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THEORY AND APPLICATION OF RECIPROCAL TRANSFORMATION
OF “PATH PROBLEM” AND “TIME FLOAT PROBLEM”
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Abstract. The concept of analytic geometry, i.e., the reciprocal transformation of geometry and al-
gebra, hints a prospect for the reciprocal transformation of the “path problem” and the “time float
problem”. A reciprocal transformation can be used to solve a complex problem in one field by trans-
lating it into a simpler one in another field. In this case, owing to the generalized concept of length,
various types of non-path problems such as the optimum allocation problem and equipment replacement
problem can be represented as “path problems”. A “length network”, which is generalized in nature,
is translated into a “time network” by changing the meanings of arcs and lengths. Furthermore, “path
problems” can be represented as “time float problems” by discovering the relationships of paths in the
length network and time floats in the time network. Base on the relationships, “time float problems”
also can be represented as “path problems”. The relationships are keys to updating the mutual cor-
respondence of path problems and time float problems. The relationships mirror the uniform qualities
of networks in various disciplines and fields. We apply such relationships to solve optimum allocation
problems, equipment replacement problems, and path problems with required lengths and to analyze
anomalies in projects under generalized precedence relations. These applications test the effectiveness
of our proposed approach to theoretical and applied researches in various disciplines and fields.
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1. Introduction

Scientific progress has often been realized by linking various disciplines and fields and translating a complex
problem in one field into a simple one in another field. Descartes created the Cartesian coordinate system to
translate between geometric and algebraic problems to found analytic geometry, an excellent example of this
concept. This broke a long-standing bottleneck in geometrical studies and enabled, for example, conics to be
translated into quadratic equations. As in analytic geometry, we try to establish a bridge between the “path
problem” and the “time float problem”. The “time float problem” mainly involves the calculations of time floats
of activities in projects [4, 11, 12, 14, 21, 36] (see Sect. 2).
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The concept of length is generalized to represent various concepts through various measurements. For instance,
length in terms of distance, monetary, flux, and time units represents distance, costs and benefits, flow or
capacity, and duration, respectively. Therefore, a path problem is a generalized one that could represent a non-
path problem. Many studies have solved non-path problems by translating them into path problems. Zhang
et al. [45] used dual theory to translate a minimum cut and maximum flow in a directed planar network into a
shortest-path problem. Ranjbar [32] developed a path-relinking algorithm to tackle a project scheduling problem
with a resource leveling objective function. Zeng et al. [44] used a similar algorithm to solve a bi-objective
flow shop problem. The resource-constrained shortest-path problem (RCSP) is often used as a branch-and-
price subproblem [48]. The solution of a path following problem contributes to the general motion planning
problem [40] and the optimal power flow problem [34]. Some cost optimization problems can also correspond to
shortest-path problems [2].

Path problems and relevant algorithms provide approaches for various non-path problems. Some such as
the shortest- and longest-path problems, which can be solved using the classic Dijkstra [9] and Bellman [5]
algorithms, are easy, and others are very complex. Classic path problems include shortest-path problems such
as the traveling salesman problem [3, 15, 27, 37], shortest-path problem with cycles [1, 19], fuzzy shortest-path
problem [46], stochastic shortest path problem [38], multi-objective shortest-path problem [30], and maximum
capacity shortest path problem [6]; longest-path problems such as the longest Hamiltonian cycle problem [7],
longest-path problem with cycles [16], probabilistic longest-path problem [28], fuzzy longest-path problem [17],
and orderly colored longest path problem [35]; and other path problems such as the multi-constrained path
problem [43], optimal path problem in a network [20], k-best path problem [29], minimum k-path connected
vertex cover problem [23], and median path problem with bounded length [22]. Problems such as the traveling
salesman problem and longest Hamiltonian cycle problem are NP-hard [7, 37].

In the time field, the time float concept is specific and includes total float, free float, safety float, and node
float [4,11,12,14,36]. Comparing with path problems, time float problems such as computing the time float in the
critical path method (CPM) [21] are generally simple. However, they may have abnormal characteristics under
generalized precedence relations (GPRs) [8, 10, 13, 31, 33, 39, 41, 42], and classic algorithms may be inapplicable
to linear scheduling [18, 25, 47]. Some authors have studied relationships between time floats problems and
some other problems. Maculan et al. [26] provided insight on other considerations such as the similarities and
differences between float time and flow problems. Lima et al. [24] provided a method for expressing problems
as satisfiability whereby the set of so-called “primitives” can be expressed as a problem specification language
and problems specification as path to-float time problems as sentences in that language.

Although the time float and the path containing its generalized objects exist in different fields, we discover
that a time float is equivalent to the difference between the lengths of two types of paths in a time network;
therefore,

a time float ⇔ two paths

Analogously with Descartes’s work in analytic geometry, i.e., linking a point in geometry and two numbers in
algebra through Cartesian coordinates,

a point ⇔ an ordered pair of numbers

Therefore, the focus of this study is comparable to analytic geometry, and a complex path problem can be
reciprocally transformed into a simple time float problem. Owing to the generalized characteristics of path
problems, many unconventional ones also can be translated into time float problems and solved in the time
field (see Sects 4.1 and 4.2), thus affording new approaches for complex problems. Commensurately, time float
problems can be analyzed in a perspective of path length that contributes to the optimal solution (see Sect. 4.4).

