjpct 1 if operation j of part type p is done in cell c in period t; 0 otherwise
Cmct Total capacity of set of machines of type m in cell c in period t (total

capacity of set of machines of type m in cell c in period t equals the sum
of the capacity of each of the machines minus the amount of time that
these machines are used as the other machine types in cell c in period t,
and plus the amount of time that the other machine types of cell c perform
as machine type m in the same period).

B batch size
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bmkhct 1 if kth machine of type m which has been modified to perform as machine
type h in period t− 1 is reused as machine type h in period t; 0 otherwise

tmkhct the amount of time that kth machine of type m is used as machine type
h in cell c in period t

t+mkhct the amount of extra time that kth machine of type m, which has been
modified in the previous period, perform as machine type h in period t, in
comparison with the previous period. For instance, if a particular machine
of type m is used as a machine of type h for 3 h in a particular period,
and is used again as machine type h for 5 h in the next period, t+mkhct will
equal 2 h

t−mkhct the amount of time that kth machine of type m performs for lesser time
as machine h in period t, in comparison with the previous period

Amkhct Last uninterrupted using time of kth machine of type m, in cell c as
machine type h in periods 1, 2, . . ., t − 1.

3.3. Mathematical model

The multiple conflicting objectives are as follows: 1) minimizing the total sum of
miscellaneous costs such as constant costs, reconfiguration costs, inter-cell move-
ment costs, and machine modification costs; and 2) Maximizing utilization rate of
machines.

3.3.1. Minimizing the total sum of miscellaneous costs

Min 1/2
T∑

t=1

P∑
p=1

⌈
Dpt

B

⌉ op−1∑
j=1

C∑
c=1

γ|y(j+1)pct − yjpct|+
M∑

h=1

M∑
m=1

C∑
c=1

T∑
t=1

Nkc∑
k

gzhkmct

+
T∑

t=1

M∑
m=1

C∑
c=1

Nkc∑
k=1

Ulmkct +
M∑

m=1

C∑
c=1

pmNmc (3.1)

Cmc(t−1) −
Nmc∑
k=1

M∑
h �=m

tmkhctzmkhct +
M∑

r �=m

Nrc∑
k=1

zrkmcttrkmct

+

⎛
⎝Nmc∑

k=1

M∑
h �=m

tmkhct−1zmkhct−1

⎞
⎠ lmkct −

Nrc∑
k=1

M∑
r �=m

trkmct−1zrkmct−1lrkct

−
Nmc∑
k=1

M∑
h �=m

t+mkhctbmkhct +
M∑

r �=m

Nrc∑
k

t+rkmctbrkhct +
Nmc∑
k=1

M∑
h �=m

t−mkhctbmkhct

−
M∑

r �=m

Nrc∑
k

t−rkmctbrkhct = Cmct ∀t � 2, m, c (3.2)
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∑
h �=m

zmkhct � 1 −
⎛
⎝ t−1∑

α=1

M∑
r �=m

zmkrcα −
t∑

β=1

lmkcβ

⎞
⎠ ∀m, c, k, t � 2 (3.3)

lmkct �
t−1∑
α=1

∑
h �=m

zmkhcα −
t−1∑
β=2

lmkcβ ∀t � 2, m, c, t (3.4)

lmkc1 = 0 ∀m, c, k (3.5)

Cmc1 = TmNmc −
Nmc∑

k

∑
h �=m

tmkhc1zmkhc1 +
Nrc∑

k

∑
h �=m

trkmc1zrkmc1 ∀m, c (3.6)

tmkhct � Tm ∀m, c, k, h, t (3.7)∑
p

∑
j

DptDjpmxjpmct � Cmct ∀m, c, t (3.8)

C∑
c=1

∑
m

αjpmxjpmct = 1 ∀j, p, t (3.9)

∑
m

Nmc � s ∀c (3.10)

∑
m

zhkmct � 1 ∀c, h, t, k (3.11)

bmkhct �
β−1∑
t=1

(
zmkhct × max

(
0,

(
1 −

β∑
α=t+1

lmcα

)))
∀β = 2, 3, . . . , T (3.12)

