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trees with minimum total cost and minimum diameter. Strategic de-
cision problems for high-speed trains infrastructure, as well as tactical
and operational optimization problems for network design and trans-
portation can be modeled as bi-MDCST. The proposed exact procedure
makes use of components from the multi-objective exact method Paral-
lel Partitioning Method, and Pareto-optimal fronts have been computed
for two benchmark instances from the literature. To the best of our
knowledge, there are no works dedicated to providing Pareto-optimal
fronts for the bi-MDCST.
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2 ICD-LOSI, Université de Technologie de Troyes 12, rue Marie Curie, CS 42060, 10004 Troyes
Cedex, France. andrea.duhamel@utt.fr

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2014

http://dx.doi.org/10.1051/ro/2014029
http://www.rairo-ro.org
http://www.edpsciences.org


144 E. GOMES DE SOUSA ET AL.

1. Introduction

The bi-objective Minimum Diameter-Cost Spanning Tree problem (bi-MDCST)
is defined in an undirected and connected graph G = (V, E), where V is the set
of vertices and E is the set of edges with costs cij ≥ 0 associated with each edge
[i, j] ∈ E. By definition, a spanning tree T of G is a connected subgraph of G,
without cycles and with |V |-1 edges. A Minimum weight Spanning Tree (MST)
of G is a spanning tree with minimum total cost. Moreover, the diameter of a
tree T is the number of edges in its longest path. Thus, a minimum diameter
spanning tree is a spanning tree with the smallest diameter possible among all
spanning trees T of G. Polynomial time algorithms are available to compute an
MST such as Kruskal and Prim [5], as well as computing the diameter of a tree.
However, the bi-MDCST is a NP-hard problem as shown in [16].

Strategic decision problems for high-speed trains infrastructure, as well as tacti-
cal and operational optimization problems for network design and transportation
can be modeled as bi-MDCST. The minimum spanning tree cost usually refers to
reducing the infrastructure costs, while the minimum diameter mostly stands for
improving the quality of service. A problem strongly related to the bi-MDCST is
the Bounded Diameter Minimum Spanning tree problem (BDMST) which seeks
spanning trees where the path between all pairs of nodes has up to D edges,
where D ≥ 2 edges. The BDMST is NP-hard when 3 < D < |V | − 1 [10]. Several
works address the BDMST. For instance, exact algorithms are proposed by [12,22],
heuristics and metaheuristics are found in [13, 19, 24], mathematical formulation
and valid inequalities are presented in [1, 11, 27]. The bi-MDCST generalizes the
BDMST since it minimizes the diameter and the cost simultaneously, and seeks the
Pareto front taking both objectives. Whenever a unique diameter D is considered,
the bi-MDCST is reduced to the BDMST.

Several works in the literature deal with bi-objective minimum spanning tree
problems with two cost objective functions, such as heuristics [2, 33], enumera-
tion methods [29], and Branch-and-Bound [28]. For such problems, two cost func-
tions cij and fij are associated with each edge [i, j] ∈ E, and the problem relies
on computing spanning trees such that costs cij and fij are minimized simulta-
neously. Thus, the mathematical formulations solve a simple MST, considering
the two objectives. In the bi-MDCST, the diameter minimization is related to the
number of edges in the tree between each pair of nodes. As a consequence, the
mathematical formulations need to be adapted to take this fact into account.

Some works in the literature deal with the bi-MDCST. A theoretical study of
approximative algorithms for the bi-MDCST and MST with degree constraints
is introduced in [20]. Heuristics based on multi-objective genetic algorithms are
proposed by [18, 25, 26]. Work [25] presents a standard Multi-Objective Genetic
Algorithm (MOEA). Computational results are provided and compared with the
following greedy heuristics: One Time Tree construction (OTT) [6] and Random-
ized Greedy Heuristic (RGH) [23]. The study [26] reproduces the MOEA proposed
by [25] with some improvements, and proposes a Non-dominated Sorting Genetic
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Algorithm (NSGA-II). Extensive results are presented to calibrate and compare
such heuristics. Moreover, a comparison is made with optimal solutions found by
a multiflow formulation, where the objectives are optimized in priority order, and
with optimal results for the BDMST. A multiflow formulation is also proposed
by [26], and results are given for an optimization in two phases, i.e., each objec-
tive is minimized in turn and the diameter is considered as the priority objective.

