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Abstract. Day by day, the LHD (load-haul-dump) vehicle operator
addresses the routing problems at the production level of mine, whose
solution impacts on the performance of all the production chain. Unfor-
tunately, the operator’s goal of minimizing the makespan of his work-
load is not necessarily optimal as one needs to take into account the
coordination with next operation levels. In this paper, we stated the
problem to determine the working path of LHD vehicle for minimizing
the makespan subject to the coordination between the production level
and next the operation level, so called the reduction level. We prove that
the problem is NP-hard in the strong sense, propose an exact formula-
tion by a mixed integer linear programming (MIP) model and generate
an approximation algorithm. From a real implementation point of view,
we developed a simple-to-execute decision-making process (DMP) for
the LHD vehicle operator based on the generated approximation al-
gorithm. Finally, we study DMP performance by a numerical analysis
based on data from the Chilean underground copper mine, called El
Teniente. The results show that the approximation ratio in practice is
only 1.08.
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Figure 1. Operation levels vertically positioned of an under-
ground mine (source: [4]).

1. Introduction

Operations research (OR) is becoming increasingly prevalent in the natural
resource sector, especially in mining. Many authors use case studies to demonstrate
the advantages of OR, which has played a particularly important industry role in
the strategic and tactical levels [4, 7].

However, little published work has been carried out at the operation level. This
leads to several questions such as a lack of trust and/or ability regarding the
use of optimization models for short-term decisions and perhaps due to a lack of
implementation of already-published work (see [1]).

In this context, the study of simple-to-execute decision-making process (DMP)
with a good performance guaranteed would be a very interesting subject for OR
approaching to real implementation in mining operation levels. An interesting case
in underground mine is the DMP of LHD (load-haul-dump) vehicles operators.
Daily, they address the routing problems at the production level of mine, whose
solution impacts on the performance of other operations levels vertically positioned
in the production chain.

At the production level, the ore is extracted from the drawpoints, loaded, trans-
ported and unloaded at dumping sites/turning points by LHD vehicles according
to the established program of the fleet management. Whereas at the next level, so
called the reduction level, the ore from dumping sites falls into a chopping/crushing
chamber where a RBH (rock breaker hammer) reduces its granularity and then
the material continues its gravitational movement. Figure 1 shows the operation
levels vertically positioned of an underground mine.

In practice, both operation levels are pushed top-down by a plan-driven strat-
egy elaborated by higher-level management, where the production goal for the
production level is computed as a number of ore bucketfuls to extract from a set
of drawpoints within a drift for a working shift [2]. Figure 2 shows an example of
a plan-driven strategy data for a haulage network within a drift.
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Date 1/10/2007

Drift 1

Working shift 2

LHD vehicle number 1

Left side

Drawpoint 1 2 3 4 5

Bucketfuls 10 13 13 11 9

Right side

Drawpoint 6 7 8 9 10

Bucketfuls 7 10 13 14 10

Dumping site /turning point 1

Figure 2. Example of plan-driven strategy data of a drift for a
working shift (source: [10]).

At the beginning of each working shift, the supervisor allocates operators for the
LHD’s and drifts, taking into account the current resources status and the plan-
driven strategy data. Thus, the execution of plan starts when the operators begin
his work path. In general, the operator does not have any kind of decision support
system for the routing and he uses rules of thumb according to his experience to
decide a sequence of LHD work to minimize the makespan [8].

In a former work paper [10], we studied the routing problem subject to the pro-
duction level constraints. We proposed an optimal resolution algorithm in polyno-
mial time, which is incorporated into a DMP for LHD operators. Unfortunately,
minimizing the makespan in the production level will be not necessarily optimal
when taking into account that the optimal sequence of LHD work can block the fall
from dumping site towards to RHB by the ore excess deposited in a time window.

In this paper, we focus on the operations coordination problem between produc-
tion and reduction levels in underground mining. Our goal is to propose a simple
and efficient DMP for LHD operator, which guarantees certain performance in an
integrated operation system.

The paper is organized as follows: in Section 2, the problem is stated; in Sec-
tion 3, the NP-hardness of the problem is proved; in Section 4, an exact formulation
by a mixed integer linear programming (MIP) model is proposed; in Section 5 an
approximation algorithm is developed and a simple-to-execute DMP is generated
from above algorithm, whose performance is studied by a numerical analysis based
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on data from El Teniente underground copper mine in Chile; finally, in Section 6,
the conclusions and directions for further research are given.