Amkhct−1(1 − lmkct) + t+mkhct−1bmkhct−1 − t−mkhct−1bmkhct−1 = Amkhct

∀m, c, k, h, t (3.13)
t+mkhct � Tm − Amkhct ∀m, c, k, h, t (3.14)
t−mkhct � Amkhct ∀m, c, k, h, t (3.15)

M∑
m �=r

zrkmct � 1 − brkhct ∀c, k, h, t, r = 1, . . . , M (3.16)

Amkhc1 = 0, Amkhc2 = tmkhc1zmkhc1, t
+
mkhc1 = 0, t−mkhc1 = 0 ∀m, c, k, h (3.17)

Nmc, Cmct, thkmct, Amkhct � 0, lmkct, xjpmct, zhkmct, bmkhct, yjpct ∈ {0, 1}
∀m, k, h, c, t. (3.18)

The objective function given in equation (3.1) seeks to minimize the total sum of
the miscellaneous costs. The first term is related to the inter-cell part handling
costs. The second term represents the machine modification costs. The third term
represents the total cost of changing the machines to their primary situations.
The last term represents the purchasing cost of all machines, which are required
throughout the planning horizon. Constraint (3.2) is called balance constraint that
plays the role of the memory for available capacity in each period. The second term
of this constraint deducts the amount of time that machine type m will perform
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as the other machine types in period t from the capacity of the previous period
if machine type m has not been modified in period t − 1. The third term adds
the amount of time that some of the other machine types will be used as machine
type m in period t to the capacity of the previous period if these machines have
not been used as machine type m in period t−1. Also, if machine type m has been
used as the other machine types in period t − 1, and is changed to its primary
situation in period t, the available capacity of machine type m will be increased
in this period. The forth term of constraint (3.2) is related to this fact. The fifth
term deducts the amount of time that some of the other machine types have been
used as machine type m in period t−1 from the capacity of this period provided
that these machines do not perform as machine type m in period t. If a particular
machine needs to perform as another machine for two successive periods, and also
the amount of using time in the second period is more, the extra time will be added
to the first period using time in the form of t+. Therefore, the sixth term deducts
the amount of extra time that machine type m will be used as another machine
type from the available capacity of period t−1. The seventh term is related to the
extra using time during which the other machine types perform as machine type m
in period t Moreover, if a particular machine needs to perform as another machine
for two successive periods, and the amount of using time in the second period is
less, the difference will be deducted from the first period using time in the form
of t−. Therefore, the eighth term adds this difference to the available capacity of
period t− 1. In other words, machine type m will perform as a certain machine in
period t for less time compared to period t− 1 and therefore, the capacity will in-
crease. Similarly, the ninth term ensures that the capacity will decrease in period t.
Constraint (3.3) is related to the assumption (20). Constraint (3.4) ensures that
every machine can be changed to its primary situation only when it is modified.
Constraint (3.5) guarantees that the machines cannot be changed to their primary
situations in the first period. Constraint (3.6) specifies the available capacity of
the first period. Equation (3.7) states that the machines cannot perform as the
other machines more than their maximal capacities. Constraint (3.8) guarantees
that machine capacity is not exceeded. Equation (3.9) ensures that each operation
is assigned to one type of machine and to one cell. Constraint (3.10) specifies the
upper bound for cell size. Equation (3.11) is related to the assumption (19). Deci-
sion variable bmkhct is applied when the kth machine of type m needs to be used as
machine type h for two or more successive periods. Thus, constraint (3.12) ensures
that bmkhct can be 1 only if this machine is already ready to perform as machine
type h, that is, it does not need to be modified at the beginning of period t. Each
machine can be modified and used as a particular machine for several successive
periods. Thus, variable Amkhct is to indicate the last uninterrupted using time of
machine m as machine h by the beginning of period t. In other words, if machine m
is modified into machine h in period 2, for example, and reused in periods 3 to 6
Amkhc7 will be equal to the total using time of periods 2, 3, 4, 5 and 6. However,
if this machine is changed to its primary situation in period 4 and is not modified
to machine h again, Amkhc7 will be equal to zero. Therefore, equation (3.13) is to
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ensure this balance for all machines. Variable Amkhct is used to obtain an upper
bound for variables t+mkhct and t−mkhct in constraints (3.14) and (3.15) respectively.
Constraint (16) ensures that if a machine needs to be reused as a particular ma-
chine type in a particular period, it cannot be modified into another machine type
in the same period. Constraint (3.17) represents some of the variable values in the
first period. Equation (3.18) is the nonnegativity and integrality constraint.

