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ALGORITHMIC APPROACHES FOR THE SINGLE INDIVIDUAL
HAPLOTYPING PROBLEM

Giuseppe Lancia1

Abstract. Since its introduction in 2001, the Single Individual Haplotyping problem has received
an ever-increasing attention from the scientific community. In this paper we survey, in the form of an
annotated bibliography, the developments in the study of the problem from its origin until our days.
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1. Introduction

The collection of a large amount of genomic data over the past few years has shown that our genetic makeup
is remarkably well-conserved. Generally speaking, the differences at genomic level between any two individuals
amount to less than 5% of their DNA sequences. This fact implies that the differences at the phenotype level (i.e.,
in the way the individuals look) must be caused by small regions of differences in the genomes. The smallest
possible region consists of a single nucleotide and therefore it is called Single Nucleotide Polymorphism or
SNP (pronounced “snip”). SNPs are the most common form of human genetic variation and their importance
can hardly be overestimated. They are used, for example, in medical, drug-design, diagnostic, and forensic
applications.

Generally speaking, a polymorphism is a trait common to everybody which can take different forms, ranging
in a limited set of possibilities, called alleles (for example, the color of the eyes is a polymorphism, whose alleles
include blue, black, brown, green). As far as SNPs are concerned, each SNP is a specific nucleotide site at which a
statistically significant variability can be observed within a population. A SNP is almost always a polymorphism
with only two alleles (out of the four possible, i.e., A, C, G and T). For a nucleotide site to be considered a SNP,
it must be the case that the less frequent allele is found in the population with some significant frequency.

Humans can be of two sexes and each individual has two parents, one for each sex. The human genome is then
organized in pairs of chromosomes. In each chromosome pair, one of the chromosome copies is inherited from the
father while the other is inherited from the mother. In general, the organisms whose genome is organized in pairs
of homologous chromosomes are called diploid organisms. For a diploid organism, at each SNP an individual
can either be homozygous (i.e., possess the same allele on both chromosomes) or heterozygous (i.e., possess two
different alleles). The values of a sequence of SNPs on a particular chromosome copy define a haplotype.
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Individual 1, paternal: caggtccCtatttCccaggcgcCgtatacttcgacgggTctata

Individual 1, maternal: caggtccGtatttAccaggcgcGgtatacttcgacgggTctata

Individual 2, paternal: caggtccCtatttAccaggcgcGgtatacttcgacgggTctata

Individual 2, maternal: caggtccGtatttCccaggcgcGgtatacttcgacgggCctata

Individual 3, paternal: caggtccCtatttAccaggcgcGgtatacttcgacgggTctata

Individual 3, maternal: caggtccGtatttAccaggcgcCgtatacttcgacgggCctata

Figure 1. A chromosome in 3 individuals. There are 4 SNPs.

In Figure 1, we illustrate a simple example, showing a chromosome in three individuals. For each individual,
the pair of his chromosome copies are reported. In this example there are four SNPs. The alleles for SNP 1 are
C and G, while for SNP 4 they are T and C. Individual 1 is heterozygous for SNPs 1, 2 and 3, and homozygous
for SNP 4. His haplotypes are CCCT and GAGT. The haplotypes of individual 3 are CAGT and GACC.

Haplotyping an individual consists in determining his two haplotypes for a given chromosome. With the larger
availability in SNP genomic data, the recent years have seen the birth of many new computational problems
related to haplotyping. Most of these problems are motivated by the fact that it can be difficult and/or very
expensive to determine the haplotypes experimentally, so that ad hoc algorithms must be used to correct data
errors or to infer missing data.

In this survey we will address the haplotyping problem for a single individual. For haplotyping problems
defined over sets of individuals (also called population haplotyping problems), the reader is referred to [22]. The
single individual haplotyping problem arises when haplotype data coming from experiments is inconsistent with
the existence of exactly two parents for an individual. This inconsistency can be due to experimental errors
and/or to missing data.