In this study, we propose a procedure to compute Pareto-optimal fronts for
the bi-MDCST based on the Parallel Partitioning Method. To the best of our
knowledge, there are no works in the literature dedicated to finding the complete
Pareto-optimal solutions for the bi-MDCST. Thus, one contribution of this work is
to present the Pareto-optimal fronts for two important test sets, covering instances
introduced by [26,27], and usually used in the works for the bi-MDCST. In the next
section, definitions and notations used in this work are given. Then, some classic
exact procedures for multi-objective optimization problems are briefly reviewed in
Section 3. The proposed procedure is detailed in Section 4. Finally, computational
results are presented in Section 5, followed by concluding remarks in Section 6.

2. Definitions and notations

A multi-objective optimization problem P can be modeled as {min f(
→
x)|→x∈X},

where X is the feasible solution space of P , and f(
→
x) is the vector of objectives

(f1(
→
x), f2(

→
x ), . . . , fn(

→
x )) to be optimized. Multi-objective problems involve sev-

eral compromise solutions among the focused objectives. Such a set of solutions is
usually referred as the Pareto front which can be defined by means of the dom-
inance concept given below. Without loss of generality, consider a minimization
problem for which a solution x is said to dominate y if and only if, it satisfies the
conditions given in equation (2.1).

⎧⎨
⎩

fk(
→
x ) ≤ fk(

→
y ) ∀k ∈ 1 . . . n and

fk(
→
x ) < fk(

→
y ) ∃k ∈ 1 . . . n

(2.1)

A Pareto solution fk(
→
x∗) is said to be Pareto-optimal if no solution belonging

to X dominates fk(
→
x∗). The Pareto-optimal front is composed of the set of Pareto-

optimal solutions (non-dominated).
The bi-MDCST is defined in a graph G = (V, E), as mentioned before, and

since it is a bi-objective problem n = 2. Let T = (V, E′) be a spanning tree of G,
with E′ ⊆ E. A spanning tree T has a unique path ρij between each pair of
nodes i, j ∈ V, i �= j. Denote by dij the number of edges in ρij . The diameter D
of T is defined as D = max{dij : ∀i, j ∈ V, i �= j}, i.e., the number of edges in
the longest path of T . Moreover, let the first objective f1 be the minimization of
the total cost considering a spanning tree T of G, and let the second objective f2

be the minimization of the diameter D, considering T . The bi-MDCST seeks a
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set of Pareto-optimal spanning trees T of G where f1 and f2 are simultaneously
minimized.

Handler [15] defined a property to characterize and build spanning trees
whether D is odd or even. Property 1 is used in the remainder of this work to
obtain trees for some polynomial cases, and in the mathematical formulations.

Property 1. Whenever D is even, the spanning tree has a central vertex i such
that no other vertex is more than D/2 edges away from i. If D is odd, the spanning
tree has a central edge e = [i, j], such that all vertices k ∈ V \{i, j} are no more
than (D − 1)/2 edges away from one extremity of e.

3. Multi-objective exact methods

Several exact methods can be applied to deal with multi-objective problems.
Here, we briefly describe the ε-constraint, the Two-Phase Method (TPM), and the
Parallel Partitioning Method (PPM), in particular for dealing with bi-objective
problems, since some of their components are used in the proposed method. Refer-
ences [4,9,32,34] are interesting entry points for recent advances and bibliograph-
ical review on multi-objective strategies.

The ε-constraint is based on the ε-constraint enumeration strategy proposed
by [14]. The general idea is to optimize one objective and consider the second
objective as an additional constraint of the problem. Thus, the constrained opti-
mization problem P ′ is defined as {min f1(

→
x )|f2(

→
x ) ≤ ε;

→
x∈ X}. The ε-constraint

uses the optimal value of f1(
→
x) as a bound on the search space. As a consequence,

the search space is constrained by successively optimizing the objective f1(x) and
considering the new solution value as a new bound. The procedure stops when no
solution can be found. A successful application is found in [3] for the Traveling
Salesman Problem with profits.