2. Problem statement

We are given a set of drawpoints P to work on during the working shift, a
LHD vehicle and a RBH. The drawpoints are located in both side of the drift. We
denote L,R ⊂ P the subsets of drawpoints located to left side and right side of
the drift, respectively as shown in Figure 2. Each drawpoint i has a number of ore
bucketfuls to be extracted Bi, a LHD transfer time Ii between drawpoint i and the
initial point and a LHD transfer time Di between drawpoint i and the dumping
site/turning point.

LHD vehicle takes a turning time T to pass vehicle to the other side of the drift
and takes a loading time L and unloading time U for each ore bucketful. The RBH
reduces ore bucketfuls at constant rate R and the ore-pass from the dumping site
to the RBH has a ore maximum capacity of bucketfuls C ∈ [1, 2) that must not
be overseed.

We denote σ = (σ(j))|P|
j=1 the sequence of the working path of LHD vehicle,

where σ(j) ∈ P is the drawpoint in the position j. Our coordination problem is
to determine the working path σ∗ for minimizing the makespan subject to the
following two operational constraints from production and reduction levels:

LHD can turn to the opposite side of the drift only once: Considering the topol-
ogy of the mine, which determines that LHD must enter to drawpoints with
its shovel in front position; then travel to a turning point and return, it moves
back and forth keeping the direction of vehicle while remaining on the same
side. But when it goes to a drawpoint on the opposite side, a slow, difficult
and risky maneuver must be done due to narrow angle of 30 ◦ (see Fig. 2).
Therefore, it is convenient to change side only one time and with the bucketful
of LHD empty by taking into consideration the LHD operators safety and the
maneuver time. Currently, the long time of the maneuver allows to begin any
sequence on any side of the drift with an accumulated ore to be processed by
RHB equal than zero. On now we assume T/C ≥ R to capture this long time
of the maneuver.

LHD can dump the ore bucketful only if the ore-pass capacity is not overseed: It
considers the production system of the mine, in which the ore to be processed
by RBH is accumulated in the ore-pass (see Fig. 1). This constraint precludes
the ore-pass blockage by the ore excess deposited within a time window,
which perturbs the established working program, breaking off the work of
LHD vehicle and RBH until the intervention of specialized equipment which
unblocks the ore-pass. In practice, the LHD must wait whenever the ore
bucketful to dump plus the accumulated ore to be processed by RBH exceeds
the maximum capacity of the ore-pass between the production and reduction
levels. We consider the initial accumulated ore to be processed by RBH equal
to zero.
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Note that the LHD cannot dump the ore bucketful for C < 1 and then our
problem is infeasible. On the other hand, our problem reduces to the routing
problem in [10] for C ≥ 2, where the constraint of ore-pass is inactive.

3. Complexity

Theorem 3.1. The coordination problem is NP-hard in the strong sense.

Proof. We consider 3-PARTITION problem, which is NP strongly hard [5]. Given
an instance of 3-PARTITION, we construct a problem instance I as follows: Let P
be a finite set of 3a + 4 drawpoints located in R, the first one with the minimum
value Ii − Di. We have Bi = 1 for all i ∈ P , 2 > C > 1, T/C ≥ R, γ |1 − (2Di +
U + L)/R| ∈ �+ for all i ∈ R.

We have that any optimal sequence begins for the drawpoint with the minimum
value Ii − Di and then, our goal is to determine a sequence for the remaining
drawpoints in R.

Consider the remaining drawpoints in R such that:

(1) The first 3 drawpoints have (2Di + U + L)/R = C = β/γ. These drawpoints
are tight, meaning that their position in the sequence is just after of workload
for RHB is equal to C.

(2) The other 3a drawpoints have C−1
2 < 1 − (2Di + U + L)/R = αi/γ <

C−1
4 ,

∑3a
i=1 αi/γ3(C − 1)

Note that this construction can be completed in time polynomial in a, and it
gives feasible solution of 3-PARTITION instance, where the drawpoints in R
are sequenced such that the tight drawpoints divide the time into 3 intervals of
length C. Also each of the 3a other drawpoints is scheduled in exactly one of these
intervals.