3.3.2. Maximizing utilization rate of machines

The objective function given in equation (3.19) minimizes the maximum de-
viation between the workload assigned to each type of machine and its available
capacity in order to increase machine utilization. In the case that modification cost
exceeds that of machine purchasing, the last term of objective function (3.1) seeks
to buy as many as required machines of each type at the beginning of the first
period. This results in a high amount of investment as well as some issues, such as
extra property tax and machine idle time. To cope with this deficiency, objective
function (3.19) is proposed so as to maximize overall utilization rate of machines.
Having the proposed objective function adopted, the idle time of machines are
challenged to be minimized. Hence, the two proposed objective functions (3.1)
and (3.19) are conflicting in nature.

Min max
m

∣∣∣∣∣∣
∑

c

TmNmc −
∑

t

∑
c

∑
p

∑
j

Dpttjpmxjpmct −
∑

t

∑
c

∑
h �=m

Nmc∑
k

Amkhct

∣∣∣∣∣∣ .
(3.19)

3.4. Goal programming

To find the optimal solution of multi-objective problems, several methods have
been introduced, such as weighted metric, weighted sum, ε-constraint, interactive
approaches, and GP. In this paper, we use GP method to combine multiple objec-
tives into a single objective. To do so, assume that Z1 and Z2 are the first and the
second objective functions in the proposed model. Hence, the single objective and
the added constraints are as follows:

S = min
∑

δi

δ1 = 1 − f1

z1

δ2 = 1 − (f2 + ε)
z2

where fi is the ith objective function’s optimal value. In other words, for each
objective function, the model run individually, resulting in values of f1 and f2.
Unlike the first objective function, it is possible for f2 to obtain the value of zero.
If so, in the second constraint, we will have δ2 = 1. As a result, δ2 will be a constant
variable and does not change when variable Z2 varies. Hence, parameter ε is added
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Table 1. Test problem generation.

Parameter Value Parameter Value Parameter Value

Tm U(10, 50) C Equal to M pm U(100, 200)

S
⌈√

p
⌉

+ 1 Op
Regard to

γ ∼= 2/3
∑

pm

Mproblem size

T Regard to problem size Dpt U(1, 10) g ∼= 1/5
∑

pm

M

P Regard to problem size tjpm U(1, 10) U 1/2g

M [p/2] + 2
∑

m ajpm 1 ∀j, p

to prevent this situation If f2 > 0, parameter ε will be assumed to be equal to
zero, and also if f2 = 0, ε will be considered as a number with small value. S,
(0 � S < 2), represents the value of the obtained single objective function.

4. A numerical example

To verify the applicability of the proposed model, a hypothetical example with
randomly generated data is presumed. This example is solved by GAMS 22.1\
DICOPT. The data are generated according to Table 1.

In this table,
∑

m ajpm shows the number of the alternative machines for pro-
cessing operation j of part p, and it is assumed that

∑
m ajpm � 2. Term U stands

for uniform distribution. Maximal cell size (S) and the number of machine types
(M) are obtained according to

⌈√
p
⌉
+1 and �p/2�+2 respectively [14]. Modifica-

tion cost (g) is assumed to be less than both inter-cell movement cost (γ) and the
purchasing price of the machines. The inter-cell movement cost is also assumed
to be less than the purchasing price of the machines. It is noted that values are
rounded in the case of sign ∼=. Also, it is assumed that ε = 0 if f2 > 0, and
ε = 0.001 if f2 = 0. When f2 = 0, we only need to consider ε as a number which is
smaller than 1 as it has been assumed that 1 � tjpm � 10 and therefore the value
of variable Z2 will not be smaller than 1.