2. Single individual haplotyping

The process of turning the sequence of nucleotides in a DNA molecule into a string over the DNA alphabet is
called sequencing. A sequencer is a machine that, given a DNA molecule, outputs the string of A’s, T’s, C’s, and
G’s corresponding to the ordered nucleotides comprising the sequence. To each letter, the sequencer attaches a
value (called the confidence level) which expresses the probability that the corresponding nucleotide has been
correctly identified.

The main problem with sequencing is that, due technological limitations, it is impossible to sequence a long
DNA molecule at once. What can be done, however, is to sequence short DNA fragments (also called reads), of
length of about 1000 nucleotides each, which can be seen at small “windows” showing a substring of the target
molecule. In order to sequence a long DNA molecule, the molecule must first amplified, i.e., many copies of the
molecule must be created. One possible way to achieve this goal is by using an experiment called Polymerase
Chain Reaction (PCR, cite). The copies are then broken, at random, into several small fragments, which are fed
to a sequencer that will sequence those of the right size. The amplification phase is necessary so that the reads
can have non-empty overlap. From the overlap of two reads, one may infer (through a process called fragment
assembly) a longer fragment, and so on, until eventually the original DNA sequence is reconstructed. The overall
procedure, known as shotgun sequencing, was validated in the late 90’s by Celera Genomics, a private biotech
company trying to achieve the completion of the sequencing of the human genome faster than with other
experimental techniques of the time [13, 31]. At Celera the fragments were read by proprietary sequencers and
then assembled back into the original sequence with the use of sophisticated algorithms and powerful computers.
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Figure 2. Sequence reads and assembly of the two chromosome copies.

In Figure 2 we show an example in which the two chromosome copies (a) and (b) have been amplified,
and then a set of fragments (denoted by rectangular boxes) have been sequenced. The objective is to retrieve
(a) and (b) given as input the set of sequenced fragments. The major difficulty obstructing this goal is that,
during the amplification phase, the paternal and the maternal chromosome copies are amplified together, so
that it is not known for each random read if it belongs to paternal or to the maternal original copy. One major
problem in reconstructing the haplotypes consists therefore in segregating the paternal fragments from the
maternal ones. In addition to the individual fragments described so far, there may be cases in which some
extra information relates some fragments to some others. In particular, there exists a sequencing technique
that allows to sequence the ends of a long fragment, i.e., to read a few hundred nucleotides at each of the two
extremes. This experiment yields therefore pairs of reads, called mate pairs, which can then be part of the input
data. Although even with this technique only about one thousand nucleotides are read at each end of the target,
the result is stronger than reading two individual fragments (one for each end) since in this case it is known
that the two reads must come from the same original chromosome copy. Furthermore, the experiment returns
a fairly precise estimate of the distance, expressed in number of nucleotides, between the two reads of a mate pair.

Even with the best possible technology, sequencing errors are unavoidable. The main errors are due to bases
that have been miscalled or skipped altogether, or to the presence of contaminants, i.e., DNA coming from
organisms other than the one that had to be sequenced. Due to these experimental errors, the reconstruction of
the haplotypes, given the the reads coming from sequencing, is not always straightforward and may require the
correction of the input data. In a general way, the haplotyping problem for an individual can then be informally
stated as follows:

Given inconsistent haplotype data coming from the sequencing of an individual’s chromosome, find and
correct the errors in the data so as to retrieve a consistent pair of haplotypes.

Depending on what type of errors one is after, there can be many versions of this problem. Historically, the
formalization of the first haplotyping problems for an individual was given by Lancia et al. in [25] Within that
work, the minimum fragment removal (MFR) and minimum SNP removal (MSR) problems were introduced,
which we briefly discuss in the next section.
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3. Minimum fragment and minimum SNP removal

Given the fact that at each SNP only two alleles are possible, the alleles can be encoded by a binary alphabet.
Hence, in the sequel, the two values that a SNP can take will be denoted by 0 and 1. Under this encoding, a
haplotype is simply a string over the alphabet {0, 1}.