The TPM has been proposed by [30] and it is composed of two phases which
are briefly described in the sequence. Applications of the TPM is found in [30,31],
respectively for the bi-objective assignment problem and for the bi-objective 0-1
knapsack problem. In the first phase of the TPM, two non-dominated solutions
are computed, which can be done, for example, by independently optimizing each
objective f1(x) and f2(x). Then, non-dominated solutions are computed using the
aggregating strategy and two target solutions. The aggregating strategy works as
follows: considering a bi-objective problem, a linear combination αf1(x) + (1 −
α)f2(x), where α ∈ [0, 1] is considered. Whenever α = 1, the first objective f1(x)
is optimized, on the contrary if α = 0, the second objective f2(x) is optimized. The
procedure is recursively repeated to computed new solutions. When the procedure
is not able to find new non-dominated solutions, it moves to the second phase,
where a search is done between each pair of solutions found in the first phase.

The PPM has three distinct phases and it was developed to improve the second
phase of the TPM. In particular, the search space between each pair of solutions
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becomes identical, i.e., the search space is partitioned using one of the objectives
and such that the partitions have identical size. A comparison between the TPM
and the PPM applied to the bi-objective permutation flowshop problem is done
in [17]. Results show the superiority of the PPM. In the first phase of the PPM,
upper and lower bounds in the search space are computed by doing an optimiza-
tion of each objective f1(x) and f2(x). In the second phase, the search space is
partitioned considering the bounds found in the first phase, and one of the objec-
tive function. The choice of the objective function used to define each partition
is an important issue, which strongly depends on the problem and the objectives.
In the following, the procedure generates a solution in each partition, using the
ε-constraint strategy. The constrained problem P ′ is considered at this stage as a
set of optimization problems with a unique objective, one for each partition that
are recursively solved. Several strategies can be considered to solve at optimality
these sub-problems such as Branch-and-Bound, linear and non-linear solvers. The
third phase seeks solutions into the space between each pair of neighbour solu-
tions found in the previous phases. The PPM has been extended by [8] to deal
with multiple objectives, called of K-PPM method.

The first and the second phases of the PPM are based on the ε-constraint, it
differs from the ε-constraint since the search space is partitioned, and upper and
lower bounds are considered in the PPM instead of just an upper bound as in the
ε-constraint method. The third phase of the PPM uses ideas from the TPM to fill
the space among neighbour solutions. The search of new solutions is done using a
linear combination of the objectives, taking as a target the rectangle between each
pair of neighbour solutions. The PPM improves the TPM since the search space
between each pair of solutions has a similar size.

4. An exact method for the bi-mdcst

In this section, the proposed exact procedure for the bi-MDCST is presented
in detail, followed by a description of the mathematical formulations and an algo-
rithm. The method makes use of components from the PPM.

Initially, the proposed procedure applies the first phase of the PPM method.
Then, lower and upper bounds are computed, which correspond to the MST cost
of G and to the diameter of G. The first bound on the search space is obtained
by applying Prim’s algorithm [5] to compute an MST of G. The MST cost is
considered as an upper bound on the search space, and its diameter is used as a
target value to constraint the search space. Whenever a graph G has edges with
similar costs, there are different MST of G. Figure 1 illustrates this situation, where
the graph in Figure 1a has more than one MST. Two different MST are depicted
in Figures 1b and 1c, with costs equal to 20 and the diameters are respectively
equal to D = 5 (path between nodes 0 and 5) and D = 6 (path between nodes 1
and 6). Thus, the solution for the bi-MDCST in Figure 1c is dominated by the
solution presented in Figure 1b due to the diameter value.
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Figure 1. Graph with multiple MST.

Figure 2. Sparse graph with D = 4 and a minimum diameter
spanning tree with D = 6.

In a spanning tree, there is a unique path between each pair of nodes, while in
a graph, several paths can exist among pairs of nodes. Thus, the diameter of a
graph is computed as follows: let d′ij , i, j ∈ V , be the minimum number of edges
among every possible path between i and j in G, the diameter D′ of G is equal
to D′ = max{d′ij : ∀i, j ∈ V, i �= j}. It is obvious that the minimum diameter
spanning tree of G has a diameter greater than or equal to the diameter of G.
The second bound on the bi-MDCST search space is considered as the diameter
of G. It important to highlight that, for some graphs, a spanning tree T of G with
the diameter equals the diameter of G does not exist, as the example shown in
Figure 2. A sparse graph with D = 4 is given in Figure 2a, and a spanning tree
with D = 6 is illustrated in Figure 2b. One may note that no spanning tree can
be built for this graph with D = 4 or D = 5.