Table 2 consists of the data set related to the considered example. In this ex-
ample, we have assumed three machine types, two part types, and two periods.
During each period, every part has two operations being processed. The program-
ming model has been solved three times using GAMS 22.1\ DICOPT. Initially,
the first objective function and constrains (3.1) to (3.18) have been run, and the
optimal value of the objective function has been considered as f1. Subsequently,
the same constraints have been run with the second objective function, and the
optimal value has been considered as f2. Finally, constraints (3.1) to (3.18) and
the constraints proposed in Section 3.3 have been run with the single objective
function which was obtained according to Section 3.3.

The best solution for this example was found after twelve minutes. The solution
is illustrated in Figure 2. According to this figure, in order to satisfy the first period
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Table 2. Typical test problem.

Part 1 Part 2 Cost Capacity of
Op. 1 Op. 2 Op. 1 Op. 2 machines

Machine 1 6 min P1 = 100$ T1 = 50 min
Machine 2 6 min 8 min 10 min P2 = 120$ T2 = 25 min
Machine 3 5 min P3 = 110$ T3 = 35 min

Demand of period 1 5 2 γ = 80$
Demand of period 2 4 3 g = 20$

U = 10$

demands, both operations of part 2 are processed on machine 3. Also, the second
operation of three parts of type 1 is processed on machine 2. Machine 1, initially,
performs the first operation of all the parts of type 1, and then is modified to
be used as machine 2 to process the second operation of the two remaining parts
of type 1. In period 2, both operations of two parts of type 2 are processed on
machine 3, and the operations of the remaining parts of type 2 are processed on
machine 2. This machine performs the second operation of one part of type 1
as well. Since machine 1 has been modified in period 1, we can reuse machine 1
as machine 2, without modification cost, to process both operations of part 1.
In period 1, the amount of time during which machine 1 is used as machine 2
is 16 min, rising by 8 min in period 2. This difference is indicated in the form of
t+11212 = 8. The optimal value obtained for this example is Z1 = 390$.

5. Improved imperialist competitive algorithm

The Imperialist Competitive Algorithm (ICA) is an evolutionary algorithm in-
troduced by Atashpaz and Lucas [41]. This algorithm uses socio-political evolution
of human as a source of inspiration to develop a strong optimization method. Since
the basic ICA is only suitable for problems with continuous variables, we improve
the algorithm in order to be proper for discrete problems. Moreover, crossover
and mutation operators of the genetic algorithm are applied to ICA. Following,
we explain the steps of the proposed ICA, while its pseudocode is presented in
Figure 3.

5.1. Solution coding (Country structure)

A country- or a feasible solution- developed for the described model has a macro-
scopic structure as follows:[

[N ]m×c | [t]mk×h×t |
[
t+
]
mk×h×t

| [x]p×j×t

]
.

Matrix [N ]m×c is related to the assignment of machines to cells. The members of
this matrix are limited to 0, 1, 2, . . . , S (maximal cell size). Term N12 = 3, for
example, means that there are three machines of type 1 assigned to cell 2. Matrix
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 period 1 

 period 2

Figure 2. Best obtained cell configurations for typical test
problem presented in Table 2.

tmk×h×t is a three-dimensional matrix associated with machine modification. We
assume that matrix tmk×h×t is encoded for every couple (c, m), and [t]mk×h×t in-
dicates the set of these three-dimensional matrices. The members of these matrices
have a structure of t

(m)(c)
kht , and their values are between –Tm and +Tm where Tm

is the time capacity of machine type m. Also, mk is the number of machine type m
in each cell, t indicates the period and h is a notation for the type of machine. For
instance, t

(1)(4)
235 = 6 means that the second machine of type 1 in cell 4 is modified to

be used for six minutes as machine type 3 in period 5. It is obvious that [t]mk×h×t

consists of C × M matrices tmk×h×t at most. In other words, matrix tmk×h×t is
encoded for couple (c, m) if machine type m is placed in cell c. It is noted that
the existence of machine m in cell c can be recognized by matrix [N ]m×c. Figure 4
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1. Create the initial population randomly. 