The basic framework for the single individual haplotyping problems is as follows. The data consists of a set
F = {f1, . . . , fm} of fragments (i.e., reads coming from sequencing) all taken from a target region containing
a set S = {s1, . . . , sn} of SNPs. Each SNP is covered by some of the fragments, and can take the values 0 or
1. Since there is a natural ordering of the SNPs, given by their physical location on the chromosome, the data
can be represented by an m × n matrix M over the alphabet {0, 1, -}, called SNP matrix. Each column of the
matrix corresponds to a SNP and each row corresponds to a fragment. If fragment fi covers the SNP sj , then
M [i, j] is the value of the allele for SNP sj appearing in fragment fi. The symbol “-” is used to represent a
SNP not covered by a fragment (see Fig. 3a and 3b for an example of a SNP matrix).

A gapless fragment is one covering a set of consecutive SNPs (i.e., the 0’s and 1’s appear consecutively in
that row). We say that a fragment has k gaps if it covers k + 1 blocks of consecutive SNPs (for example, the
fragment 00--101---01-has two gaps). Although theoretically each fragment should be gapless, since it covers
a sequence of consecutive SNPs, in practice the data may contain gaps. In particular, the gaps can be mainly
due to two reasons:

(1) Thresholding of low-quality reads. When the sequencer cannot call a SNP 0 or 1 with enough confidence,
the call is not made, and the SNP is marked with a “-” . For instance, the sequencer could have read the
first fragment of Figure 3a as acgaac, but with a high degree of uncertainty on the g. Then the fragment
would be turned into ac-aac.

(2) Mate-pairing in shotgun sequencing. Consider the following simplistic example. If only 4 letters were read at
each end of aggctaccgatggtg, then the resulting fragment could be described as aggc-------ggtg. Hence,
in the case of mate pairs, there would be fragments with k = 1 gap.

A pair of fragments fi and fj are said to be in conflict if there exists a SNP sk such that M [i, k] ∈ {0, 1},
M [j, k] ∈ {0, 1} and M [i, k] �= M [j, k]. The conflict of two fragments implies that the fragments are not coming
from the same chromosome copy or, otherwise, there would be errors in the data. Given a SNP matrix M , the
fragment conflict graph is the graph GF (M) = (F , EF ) with an edge for each pair of fragments in conflict (see
Fig. 3c). A (less intuitive) notion of conflict is defined also for the pair of SNPs. Two SNPs si and sj are said
to be in conflict if there exist two fragments fu and fv such that the 2 × 2 submatrix defined by rows u and
v and columns i and j contains three 0’s and one 1, or three 1’s and one 0. Given a SNP matrix M , the SNP
conflict graph is the graph GS(M) = (S, ES), with an edge for each pair of SNPs in conflict (see Fig. 3d).

When GF (M) is a bipartite graph, the set of fragments F can be segregated into two subsets H1 and H2 of
pairwise compatible fragments. From each set one can infer one haplotype by fragment overlap. Let h1 and h2

be the haplotypes thus obtained. Since h1 and h2 are obtained by the assembly of the input fragments, the single
individual haplotyping problems are sometimes also referred to as fragment assembly haplotyping problems.

Let us call a SNP matrix M feasible if GF(M) is bipartite and infeasible otherwise. It is immediate to see
that a SNP matrix for error-free data must be feasible. When the SNP matrix is not feasible the input data
must contain errors that we want to detect and correct. All the single individual haplotyping problems proposed
in the literature are therefore aimed at correcting an infeasible SNP matrix so as it becomes feasible.

The very first paper on single individual haplotyping appeared in 2001 and described two problems arisen at
Celera Genomics in the context of sequencing the human genome [25] . These are optimization problems called
Minimum Fragment Removal (MFR) and Minimum SNP Removal (MSR):

− MFR: Given a SNP matrix, remove the minimum number of fragments (rows) so that the resulting matrix
is feasible.

− MSR: Given a SNP matrix, remove the minimum number of SNPs (columns) so that the resulting matrix
is feasible.
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Figure 3. SNP matrix and conflict graphs.

The first problem is mainly suited for a situation in which, more than sequencing errors, one is worried about
the presence of contaminants that should be removed from the input data. The second problem is more suited
in the presence of sequencing errors only, i.e., when all the fragments are to be retained. Both objectives are
driven by a general parsimony rule, in the same spirit as Occam’s razor, i.e., look for the simplest explanation
of why the matrix is not feasible.