Whenever a graph G has a diameter equal to D = 2 or D = 3 (a complete
graph always has spanning trees of diameter D = 2 and D = 3), the MST with
such diameter can be computed in polynomial time as shown in [26]. Whenever
there is a spanning tree with D = 2, a solution with D = 2 can be computed in
polynomial running time by using results from Property 1 (see Sect. 2). At each
iteration, a spanning tree is built, whenever possible, considering each node i ∈ V
as the central node and connecting all other vertices j ∈ V \{i} to the tree using
edge [i, j] ∈ E. Then, it remains to compare up to O(|V |) spanning trees of G.
This procedure has computational complexity O(|V |2). It is important to mention
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Figure 3. Example of a graph with different MDST.

that a central node can lead to an infeasible spanning tree in sparse graphs. In
this case, the solution is discarded.

If a spanning tree of D = 3 exists, and following Property 1, a procedure
builds a spanning tree at each iteration considering an edge [i, j] ∈ E at a time
as the central edge. Given a central edge [i, j] ∈ E, all vertices k ∈ V \{i, j} are
connected to one of the central edge extremities i or j. The edge [k, i] or [k, j] with
smallest cost enters the solution. Thus, up to O(|E|) spanning trees are compared.
As a consequence, computing a spanning tree of D = 3 takes O(|E| · |V |) in the
worst case. When the diameter is D ≥ 4, the problem becomes NP-hard and
the mathematical formulations described in Section 4.1 are employed to find such
solutions by means of a Mixed Integer Linear Programming (MILP) solver.

A graph G can have several Minimum Diameter Spanning Trees (MDST). An
example is shown in Figure 3. A graph G is given in Figure 3a and two minimum
diameter spanning trees are presented in Figures 3b and 3c, with diameter D = 4
and costs equal to 31 and 27, respectively. Thus, solution in Figure 3c dominates
the solution depicted in Figure 3b because of the spanning tree cost.

The second step of the proposed procedure consists of partitioning the search
space into identical rectangles. To accomplish that, it is necessary to decide which
objective is taken as reference to decompose the search space. For the bi-MDCST,
partitions are done considering the diameter since it corresponds to integer values
and each rectangle’s height is equal to 1. The search space is then decomposed in
such a way that each partition contains a target diameter value.

After the decomposition, the procedure seeks an optimized solution in each par-
tition, if it exists. This step is based on the ε-constraint method since the objective
function dealing with the diameter is set as a constraint to the problem. As men-
tioned above, finding an MST with 3 < D < |V | − 1 relies on a NP-hard problem.
One may note that at this point the problem in each partition is a BDMST. Thus,
proving optimality is limited by the instance size. Even so, it is interesting to
analyse the Pareto-optimal front for some instances applied to the bi-MDCST and
BDMST in the literature. Here, solutions with diameters 3 < D < |V | − 1 are
recursively solved for each partition using a MILP solver.

The mathematical formulations from [1], which were strengthened by [27], are
used to solve the problems in each partition (see Sect. 4.1). In spite of the duality
gap, these formulations are able to prove optimality for graphs with a higher
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number of nodes and edges than the multiflow formulations proposed by [26].
A possible explanation is that the number of variables and constraints for the
multiflow formulations are equal to O(|V 4|), while in the models proposed by [1],
they are significantly smaller (see Sect. 4.1).

It is worth mentioning that the formulations seek MST with D ≤ d, where d is
a positive integer. Thus, whenever the solution found has D < d, it means that all
solutions from the target diameter d until the obtained diameter D are dominated.
As a consequence, the proposed procedure does not need to run the formulations
for all diameters, thus saving some running time.

The procedure performs the steps mentioned above and stops when it attains
the diameter lower bound. The third phase of the PPM does not apply to the bi-
MDCST since the diameter is a positive integer value. Thus, there are no solutions
among neighbouring partitions.

4.1. Mathematical formulations

The MILP formulations considered are based on the Property 1 (Sect. 2), one
for the case when D is odd and another for the case when D is even, referred in
the sequence as D even case and D odd case.