2. Select impN  countries from the best ones as the imperialist, and construct the empires. 

3. Divide the rest of the countries among the empires based on their normalized power. 
4. Select any unselected colony. 

4.1. Apply the Crossover operator to the colony and its relevant imperialist. 
4.2. Name the best produced countries ‘the best offspring’. 
4.3. Apply the Mutation operator to the colony and name the result ‘Mutated offspring’. 
4.4. Select the best solution among Mutated offspring, best offspring, and related colony. 
4.5. If the selected solution is the colony, eliminate that; otherwise, replace the selected solution as the 

colony. 
4.6. If there is unselected colony, go to step 4. 

5. If there is a colony in an empire which has lower cost than it’s imperialist, exchange the position of 
that colony and the imperialist. 

6. Imperialistic competition 
6.1. Find the weakest empire based on the total normalized power. 
6.2. Separate the worst country of the selected empire and assign it to the empire which has the most   

likelihood to possess it. 
7. If there is an empire with no colonies, eliminate that. 
8. If more than one empire remain, go to step 4; otherwise, go to step 9. 
9. Display the only imperialist as the optimal solution. 

Figure 3. Pseudo-code of the developed ICA.

illustrates the matrix structure of tmk×h×t for each couple (c, m). Similarly, matrix
[t+]mk×h×t consists of three-dimensional matrices t+mk×h×t which are encoded for
every couple (c, m). This matrix is associated with variables t−mkhct and t+mkhct,
and its members have a structure of t

+(m)(c)
kht . For example, t

+(4)(1)
235 = −6 means

that the second machine of type 4 in cell 1 is used for 6 min less than the amount
of time for which it has performed as machine 3 in the previous period. Matrix
[X ]p×j×t consists of c matrices Xp×j×t indicating the assignment of the parts to

the machines, and its members are defined as x
(C)
pjt x

(2)
143 = 5, for instance, means

that the forth operation of part type 1 is processed on machine type 5 in cell 2. Ob-
viously, the number of three-dimensional matrices in [X ]p×j×t equals the number
of cells.

5.2. Initial population

A sequential strategy is used for obtaining a feasible solution. In this strategy,
machines are first assigned to the each cell, randomly. This assignment makes
matrix [N ]m×c, and the only limitation for assignment is the upper bound of
the cell size. Then the values of the members of matrix [t]mk×h×t are produced
randomly with respect to the number of each machine type in each cell. Also,
another limitation is that all the members of layer h = m in each three-dimensional
matrix tmk×h×t are zero. For instance, in Figure 4, m = 2 and so the entire layer
h = 2 (the blue layer) is zero. Since the feasibility control of matrix [t+]mk×h×t

is difficult, we consider a penalty for the infeasible solutions resulted from matrix
[t+]mk×h×t. Finally, parts are assigned to machines and to cells randomly with
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Figure 4. An illustration of three-dimensional matrix tmk×h×t

for the couple (c = 1, m = 2).

respect to the capacity of each machine in each cell, the number of machines in
cells and from the situation of the modified machines. According to the proposed
strategy, matrices [N ]m×c and [t]mk×h×t are always feasible and therefore, the
infeasibility of matrix [t+]mk×h×t affects only matrix [X ]p×j×t.

According to the proposed strategy, we create initial population of size of
Ncountry. Subsequently, Nimp countries are selected from the best members- the
ones with the lowest costs- of this group to be considered as the imperialists. Now
there are Ncol countries left as colonies. Then, proportional to the imperialists’
power, calculated as below, the colonies are allocated to them.