Both MFR and MSR were shown to be NP-hard [25] so that exact algorithms for their solution are expected to
be exponential branch-and-bound procedures. In [28], Lippert et al. described a combinatorial branch-and-bound
algorithm for MFR. They also described an Integer Linear Programming (ILP) formulation of the problem, based
on a reduction of MFR to the Maximum Node-Induced Bipartite Subgraph problem [17]. This problem requires
to remove a smallest-size set of nodes from a graph G so as G becomes bipartite. In particular, at least one node
must be removed from each odd cycle of G. The ILP model in [28] has an exponential number of constraints
(one for each odd cycle), but it is shown that they can be separated in polynomial time. Good heuristic solutions
for MFR were then obtained from the optimal solution of the LP relaxation by randomized rounding.

While the general case for MFR and MSR is NP-hard, both problems become tractable when the input
fragments have no gaps. Let us call M a gapless matrix if each row of M is a gapless fragment. The main
connection between MFR and MSR for gapless data is given by the following theorem.

Theorem 3.1 [25]. Let M be a gapless SNP matrix. Then, GF (M) is a bipartite graph if and only if GS(M)
is a stable set.

In [25] it was shown that both MSR and MFR are polynomial for a gapless SNP matrix. In particular, it
was proved that, when M is gapless, GS(M) is a perfect graph so that MSR boils down to finding the largest
independent set in a perfect graph, i.e., a polynomial problem. Furthermore, MFR was shown to be polynomial
by reducing it to a minimum cost flow problem on a suitably defined network. Note that all results for gapless
data can be extended to matrices with gaps, as long as they possess the consecutive ones property (C1P), i.e.,
it is possible to sort the columns in such a way that each row becomes gapless. Since testing if a matrix M
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is C1P (and finding the corresponding sorting which makes M gapless) can be done in polynomial time [7], it
follows that MFR and MSR are polynomial problems for matrices with C1P.

Later theoretical improvements extended these results from gapless fragments to gapped fragments in which
the gaps length is bounded by a constant. In particular, there are O(22lm2n + 23ln3) dynamic programming
algorithms for MFR and O(mn2l+2) for MSR for instances with gaps of total length l (Rizzi et al. [30], Bafna
et al. [3]). These algorithms are hardly practical, however, on instances for which the gaps can be rather large.
To overcome this problem, Xie and Wang [35] (see also Xie el al. [36]) proposed an algorithm for MFR which
takes into account two new parameters: k, the maximum number of SNPs covered by any fragment and c, the
maximum number of fragments covering any SNP site (also called coverage). Their solution has complexity
O(nc3c + m log m + mk). Since k ≤ n and c is generally at most 10, this method should be more suitable for
mate-paired data, where l can be quite large.

4. Minimum letter flip

The very reason why single individual haplotyping problems exist is that no sequencing process can be error-
free and the data can always contain errors, mostly due to miscalling or missing a base in a fragment. In order to
model the correction of bases that were mistakenly read, a particular version of the single individual haplotyping
problem was proposed in [28] (see also [21]) This version is called the Minimum Letter Flip (MLF) problem
(also known as the Minimum Error Correction (MEC) problem), and is defined as follows:

MLF: Given a SNP matrix, swap the minimum number of entries (0 into 1, or 1 into 0) so that the
resulting matrix is feasible.

In another version of MLF, each entry is associated to a non-negative weight, representing the confidence
level with which the base corresponding to the entry had been called. The objective is to flip a set of entries
with minimum total weight so as to make the matrix feasible. This problem is denoted by WMLF (Weighted
Minimum Letter Flip).

The MLF problem was shown to be NP-hard, both for general [28] than for gapless matrices [11]. The
literature contains several approaches for the solution of MLF. The reader is referred to Geraci [19] and Geraci
and Pellegrini [20], for a comprehensive study in which most of these procedures are described and compared
to each other.