This feasible solution of 3-PARTITION instance represents the optimal solu-
tion for sequence for the drawpoints in R, where all waiting times of the sequence
are zero. �

4. Exact formulation: MIP model

We consider the above statement of the coordination problem and propose an
MIP model. Without loss of generality, we adopt Bi = 1 for all drawpoint i, since
for the case of a drawpoint k with Bk = m > 1 bucketfuls, it can simulated by m
drawpoints with Bl = 1, 1 ≤ l ≤ m.

For convenience, we define Pi = (2 Di + U + L)/R and Si = Ii − Di. The first
value is the ore amount that RBH can process within the time window while LHD
visit to drawpoint i and, second one is the difference in working time between to
start the workload of drawpoint i from initial point and the dumping site/turning
point. Note that PiR corresponds to the working time of a LHD work cycle come-
load-go-download for an ore bucketful from/to the dumping site/turning point.
Formally, the MIP is defined as follows:
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4.1. Sets, parameters and variables

Sets
P : Set of all drawpoints to work on during the working shift.
L : Subset of drawpoints on the left side of drift.
R : Subset of drawpoints on the right side of drift.

Variables:
xij ∈ {0, 1} : Indicates if one bucketful of drawpoint i ∈ P is extracted in the

j ∈ P position of the sequence.
yj ∈ {0, 1} : Indicates if the LHD vehicle turns side once the work in the

j ∈ P
position of the sequence is realized.

zj ∈ {0, 1} : Auxiliary variable that indicates if the ore-pass is full in the
ending of j ∈ P position in the sequence.

pj ∈ R+ : Amount of ore in the ore-pass to be processed by the RBH
in the ending of j ∈ P position in the sequence.

wj ∈ R+ : Waiting time of the LHD vehicle when it arrives to drawpoint
located in the j ∈ P position of the sequence.

Parameters:
Pi : Ore amount processed by RBH when the drawpoint i ∈ P is visited.
Si : Difference in working time between to start the workload of

drawpoint i ∈ P from initial point and the dumping site/turning point.
R : Rate at which RBH reduces ore bucketfuls
C : Maximum ore capacity of the ore-pass
T : Turning time required to pass to the opposite side of the drift.
F : Time required to go from dumping site to initial point and finish

the working shift
M : Auxiliary parameter that is very big

4.2. Objective function

minimize
∑
i∈P

xi1Si +
|P|∑
j=1

wj + T

|P|∑
j=1

yj + F + R
∑
i∈P

Pi (4.1)

4.3. Constraints

∑
i∈P

xij = 1 j = 1, . . . , |P| (4.2)

pj ≥ pj−1 +

(
1 −

∑
i∈P

Pixij

)
− wj

R
− T

yj−1

R
j = 2, . . . , |P| (4.3)
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pj + M(zj − 1) ≤ pj−1 +

(
1 −

∑
i∈P

Pixij

)
− wj

R
− T

yj−1

R
j = 2, . . . , |P| (4.4)

pj ≤ zjC + yj−1 j = 2, . . . , |P| (4.5)
yj−1 ≤ pj j = 2, . . . , |P|

(4.6)∑
i∈L

xij −
∑
i∈L

xi(j−1) ≤ yj j = 2, . . . , |P| (4.7)

∑
i∈L

xij −
∑
i∈L

xi(j−1) ≥ −yj j = 2, . . . , |P| (4.8)

The objective function represented by expression (4.1) minimizes the sum over
the time used during the whole process of carrying the material from each draw-
point to the RBH, the waiting times, the turning times and the last trip of LHD
from dumping site/turning point to the initial point. In practice, the function ob-
jective considers the working time of a LHD work cycle come-load-go-download
for an ore bucketful from/to the dumping site/turning point in every drawpoint
of the drift

(
R
∑

i∈P Pi

)
, excluding the first one in the sequence where the LHD

starts from the initial point (note that Si + RPi = Di + Ii + U + L).
Expression (4.2) states that in each step the LHD goes to a single drawpoint.
Expressions (4.3)–(4.6) are a set of constraints that defines the accumulated

ore that will be in each step in the RBH, which state the waiting time for each
period subject to that the accumulate ore to be processed by RHB: (i) has to be
nonnegative, (ii) cannot exceed the maximum capacity of the ore-pass, and (iii)
will be equal than one in the ending of the first position later that the LHD turned.
The latter fact follows from the cases assumptions: the bucketful of LHD will be
empty before to turn and T/C ≥ R.