A = max {cn} ∀n ∈ Nimp

Cn = A − cn

where cn is the cost of the nth imperialist and Cn is its normalized cost. The cost of
each country is appointed by its fitness function. In this paper, the fitness function
is as the same as the single objective function, obtained using goal programming
approach. Also, the imperialists’ proportional power is computed as following:

pn =

∣∣∣∣∣ Cn∑Nimp
n=1 Cn

∣∣∣∣∣ ·
Consequently, the number of each imperialist’s primary colonies equals NCn =
round [pn · Ncol]. In this formula, NCn represents an imperial’s initial number of
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colonies and ‘round’ is a function which shows the closest integer to a decimal.
So, we select some primary colonies randomly for the nth imperialist and appoint
them to it.

5.3. Solution improving

5.3.1. Crossover operator

After specifying the imperialists and their colonies, each colony has to move
toward its imperialist. To approve it, we apply the Crossover operation of genetic
algorithm on all the colonies by selecting a colony and applying the crossover
operation between it and the imperialist. There are two countries as the product
of each crossover operation. The lower cost produced country is compared to the
colony. If this country has lower cost than the colony, it is substituted for the
colony; otherwise, both countries are omitted. To apply the crossover operator,
the Arithmetic Crossover operator is used. Two offspring of this operator are
produced by their parents’ linear combinations. These linear combinations are:

p1 = αx1 + (1 − α)x2 p2 = αx2 + (1 − α)x1.

If 0 � α � 1, the values of p1 and p2 are between their parents’ value. For this
reason, it is assumed that α = U (−γ, 1 + γ) where γ is free parameter which is
considered γ = 1 in this paper. The crossover operator is applied to all the members
of matrices [N ] , [t], [t+], and concerning the mentioned strategy in Section 6.2
the feasibility of the solution is controlled. To apply the Crossover operator to
matrix [X ] the same Arithmetic Crossover is used. However, the only difference is
that α can be 0 or 1 at random.

5.3.2. Mutation operator

To search more space around imperialists, we use Mutation operator, which is
another GA operator, for each colony. To fulfill it, we apply the Mutation operator
to each colony and in the case of accessing a better result than Crossover result,
we substitute the new country. Whereas, the Crossover operator led to omit the
colony, the mutation function is applied as well and in the case of better result, it
is substituted for the colony. To apply Mutation operator to a particular colony, as
seen in Figure 5, the members of a block of matrix [N ] of the colony are replaced
by those of the same block of matrix [N ] of the related imperialist. Considering the
cell size restriction, the rest of the members of matrix [N ] are produced randomly.
According to the mentioned strategy, we produce matrices [t], [t+], [X ] considering
matrix [N ]. The produced solution is known as mutated country.

5.3.3. Colony and imperialist substitution

While colonies are moving toward their imperialists, they are possible to reach a
better situation compared to the imperialist. In this case, the colony will be substi-
tuted for the imperialist, and the algorithm will continue with the new situation.
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0 1 2 3 2 1 5 0 1 4

0 1 2 4 7 2 0 1 1 3

4 3 2 5 0 0 0 5 1 2

1 2 0 3 2 5 1 0 0 3

5 4 7 1 0 0 2 1 4 3

     

5 1 6 1 0 0 2 1 4 3

0 3 3 4 2 0 0 5 3 2

2 3 4 1 0 4 0 5 1 2

1 1 3 1 0 4 2  0 0 3

0 1 6 1 0 0 2 1 4 3

                                     

2 0 7 1 0 0 2 1 4 3

1 3 2 4 7 2 0 5 3 2

3 3 2 5 0 0 0 5 1 2

3 1 0 3 2 5 1  0 0 3

2 1 7 1 0 0 2 1 4 3

 

Figure 5. A schematic of the mutation operation.

5.4. Empire power

According to Atashpaz and Lucas [41], the power of an empire equals the im-
perialist’s power plus a fraction of its total colonies’ power. Thus, the power of an
empire is computed as follows:

TCn = cos t (imperialistn) + α · mean (cos t (colonies of empiren))

where TCn indicates the total cost of an empire, and α represents a number
between 0 and 1. In general, α = 0.3 is a proper measure and has had a proper
result for the proposed problem.