One of the first heuristics for MLF was FastHare, by Panconesi and Suozo [29]. FastHare starts by first
sorting the fragments according to their position of the chromosome (left to right), and then it reconstruct the
two final haplotypes by correcting the sorted fragments in a greedy way. This heuristic is very fast and, despite
its simplicity, it yields quite accurate solutions in general, especially when the error rate in the data in not too
high. For high error-rate data, Genovese et al. proposed SpeedHap [18], an effective heuristic procedure organized
in phases. For each phase the procedure performs three main steps: (1) it detects the likely positions of errors (2)
it allocates the fragments to the two partially built final haplotypes, and (3) it decides the final alleles in the two
haplotypes via a majority rule on ambiguous SNPs. Another similar greedy heuristic procedure is FAHR (Fast and
Accurate Haplotype Reconstruction, by Wu and Liang [5]), which builds the final haplotypes by partitioning the
fragments at each SNP in a greedy way. In computational experiments run over data coming from chromosome
one of 60 individuals from the international HapMap Project [12], FAHR outperformed FastHare in both running
time and correctness of the solution.

Bayzid et al. in [6] proposed still another heuristic for MLF, called HMEC. This is a steepest-descent local
search procedure, which generally reaches good-quality solutions, but has the drawback of being somewhat
slow. Specifically, each iteration of HMEC takes time O(m3n). Because of this time complexity, the use of HMEC
may be impractical for instances with a large number of fragments.

The weighted version of MLF was considered by Zhao et al. in [38]. In this work, the authors proposed the
use of a dynamic clustering heuristic, and introduced an extended version of the problem defined in order to
deal with the presence of contaminants. The new problem, denoted by CWMLF (Complete Weighted Minimum
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Letter Flip), requires to make the SNP matrix feasible not only by flipping some of its entries but also by
possibly removing some of the rows. In [34], Wu et al. proposed a heuristic procedure for WMLF called AHHAP.
The algorithm starts with a preprocessing phase aimed at reducing the size of the instance, and then it proceeds
by a greedy assignment of the fragments to the haplotypes, according to a measure of similarity between the
fragments and the partial haplotypes built so far. Computational experiments show that AHHAP performs in a
similar way as the best previous methods.

Among the various types of approaches employed for the solution of MLF, there is the use of evolutionary
algorithms such as Genetic Algorithms and Particle Swarm Optimization (PSO). In [32], Wang et al. proposed
both a combinatorial branch-and-bound algorithm and a genetic algorithm for MLF. In the genetic algorithm,
each candidate solution is represented by a binary vector v of length m, in which vi specifies the haplotype
copy (0 or 1) to which fragment fi is assigned. Being exponential, the branch-and-bound is only applicable
to instances of very small size, but the genetic algorithm can be used for large instances (e.g., more than 50
fragments over more than 50 SNPs).

A PSO heuristic for MLF was proposed by Kargar et al. [24]. The PSO is an evolutionary metaheuristic in
which the flow of the algorithm is already defined and problem-independent, while the user must only specifying
the solution format and the fitness function (i.e., the objective function) for his specific problem. In particular,
similarly to the above genetic algorithm, a candidate solution is represented by a binary vector of length m,
whose components specify the haplotype copy to which each fragment is assigned. Computational experiments
show that the PSO turns out to be fast and appropriate for instances with a low error-rate in the data.

Among the most successful heuristics for MLF we recall HapCUT, proposed by Bansal and Bafna [4]. This
algorithm makes use of an auxiliary graph defined from the fragments, where each SNP corresponds to a node
in the graph and two nodes (i.e., two SNPs) are joined by an edge if there exists a fragment that covers both
SNPs. In order to minimize the MLF cost of the reconstructed haplotypes, the algorithm proceeds by iteratively
finding max-cuts in a sequence of auxiliary graphs. Computational experiments run on real-life data showed
that haplotypes inferred by HapCUT were significantly more accurate (20−25% lower maximum error correction
scores for all chromosomes) than those obtained by the previously published methods.