An artificial node r is introduced in G with costs cri = 0 ∀i ∈ V , and corresponds
to the source of commodities. Moreover, the formulations work on a directed graph,
which allow us to control the diameter of the tree from the artificial node r to each
node in the solution. Thus, a new graph G′ is obtained from G to take into account
the artificial node r, and to transform edges of G in arcs as follows: for each edge
[i, j] ∈ E, with i < j, two arcs (i, j) and (j, i) are introduced in G′, with costs
cij = cji. Then, G′ = (V ′, A′), where the set of vertices V ′ and the set of arcs A′

are respectively given by V ′ = V ∪ {r} and A′ = A ∪ {(r, 1), . . . , (r, |V |)}. After
building a directed spanning tree, the arcs orientation and the artificial node are
taken out of the solution.

The formulation for the D even case is presented from (4.1) to (4.6). The binary
variables xij determine if an arc (i, j) is selected (xij = 1), or not (xij = 0) to
enter the solution. Furthermore, variables ui are associated with each vertex i ∈ V ′.
These variables specify the order each node is visited, considering for the artificial
node, variable ur = 0. Thus, the central vertex l of the solution is set with ul = 1.
Moreover, let L = D/2 for the D even case, following Property 1. It means that a
feasible solution for the D even case has up to L edges away from r.

The objective function to minimize costs is presented in (4.1). Equation (4.2)
ensures the artificial vertex r is connected to exactly one vertex i ∈ V . Con-
straints (4.3) define that a unique arc is incident to each vertex i ∈ V . In-
equalities (4.4) correspond to an adaptation of the classic restrictions proposed
by Miller, Tucker, and Zemlin (MTZ) [21] to determine the topological or-
der. Here, the strengthened version of such constraints is applied (lifted) [7].
Concerning the diameter constraints, they are established as a consequence of
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restrictions (4.4) and (4.6). Variables are defined from (4.5) to (4.6). This formu-
lation has O(|V ′| + |A′|) variables and O(|V | + |A′|) constraints.

min
∑

(i,j)∈A

cijxij (4.1)

∑
j∈V

xrj = 1 (4.2)

∑
(i,j)∈A′

xij = 1 ∀j ∈ V (4.3)

ui − uj + (L + 1)xij + (L − 1)xji ≤ L ∀(i, j) ∈ A′ (4.4)

xij ∈ {0, 1} ∀(i, j) ∈ A′ (4.5)

0 ≤ ui ≤ L + 1 ∀i ∈ V ′ (4.6)

The formulation for the D odd case is presented from (4.7) to (4.15) and uses
variables xij and ui as for the D even case. In addition, binary variables zij∀[i, j] ∈
E, i < j, are responsible for selecting the central edge. Whenever zij = 1, [i, j]
is taken as the central edge, otherwise zij = 0. In this formulation, the artificial
vertex r has to be connected to exactly two vertices p, q ∈ V in the final solution.
This way, the central edge [p, q] ∈ E is implicitly selected. After getting the final
solution, the arc orientation, the artificial node and arcs [r, p] and [r, q] are taken
away from the resulting spanning tree T ∗, and edge [p, q] enters T ∗.

min
∑

(i,j)∈A

cijxij +
∑

[i,j]∈E

cijzij (4.7)

∑
j∈V

xrj = 2 (4.8)

∑
(i,j)∈A′

xij = 1 ∀j ∈ V (4.9)

∑
[i,j]∈E

zij = 1 (4.10)

zij = xri · xrj ∀[i, j] ∈ E (4.11)

ui − uj + (L + 1)xij + (L − 1)xji ≤ L ∀(i, j) ∈ A′ (4.12)

0 ≤ ui ≤ L + 1 ∀i ∈ V ′ (4.13)

xij ∈ {0, 1} ∀(i, j) ∈ A′ (4.14)

zij ∈ {0, 1} ∀[i, j] ∈ E (4.15)

The objective function (4.7) has a new term
∑

[i,j]∈E cijzij to compute the
central edge cost. Equation (4.8) establishes that the artificial vertex r is connected
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Input: G = (V, E)

k← 1;1

Tk ← Compute MST;2

F∗ ← F∗ ∪ {Tk};3

UB ← Get diameter (Tk);4

LB ← Get diameter (G);5

k← k + 1;6

d← UB;7

if (UB �= LB) then8

while (d ≥ LB) do9

if (d > 3) then10

Tk ← Run MILP solver (G, d);11

if (Tk �= ∅) then12

F∗ ← F∗ ∪ {Tk};13

if (Get diameter (Tk) < d) then14

d← Get diameter (Tk);15

end16

k ← k + 1;17

end18

else19

Tk ← Run polynomial procedure (G, d);20

if (Tk �= ∅) then21

F∗ ← F∗ ∪ {Tk};22

k ← k + 1;23

end24

end25

Cleaning(Tk,F∗);26

d← d− 1;27

end28

end29

return F∗;30

Algorithm 1: An exact procedure for solving the bi-MDCST.