5.5. Imperial competition

According to the basic ICA, in this section β numbers of the weakest colonies of
the weakest empire are considered, and then a competition among all the empires
is arranged to take possession of these colonies. In this paper, we have considered
β = 3. The colonies will not be possessed necessarily by the most powerful empire,
but the more power, the more possibility. To model the empire competitions to
possess these colonies, we first calculate the probability of each empire possession
considering the total cost of an empire:

B = max {TCn} ∀n ∈ Nimp

NTCn = B − TCn.

In this equation, TCn equals the total cost of the nth empire, and NTCn represents
the normalized cost by which the possession probability of each empire is computed
as following:

ppn =
NTCn∑Nimp

n=1 NTCn

·

Using the above probability, we make vector p to randomly divide the mentioned
colonies among the empires.

P =
[
pp1 , pp2 , . . . , ppNimp

]
.
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Then we create a vector with the same size as P whose elements are uniformly
distributed random numbers.

R =
[
r1, r2, . . . , rNimp

]
.

Finally, vector H is formed as follows:

H = P − R =
[
pp1 − r1, pp2 − r2, . . . , ppNimp

− rNimp

]
.

Given vector H , we will hand the mentioned colonies to an empire whose rele-
vant index in H is maximum. This level of the algorithm ends through possessing
mentioned colonies.

5.6. Eliminating an empire

An empire is eliminated when it has lost all of its colonies. After a while, all
the empires except the most powerful one will be collapsed. In such a condition
we stop the algorithm and display the only imperialist as the optimal solution.

6. Genetic algorithm

Since GA is a classical metaheuristic algorithm yielding acceptable results, it
has been used a lot in the literature (for example, in papers [38, 42, 43]). Thus,
GA can be a valid measure to compare the proposed heuristic algorithm. To apply
the classical GA, a few successive steps are implemented: 1. Solution coding: to
code the solution of the problem, a special structure for the chromosome of GA
is constructed. In this regard, we have employed the country structure used in
the proposed ICA. 2. Initial population: the first step to start the algorithm is to
produce the initial population. The number of the produced solutions (Ni) depends
on the problem size, and in this paper, after analyzing the variety of sizes, we
concluded the proper values. These values will be introduced in the experimental
results section. 3. Fitness value: in order to assess the quality measurement of
a solution or chromosome, fitness value is used as a criterion. In this paper, the
fitness value is as the same as the single objective function obtained using goal
programming approach. 4. GA Operators : the three well-known genetic algorithm
operators are Inversion operator, Crossover operator, and Mutation operator. In
this paper, Crossover and Mutation operators are considered to be used. To do
the operations, firstly, we use Rolette wheel selection [44] to select the parents.
It is assumed that the Crossover operator is assigned to the 80% of the initial
population, and Mutation operator is applied to the rest of that. Both Mutation
and Crossover operators are as the same as those of the improved ICA. 5. Stopping
criterion: the new population, produced by Crossover and Mutation operators,
has more individuals than the considered population size. Thus, the next step is
to choose the best Ni individuals and consider them as the new generation. The
number of generations Ng is considered as a stopping criterion. This number varies
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1. Create 
iN chromosomes as the initial population randomly. 

2. Calculate the fitness value of each solution (chromosome). 

3. Select parents using Rolette wheel selection method. 

4. Implement Crossover and Mutation operators. 

5. Choose the best 
iN individuals and consider them as the new generation. 

6. If the number of generations is less than
gN , go to step 3; otherwise, go to step 7. 

7. Display the best individual in the last generation. 

Figure 6. Genetic algorithm pseudo code.

depending on the problem size, and will be discussed more in the experimental
results section.

7. Experimental results

In order to evaluate the effectiveness of the improved ICA for solving the pro-
posed problem, we have solved 25 random instances (15 small/medium-sized + 10
large-sized). These problems have been generated randomly according to Table 1
based on similar data in the literature. All test problems have been solved by both
GA and the improved ICA. These algorithms have been coded in MATLAB 7.0
and implemented on an Intel Celeron Mobile 2.5 GHz (core 2Duo) personal com-
puter with 3 GB RAM. In order to verify the performance of the considered meta-
heuristics, for the small/medium-sized problems, the results of both GA and ICA
are compared to the solutions obtained by GAMS 22.1\ DICOPT. As a quality
criterion for these comparisons, we use the percentage of gap which is the devia-
tion of the first objective function’s values obtained by the metaheuristics (ICAz
and GAz ) from those obtained by GAMS (Lz ). The percentage of the gap is cal-
culated as follows:

%Gap =
ICAz − Lz

Lz
× 100.