In [23] , He et al. proposed a dynamic programming algorithm for MLF with time complexity O(2L m n)
where L is maximum length of a fragment. The algorithm can be used for values of L up to about 15, but it
becomes impractical for larger values. When the input fragments are too long for the dynamic programming
procedure, the authors proceed by modeling the problem as a satisfiability problem, and solve it via a MaxSAT
solver. The quality of the solutions obtained through this approach is shown to be quite high, but the solving
process remains slow in many cases.

Another dynamic programming algorithm was proposed by Deng et al. in [14] and is parametrized by the
maximum coverage c of each SNP (where the coverage of a SNP is defined to be the number of fragments to
which that SNP belongs). The complexity of the dynamic program is O(nc2c), which can be quite high when c
is large. For large values of c the authors propose a heuristic procedure derived from the dynamic programming
algorithm. Experiments showed that the heuristic returns very accurate solutions on average.

Chen et al. [10] proposed an algorithm for MLF based on an ILP formulation of the problem. Since computing
the ILP solution for the whole input SNP matrix would require an enormous amount of time, the algorithm
starts by decomposing the matrix into small, independent, blocks. For each individual block, the ILP model is
then computed and solved by the ILP solver. The program was tested on a popular benchmark, i.e., the filtered
HuRef data set [26], and it took a total time of 31h (26h of which were spent on the most difficult block of the
15th chromosome). This was the first time that MLF optimal solutions were obtained for the filtered HuRef
dataset.

5. Probabilistic models

Some models of single haplotyping problems are of probabilistic nature, i.e., loosely speaking, they seek a
solution which has the greatest probability of being the correct one.



338 G. LANCIA

In [27], Li et al. proposed a probabilistic model for the haplotype inference problem. Their method is based
on a statistical model of sequencing errors, compositional information, and haplotype memberships. In their
model, they studied the conditional probability P (h1, h2|M) of h1 and h2 being the correct haplotypes given
that M was the SNP matrix measured. They pursued the objective of determining the most likely pair of
correct haplotypes, i.e. a pair {h∗

1, h
∗
2} maximizing the above conditional probability. Due to computational

complexity, the method proceeds in steps. The first step considers only consecutive SNPs and decides, for each
pair of consecutive SNPs, which allele should be assigned to the first haplotype and which to the second. In a
second step these assignments of alleles are combined in order to reconstruct the actual haplotypes. The solving
procedure is based on Gibbs sampling and an Expectation Maximization (EM) algorithm. The procedure is also
able to compute the accuracy, or confidence, of the reconstructed haplotypes.

Wang et al. in [33] formulated the haplotype assembly problem into a statistical framework and modeled it by
a Markov Chain (MC) model which can account for various types of data errors. This Markov Chain approach
presents several main advantages: (i) it is suitable for those data sets on which we have no previous information
about the type of errors that we might expect in the data; (ii) the model can be solved by a polynomial time
algorithm, and therefore it is particularly effective for dealing with large data sets; (iii) haplotypes have very
a strong linkage disequilibrium property [15], and the MC model is suitable for characterizing this kind of
linkage property. The objective pursued by Wang et al. is the same as in Li et al., i.e., determining the most
probable pair of haplotypes given the observed SNP matrix. In the MC approach, the assignment of fragments
to haplotypes is regarded as a Markov process in which successive allele pairs are generated based on the value
of a small number of the preceding SNP sites in the sequence. In order to find the most probable haplotypes
for the set of fragments, the authors proposed a Viterbi-like dynamic programming procedure. Computational
tests run on HapMap data showed that the MC approach retrieves solutions with a higher probability of being
correct than those obtained by the MLF procedures, and in a much shorter running time.

Probabilistic arguments were not only used in the definition of new models for haplotyping, but also in
deriving probabilistic algorithms for the existing objective functions. For example, HASH (Haplotype Assembly
for Single Human), is a probabilistic algorithm proposed by Bansal et al. [8] for assembling haplotype fragments
under the MLF objective function. HASH is a Markov Chain Monte Carlo (MCMC) algorithm in which the
transitions of the Markov chain are generated using min-cut computations on auxiliary graphs derived from the
input reads. The method was applied to infer the haplotypes from real data consisting of whole-genome shotgun
sequence fragments of a human individual. The results showed that the haplotypes inferred by using HASH were
significantly more accurate than the haplotypes estimated by using the best heuristics available at the time.