to exactly two vertices of V . Constraints (4.9) state that each arc is incident to
each vertex i ∈ V \{r}. Equation (4.10) ensures that there is a unique central
edge in the final solution. Inequalities (4.11) are non-linear and link the decision
variables zij to xij . These restrictions state that the artificial vertex is connected
to exactly two vertices i ∈ V , and are easily linearized as shown in [27]. The lifted
MTZ constraints are defined in (4.12). Finally, the domain of variables is given
from (4.13) to (4.15). This formulation has O(|V ′|+|A′|) variables and O(|V |+|A′|)
constraints.

4.2. An algorithm for the proposed exact method

A pseudo-code for the proposed exact method is given in Algorithm 1, for which
a graph G = (V, E) is the input parameter. Let UB, LB, F∗, and d be respectively
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the upper bound for the cost, the lower bound for the diameter, the set of Pareto-
optimal solutions, and an auxiliary variable to determine the target diameter at
each partition. Moreover, Tk is the kth solution in the Pareto-optimal front.

Lines 1 to 7 are the initialization steps. Variable k is set in line 1. Then, an
MST of G is computed in line 2 using Prim’s algorithm. The solution Tk is set
in the Pareto-optimal front F∗ in line 3. After that, Variables, UB, LB, k and d
are respectively updated in lines 4 to 7. The diameter of a graph G is obtained
by a trivial adaptation of a breadth-search first algorithm (line 6). The procedure
checks if there is more than one solution in the search space in line 8. If so, loop 9
to 28 is repeated for each partition until attaining the lower bound. Whenever
d > 3 (line 10), the MILP is applied (line 11). If a solution exists for the cor-
responding diameter, F∗ is updated in line 13. The mathematical models seek
MST with the diameter less than or equal to the target value d. Thus, the goal of
lines 14 to 16 is to check if a solution is found for the target diameter or not. If
there is no solution with the target diameter d (line 14), d is updated (line 15).
Lines 20 to 25 deal with the polynomial cases (d = 2 or d = 3) and perform the
polynomial algorithms (line 20) mentioned in Section 4. Whenever a solution is
found (line 21), the Pareto front F∗ and k are respectively refreshed in lines 22
and 23. Finally, the Cleaning procedure determines whenever the new solution Tk

dominates solutions belonging to the incumbent Pareto-optimal front F∗ (line 26),
and the target value d is refreshed (line 27). The procedure stops after inspecting
all possible target diameters between the lower and upper bounds, and the Pareto-
optimal front is returned (line 30). The search space is not explicitly decomposed.
In fact, the procedure computes solutions between the lower and upper bounds,
by considering a target diameter in each partition.

5. Computational results

The computational experiments were carried out on an Intel Core i5 with
2.53 GHz clock and 4 GB of RAM. The proposed procedure has been devel-
oped in C++, using the Dev-C++ 4.9.9.2. The code is coupled to MILP solver
CPLEX 12.0 using default parameters.

A number of 20 instances from [27] and 22 proposed by [26] are used in the com-
putational experiments, respectively referred to the first test set and the second
test set. In the naming format for instances in the first set, k V y Az Dw corre-
sponds to: k identifies if the graph is complete (“C”) or sparse (“S”), V y stands
for the number of vertices y, Az specifies the number z of edges belonging to G,
and Dw depicts the diameter w tested by [27]. For the second test set, the format
c V y Z stands for: “c” indicates if it is the Hamiltonien cycle instances (the con-
nectivity is ensured by an arbitrary Hamiltonien cycle) or “p”, the Hamiltonien
path instances (the connectivity is ensured by an arbitrary Hamiltonien path),
V y indicates the number of vertices y, Z the graph density, which determines
the number of additional edges to be included after ensuring connectivity. Thus,
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for the Hamiltonien cycle instances, density is set to {0.2, 0.3, 0.4}, while the
Hamiltonien path instances, density is set to {0.1, 0.09, 0.08}.