Since the second objective function adds neither new decision variables nor new
constraints, so its effect on the value of the first objective function is more im-
portant than its value. Thus, it is enough to take into account only the value
of z1. For large-size problems the results of the improved ICA are compared to
the GA-related results. Table 4 contains the results of ICA and GAMS for the
small/medium-size problems. Table 5 compares the results of GA to those of
GAMS for small/medium-size problems. The comparison of ICA to GA for the
large-size problems is reported in Table 6. Also, the ICA parameter setting is
shown in Table 3.

The metaheuristic algorithms have been run four times for each test problem
and the ‘Average’ columns show the mean of the values obtained in the individual
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Table 3. ICA parameter settings.

ICA Parameters
Small and medium size problems Large size problems

Ncountry Nimp Ncol α β Ncountry Nimp Ncol α β

Value 150 20 130 0.3 3 300 60 240 0.3 3

Figure 7. Comparison of the solving times between ICA and
GAMS for the 23 test problems.

runs. In Tables 4 to 6, p, Op, t and M indicate the number of part types, the
number of operations, the number of periods and the number of machine types
respectively. For simplicity, we assumed that all the part types have the same
number of operations. It is noted that for all small and medium-size problems, the
run time is limited to three hours (10 800 s). In Tables 5 and 6, Ni and Ng indicate
the number of population and generation of GA, respectively. According to Ta-
bles 4 and 5, although both metaheuristics have reasonable solutions compared to
GAMs, the average of Gapmean and Gapbest have been improved in the proposed
ICA in comparison to the classical GA. Also, both metaheuristics have more prac-
tical solving times compared to those of GAMS. Figure 7, for example, compares
the solving times of ICA to GAMS. However, Tables 4 and 5 show that the av-
erage of CPU time has been improved more when using the proposed ICA. For
large-size problems, Table 6 shows that the average of the optimal values obtained
by the improved ICA is better than the GA’s. Figure 8 indicates this superiority.
Also, according to Table 6, the average CPU time for the ICA is 863 s while it
is 902.8 s for the classical GA. This superiority is indicated in Figure 9. To sum
up with respect to the mentioned measures, although both of the algorithms have
reasonable solutions, the proposed ICA dominates the classical GA in solving the
proposed problem.
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8. Conclusions and future research directions

Today, competitive environment and shorter product life cycles have caused the
emergence of dynamic cellular manufacturing systems whose cells are reconfigured
during different planning periods by means of machine relocation, replication, or
removing. In most cases, machine relocation is too costly or even impossible due
to reasons, such as machine sizes and skilled workers movements. To tackle this
shortcoming, this paper considered RDCFP in which machine modifications were
performed in order to respond the need to cell reconfiguration. In this regard,
this paper proposed a mixed-integer nonlinear mathematical model which was
NP-hard. Therefore, an ICA was developed in order to tackle the proposed discrete
model, although it was tested on continuous-variable models. The ICA is selected
because to the best of our knowledge it was the first research adopting ICA in
the field of CMS and DCFP. Also, obtained results of the improved ICA were
compared with those of GA, which validate outperformance of the developed ICA.
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In order to continue current research direction of this paper, recommendations
are threefold. First, modeling and analysis of RDCFP using the approach upon
adjacency matrices might be interesting. Also, considering setups might yield more
realistic results in different production settings. Mathematical models of such man-
ufacturing environments have more binary variables intensifying computational
complexity of the developed model. At last, it is highly suggested to make effort
to linearize CFP mathematical model’s binary variables. It might help practition-
ers put in practice the concept of cell reconfigurability.
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