Chen et al. [9] described a probabilistic algorithm for MLF in which they considered three error parameters,
called α1, α2 and β. The parameter α1 is the error-rate with which entries of the SNP matrix have been miscalled
(i.e., a 0 in place of a 1, or a 1 in place of a 0). The parameter α2 is the error-rate with which a “-” in the SNP
matrix appears where, in fact, a SNP is covered by a fragment and therefore an allele 0 or 1 should be present.
Finally, β is a measure of the expected dissimilarity between the haplotypes to be reconstructed. The authors
gave a linear-time (in the size of M) probabilistic algorithm that reconstructs the correct haplotypes with high
probability when all the parameters are known. Even for the case when some of the parameters are unknown,
they provided a probabilistic algorithm that outputs the correct haplotypes with probability depending on the
actual values of α1, α2 and β.

6. Generalizations and variants of haplotyping

Among the works proposed for the solution of the MLF model, there are some papers which introduced
variants to the original framework in order to deal with some specific data problems. For instance, Zhang
et al. [39] proposed a model called Minimum Conflict Individual Haplotyping (MCIH), suitable for data sets
with particularly high error-rate. The problem was shown to be NP-hard. For the solution of MCIH, the authors
described a dynamic programming procedure, suitable for moderate-sized data sets, and a feed-forward neural
network algorithm for larger instances.
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Duitama et al. [16] proposed a model called Maximum Fragments Cut (MCF) whose objective is to identify
a set of fragments (i.e., rows of the SNP matrix) maximizing a score proportional to their conflict with respect
to the remaining rows. This set of fragments can be interpreted as the shore of a cut in a suitable graph G,
so that the model requires the solution of a Max-Cut problem. In order to solve MCF, the authors utilized a
local optimization heuristic, called ReFHap. The procedure starts by finding a good cut C in G via a classical
local-search heuristic for max-cut. Then, after having found the cut, the algorithm uses the input SNP matrix to
find the haplotype h that minimizes the number of entries to be corrected assuming that the rows in C belong
to h and the other rows do not belong to h. Computational experiments were run showing the effectiveness of
the heuristic procedure.

Xie et al. introduced in [37] a model called Balanced Optimal Partition (BOP), which generalizes both MLF
and MCF. The model is, in a way, a weighted combination of MLF and MCF, and by setting some model
parameters to proper extreme values, BOP degenerates into pure MLF or pure MCF respectively. To solve
the model, the authors proposed a dynamic programming algorithm called H-BOP, which was made effective by
limiting the number of intermediate solutions to a suitable small integer k. Extensive computational experiments
showed that, for k = 8, H-BOP was generally faster and more effective than state-of-the-art procedures of the
time, such as ReFHap. Furthermore, the experiments showed that H-BOP scales rather well to large-size input
data.

Aguiar and Istrail proposed in [1] HapCompass, an algorithm for haplotype assembly of densely sequenced
human genome data. HapCompass operates on the compass graph, i.e., a graph where each SNP is a node, and the
edges are associated to the fragments. The edges are weighted, and the weight of an edge (si, sj) measures the
best coupling of the alleles for si and sj on the two final haplotypes. In the model, the reconstruction of the final
haplotypes corresponds to a minimum-weight edge removal problem until a special type of subgraph is obtained.
HapCompass is a heuristic with a local reoptimization step. Computational results showed the effectiveness of
the procedure and the good quality of its solution also with respect to the MLF objective. Later on, Aguiar
and Istrail described in [2] some generalizations of compass graphs and of the HapCompass framework. They
presented graph theory-based algorithms for (i) novel implementations of haplotype assembly optimizations
(minimum error correction), (ii) assembly of a pair of individuals sharing a haplotype tract identical by descent
and (iii) assembly of polyploid genomes (i.e., genomes having more than two sets of homologous chromosomes).
The method were evaluated on the 1000 Genomes Project, Pacific Biosciences and simulated sequence data.
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