Expressions (4.7) and (4.8) indicate the relation between turning to the opposite
side and going to drawpoint of the other subset.

Note that the initial conditions p1 = 1, w1 = 0 are due to the RHB begins to
work when the first bucketful is unloaded at the dumping point by case assumption.
Also, we remark that for an arbitrary instance where LHD turns sides in position
k − 1, k = 2, . . . ,P , the variables pk = 1 and wk = 0 hold by T/C ≥ R and
constraints (4.5) and (4.6), respectively.

Figure 3 shows a feasible solution for a problem instance with 5 drawpoints in
each side of the drift, where the constraints and initial conditions are illustrated.

Clearly, the above constraints imply that in any optimal solution the LHD
only turns to the opposite side of the drift only once and therefore the objective
function (4.1) can be restated as follows.

∑
i∈P

xi1Si +
|P|∑
j=1

wj + T + F + R
∑
i∈P

Pi, (4.9)

where T, F and R
∑

i∈P Pi are constants.
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p(t) 
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Figure 3. Example of feasible solution for a plan-driven strat-
egy with 5 drawpoints in each side of the drift, where p(t) is the
amount of ore in the ore-pass to be processed by RHB in the
time t.

5. Approximation algorithm and DMP

Although, MIP model proposed can be solved by using specialized software
(e.g., LINGO, CPLEX, Gurobi, among others), in practice, the use of such tools
may be difficult given that skills and knowledge would be needed for the decision
makers (e.g. LHD operator). On the other hand, a decision support system with
an easy-to-use interface surely can help in this task, but an investment would be
necessary (e.g., optimization engine, customized software, training, among others).

Therefore, the study of simple-to-execute DMP based on a resolution algorithm
is a very interesting subject for OR approaching to real implementation. Ideally,
this should be simple to execute for the workers and the resolution algorithm should
lead to optimal solution in polynomial time. Two good examples are Johnson’s
rule [6] for minimizing the makespan in flow shops with n jobs and two machines,
and Smith’s rule [9] for minimizing the total weighted completion time of n jobs
in a single machine. In both cases, the optimal result is found in a polynomial
time.

Unfortunately, no polynomial time algorithm to find an optimal solution by
considering the NP-hardness of our problem (see Thm. 3.1) and then, a polynomial
algorithm that computes a feasible solution whose value is within a range of δ close
to the optimum for any instances can be a good approach.

5.1. Our approximation algorithm

We develop a simply algorithm, so called ALGO A, which runs in polynomial
time and yields a solution at most two times the minimum makespan of drift
workload.

To define our algorithm, we introduce some definitions and notations. We say
that a drawpoint i belongs to the increasing type P+, if the workload in the RHB
increases in the time interval where it is carried out, and no-increasing type P− an
otherwise. Formally, we define P+ = {i ∈ P , 1 > Pi} and P− = {i ∈ P , 1 ≤ Pi},
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and the similar way L+, L−, R+ and R−. For convenience, we assume that L+

and R+ are in increasing order by Pi, whereas L− and R− are in decreasing order.
Let Z ∈ {L,R} be the side of drift where the first drawpoint in the sequence σ

is located. We denote π(Z, j)+ the drawpoint in the position j in the set Z+ and
the similar way π(Z, j)−, π(P \ Z, j)+ and π(P \ Z, j)−

We now distinguish two instances instances of our problem:

(1) A set of instances � features for L+,R+ = {∅}; L−,R− = {∅}; L+,R− = {∅}
or L−,R+ = {∅}.

(2) A set of instances �, which are not in �.

We show that any instance in � only depends of first drawpoint in each side of the
drift and so, the optimal solution admits an algorithm in polynomial time.

Lemma 5.1. An optimal sequence σ∗ for an arbitrary instance in � only depends
of first drawpoint in each side of the drift. In particular, the first drawpoint σ∗(1)
in an optimal sequence σ∗ is defined by the arg min between

min
k∈L

{
Sσ(k) + R max

{
0, PL + Pσ(k)

}}
+ R max

{
0, PR + min

i∈R
Pσ(i)

}
and

min
k∈R

{
Sσ(k) + R max

{
0, PR + Pσ(k)

}}
+ R max

{
0, PL + min

i∈L
Pσ(i)