Results are presented in Tables 1 and 2, respectively for instances from
works [26, 27]. Each line corresponds to an instance, and the first column refers
to the instance names. Some instances treated by [27] differ only by the diameter,
the graph G is identical such as the instance with 15 vertices. Here, only instances
of distinct graphs are considered. Column “Q” shows the total number of solu-
tions found in the Pareto-optimal front. For each diameter from columns 3 to 21,
the MST cost is provided if the corresponding solution is non-dominated. When-
ever it is dominated the symbol “–” is depicted. Moreover, if a graph does not
allow a solution with a specific diameter, the symbol “*” are used. An empty cell
means the corresponding diameter is not focused for the corresponding instance.
Finally, the running time in seconds to compute the complete Pareto-optimal front
is given in the column time(s).

Results in Table 1 show that except for the instance S V 40 A100 D4, the
Pareto-optimal front has at most 14 solutions (14 target diameters). In terms of
running time, finding the complete Pareto-optimal front for this test set consumes
about 50 seconds for the instances in complete graphs with 10 and 15 nodes, and
sparse graphs with 20 nodes; less than 40 minutes for instances with 20 nodes in
complete graphs and about 13 hours for the instances with 40 nodes. For this test
set, the instances with diameter equal to D = 4 and D = 5 take the biggest part
of the running time. The problem often becomes easy when the diameter is close
to the MST diameter. Moreover, instances with identical costs seems to be more
difficult to solve. A possible explanation is that they impose more combinatorial
choices in the Branch-and-Bound tree, as is the case of instance S V 40 A100 D4.

Figures 4 illustrates the complete Pareto-optimal front for instances from the
first test set. The results for other instances in this test set behave similarly. How-
ever, we publish the solutions and the Pareto-optimal fronts for the two test sets on
the site http://di.uern.br/dario/bi-mdcst-problem/. Some Pareto-optimal
fronts appear with dominated solutions such as the instance C V 20 A190 D4 with
D = 11 and D = 13. Moreover, some instances have the MST dominated, as is
the case of the instance C V 20 A190 D5, where the MST diameter is D = 13,
and this solution is dominated by the solution with D = 12. Finally, solutions
with D = 2 and D = 3 have, in most of the cases, a higher cost value when com-
pared with the other diameters. This generates a disruption in the Pareto-optimal
front.

Table 2 presents results for the sparse graph instances for the second test set.
The running times are smaller than those to solve the first test set. The num-
ber of partitions to be inspected are up to 9 and up to 15, respectively for the
Hamiltonien cycle and Hamiltonien path instances. Due to the the fact that the
graphs are sparse, it is not surprising that some solutions with specific diameters
do not exist. For such a test set, the largest number of partitions without solutions
varies from 1 to 7, mostly they are close to the lower bound. This indicates that

http://di.uern.br/dario/bi-mdcst-problem/
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Figure 4. Pareto-optimal front for instances in the first test set.
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for the second test set, the lower bound is not accurate. Thus, there is room for
improving the lower bound computation.

6. Concluding remarks

In this work, an exact procedure to compute Pareto-optimal solutions for the
bi-MDCST is proposed. It uses components from the PPM method. Moreover, the
sub-problems in each partition are solved by MILP formulations from [27].

The sub-problems in each partition are NP-hard for some diameters since they
correspond to the BDMST. In spite of that, the Pareto-optimal fronts have been
computed for instances from two test sets, which is a significant contribution. In
particular, these results can be used to analyse the quality of heuristic results for
the bi-MDCST.

This study makes two other contributions involving the BDMST. First, a gener-
alization of this problem is investigated, and second the problem is treated in the
perspective of the multi-objective optimization. The concepts of dominance and
Pareto front are applied. Thus, the results give information about the search space,
for example: some diameters are not interesting because the solutions are domi-
nated. Furthermore, such analysis can be also useful for decision makers interested
on BDMST and bi-MDCST applications.

As future work, other methods to solve the sub-problems in each partition of
the proposed method can be investigated such as Branch-and-Cut, column gener-
ation and enumeration algorithms. Moreover, heuristics and matheuristics can be
developed to reduce the running time to obtain Pareto-optimal solutions. We are
currently investigating a procedure which encloses cuts into the Branch-and-Bound
tree in order to automatically manage the dominance concept.
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