}
(5.1)

where PL = |L| −∑i∈L Pi − C and PR = |R| −∑i∈R Pi − C

Proof. Consider an arbitrary instance in �. Fix the first position of sequence for
both sides of the drift. In each side, we have the total waiting time is independent
of the sequence after the first drift. Thus, we have that for any instance in � the
optimal value of problem is whose minimizing of the expression (4.9), which is
equivalent to minimize

Sσ(1) + R max

{
0, 1 +

∑
i∈Z

(1 − Pi) + (Pσ(1) − 1) − C

}

+ R max

⎧⎨
⎩0, 1 +

∑
i∈P\Z

(1 − Pi) +
(

min
i∈P\Z

Pi − 1
)
− C

⎫⎬
⎭

Since, the above problem only depends of first drawpoint in each side of the drift.
Clearly, the first drawpoint σ∗(1) in an optimal sequence σ∗ is defined by equa-
tion (5.1). �

We describe our algorithm ALGO A, such as follows:
Steps 1−3 runs in time O(n log n) and so, ALGO A runs in time O(n log n). Now,

we show that ALGO A guarantees at most two times the minimum makespan of
drift workload.
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Algorithm 1: ALGO A
Data: Data of an instance I: C, R, T, F and Pi, Si for all i ∈ P
Result: A sequence σ for the LHD working path
Step 1 Assign σ(1) by equation (5.1) and fix the drift side c := Z to start.
Step 2: Compute the sets R−,R+,L− and L+, excluding the initial drawpoint σ(1)
Assign j := 1, p1 := 1, w1 = 0, a := 2, b := 1;σ(2) := π(Z, 1)+

Step 3: While j + 2 ≤ |Z| do
pj+1 = max{0, pj + 1 − Pσ(j+1)}

if pj+1 ≤ C then
wj+1 = 0
σ(j + 2) = π(c, a)+

a = a + 1
else pj+1 = C

wj+1 = (pj + 1 − Pσ(j+1) − C)R
σ(j + 2) = π(c, b)−
b = b + 1

end if
end while
Step 4: if j + 2 < |P| then
j := |Z| + 1, p|Z|+1 := 1, w|Z|+1 := 0, a := 3, b := 1, c := P\Z, σ(j) := π(c, 1)+,
σ(j + 1) := π(c, 2)+

Go to Step 3.
end if

Theorem 5.2. The algorithm ALGO A produce a sequence σ such that the value
objective is less than 2 the minimum makespan of drift workload.

Proof. We focus on the set of instances �, since ALGO A yields the optimal
sequence for any an arbitrary instance in � by Lemma 5.1. We denote ALGO
A(I) and OPT(I) the algorithm value and the optimal value for an arbitrary
instance I ∈ �, respectively. Also, we denote LB and UB the lower bound for the
OPT(I) value and upper bound for the ALGO A(I) value.

To obtain the LB, we evaluate the sequence σ obtained from ALGO A in the
simple expression defined by (5.1). For the case of UB, we consider the makespan
of new sequence σ′ obtained from σ such that, the first drawpoints in both side
of drift are the same that are in σ and the contribution over total waiting time
of no-increasing drawpoints type P− is removed. Clearly, this new sequence has a
makespan value greater than the makespan value of sequence σ given by ALGO A.
The value makespan of new sequence σ′ is:

UB = R
∑
i∈P

Pi + Sσ(1) + R max

{
0, 1 +

∑
i∈Z+

(1 − Pi) + (Pσ(1) − 1) − C

}

+R max

⎧⎨
⎩0, 1 +

∑
i∈{P\Z}+

(1 − Pi) +
(

min
i∈{P\Z}+

Pi − 1
)
− C

⎫⎬
⎭+ T + F
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≤ R
∑
i∈P

Pi + Sσ(1) + R max

{
0, 1 +

∑
i∈Z

(1 − Pi) + (Pσ(1) − 1) − C

}
+ T + F

+R max

⎧⎨
⎩0, 1 +

∑
i∈P\Z

(1 − Pi) +
(

min
i∈P\Z

Pi − 1
)
− C

⎫⎬
⎭− R

∑
i∈P−

(1 − Pi)

= LB + R
∑

i∈P−
(Pi − 1)

Finally, we show:

ALGOA(I)
OPT (I)

<
UB

LB
=

LB + R
∑

i∈P−(Pi − 1)
LB

=
(

1 +
R
∑

i∈P−(Pi − 1)
LB

)

<

(
1 +

R
∑

i∈P−(Pi − 1)
R
∑

i∈P Pi

)
< 2,

which concludes the proof. �

Therefore, our algorithm ALGO A runs in polynomial time and computes a
feasible solution whose value is within a factor at most 2 of the optimum.

5.2. Our DMP

In this section, we define a set of seven decision rules from ALGO A, which
work in conjunction to develop a DMP for the LHD operators. The seven decision
rules above are integrated into a DMP in a sequential way as shown in Figure 4.

R1 to R6 are obtained from ALGO A. They show the different steps to consider
in the generation of the work sequence for LHD vehicle. R7 gives a feasibility con-
dition for the fulfillment of drift workload within the working shift by considering
ALGO A. In practice, R7 uses the fact that the computed workload time is at
most two times the optimal value and therefore, if the computed workload time
is greater or equal than the available time of two working shift TWS, then the
optimal value is greater than TWS and the infeasibility holds.

In order to compute a in practice value for the approximation of makespan by
using the DMP, a numerical analysis is performed. For this, a total of 90 cases
(plan-driven strategies) are considered, which have different topologies for the
drifts; and the production goals for each drawpoint are between 29 and 280 ore
tons. The data set is base on data of El Teniente Chilean copper underground mine
available from [3]. The optimal solution is determined by using MIP proposed in
Section 4.

The study of numerical cases shows that DMP leads to good results, since they
help to meet the production goal as imposed by the plan-driven strategy in an
integrated way. In practice, 80 among 90 of the cases analyzed were feasible and 7 of
10 infeasible cases were detected by using the approximation value (R7 rule). In the
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Decision rule R3
(generate a list in nondecreasing order of (Pi-1) for each drift 

side)

Decision rule R2
 (compute (Pi-1) for every drawpoint i, excluding the initial 

drawpoint (1).

Decision rule R6
(interchange (j) drawpoint for the latter drawpoint located at 

the list of the same drift side of drawpoint j, moving every 
drawpoint before (j) in one position)

(j:=j+1)

Yes

Decision rule R1
 (detemine (1) by the step 1 of ALGO A).

Decision rule R5
(extract a ore bucketful assigned to the drawpoint (j)

compute pj, wj)

Is positive the waiting time of the LHD vehicle wjNo
(j:=j+1)

Decision rule R4
(assign the list of the drawpoints located at the same drift side 
of initial drawpoint to sequnce from (2), and later the other 

drawpoints located on opposite side of drift)

Is drift workload completed? Yes LHD vehicle returns to the initial point

No

Decision rule R7
(Drift workload commented) Makespan compute ≥ 2 TWS?Yes

Figure 4. Flow diagram of the DMP proposed for the LHD operation problem.

feasible cases, 31.25% were matched the optimal solution; whereas the remaining
cases presented an approximation value of 1.08 (the worst case by considering the
maximum value). The obtained results are shown in the Figure 5.

6. Final remark

Generally, the plan-driven strategies elaborated by higher-level management
are estimated based on historical data and considered a bounded area for the
drawpoints selection in order to guarantee the execution of workload demanded.
Therefore, the goal presented by the plan-driven strategy can be seem as a conse-
quence of DPM historically used by the LHD operators in practice. From above
perspective, we can explain the very good approximation ratio in practice and con-
clude that the proposed DMP can be an interesting and fast approach to improve
the currently performance of operations levels in real implementation context.
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Figure 5. Analysis of approximation ratio based on El Teniente
Chilean copper underground mine data.

In a methodological setting, we recommend the steps developed in this work
for similar studies, i.e. statement of the problem, analysis of the NP-hardness,
study of a resolution exact, generation of a polynomial algorithm with certain
performance guaranteed and a simple-to-execute DMP based on the polynomial
algorithm generated.

Finally, further research is proposed regarding two lines researches: on one hand,
the improvement of approximation ratio of algorithm proposed; and on other hand,
online algorithms for LHD vehicle operations problem, since information of the
drawpoints to be worked on is only available in a given point in time into the
working shift.
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[8] J.M. Sepúlveda, O.C. Vásquez and F.M. Córdova, Optimal sequencing of tasks in under-
ground copper production and decision rules, in 20th International Conference on Production

Research (ICPR-20), Symposium Proceedings, Shanghai, China (2009).
[9] W.E. Smith, Various optimizers for single-stage production. Nav. Res. Logist. Q. 3 (1956)

59–66.
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