This reciprocal transformation should also clarify uniformities in fields such as transportation, communica-
tions, computers, and finance. Developments in the economy and technology have afforded people increasing
action spaces and forms of sociation. Accordingly, people have been structuring large transportation, commu-
nications, computers, and finance systems. These systems can mostly be represented as networks with length
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factors, such as transportation networks, communications networks, computer networks, finance networks, co-
operation networks, social networks, and supply chain networks. Their structures should support travel, goods
flow, cash flow, and information statistics, increase productivity, and improve quality of life. Therefore, it is
important to study these systems. Currently, most relevant literatures focus on these networks in their own
fields and on the uniform qualities of these networks’ structures and operations in various fields.

This study applied the reciprocal transformation of the path problem and the time float problem to reveal
the uniform qualities of various networks in terms of time float. It shows that time float parameters can be used
to analyze and describe networks in various fields.

2. Time floats in time network

In a time network such as CPM or GPRs network, classic time floats mainly include total float TFij , free
float FFij , safety float SFij of an activity (i, j), and note float TFi of a node (i). Let ETi and LTi respectively
indicate the earliest and latest time of a node (i) (see Appendix A) and dij , the duration of an activity. Then,
the above time floats can be defined as follows:

Total Float. The total float TFij of an activity (i, j) is defined as

TFij = LTj − ETi − dij (2.1)

which gives the permissible delay in an activity that does not delay a project.

Free Float. The free float FFij of an activity (i, j) is defined as

FFij = ETj − ETi − dij (2.2)

which gives the permissible delay in an activity finish-time that does not affect the earliest start-time of its
immediate succeeding activities.

Safety Float. The safety float SFij of an activity (i, j) is defined as

SFij = LTj − LTi − dij (2.3)

which gives the number of periods by which an activity can be prolonged when its immediate preceding activities
are completed at the latest completion time without delaying the project.

Node Float. The node float TFi of node (i) is defined as

TFi = LTi − ETi (2.4)

which indicates the permissible delay in an activity that affects the earliest start-time of its immediate succeeding
activities without delaying the project.

3. Relation laws of paths in length network and time floats in time network

In a length network, in which arc lengths that may be positive or negative and that cycles may exist, the path
length is the sum of lengths of all arcs on the path. The length network can be considered as a time network by
associating arcs to activities and arc lengths to activity durations (activity durations may be positive/negative
and cycles may exist as in GPRs networks). In this case, it is advisable to let the length network have a single
start node (1) and end node (n). If there exist more start or end nodes, dummy arcs and nodes can be added
to the unique start and end nodes.

The relation laws of paths in a length network and time floats in the corresponding time network (when
equating arcs and lengths to activities and durations) are given by the following theorems and corollaries. We
name the path from the start node (1) to the end node (n) as “path” and other paths as “path sections” for
convenience.
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Lemma 3.1. The length of the longest path section μ∇
1→i from the start node (1) to a node (i) in a length net-

work, when equating the “length” to “time”, is equal to the earliest time ETi of the node (i) in the corresponding
time network, that is,

L(μ∇
1→i) = ETi (3.1)

Proof. See Appendix B. �

Lemma 3.2. The difference between the length of the longest path μ∇ and that of the longest path section μ∇
i→n

from a node (i) to the end node (n) in a length network, when equating the “length” to “time”, is equal to the
latest time LTi of the node (i) in the corresponding time network, that is,

L(μ∇) − L(μ∇
i→n) = LTi (3.2)

Proof. See Appendix C. �

Theorem 3.3. The difference between the length of the longest path μ∇ and that of the longest path μ∇
ij con-

taining an arc (i, j) in a length network, when equating the “length” to “time”, is equal to the total float TFij

of the activity (i, j) in the corresponding time network, that is,

L(μ∇) − L(μ∇
ij) = TFij (3.3)

Proof. See Appendix D. �

Theorem 3.4. The difference between the length of the longest path μ∇
j containing a node (j) and that of the

longest path μ∇
ij containing an in-arc (i, j) of the node (j) in a length network, when equating the “length” to

“time”, is equal to the free float FFij of the activity (i, j) in the corresponding time network, that is,

L(μ∇
j ) − L(μ∇

ij) = FFij (3.4)

Proof. See Appendix E. �

Theorem 3.5. The difference between the length of the longest path μ∇
i passing a node (i) and that of the

longest path μ∇
ij passing an out-arc (i, j) of the node (i) in a length network, when equating the “length” to

“time”, is equal to the safety float SFij of the activity (i, j) in the corresponding time network, that is,

L(μ∇
i ) − L(μ∇

ij) = SFij (3.5)

Proof. It is similar to the proof of Theorem 3.4. �

Theorem 3.6. The difference between the length of the longest path μ∇ and that of the longest path μ∇
i passing

a node (i) in a length network, when equating the “length” to “time”, is equal to the time float TFi of the node
(i) in the corresponding time network, that is,

L(μ∇) − L(μ∇
i ) = TFi (3.6)

Proof. It is similar to the proof of Theorem 3.3. �

Theorem 3.7. The difference between the length of the longest path μ∇ and that of a path μ in a length network,
when equating the “length” to “time”, is equal to the sum of free floats or safety floats of all activities on the
path μ in the corresponding time network, that is,

L(μ∇) − L(μ) =
∑

(u,v)∈µ

FFuv =
∑

(u,v)∈µ

SFuv (3.7)
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Proof. See Appendix F. �

Theorem 3.8. For an arc (u, v) on the longest path section μ∇
1→i in a length network, when equating the

“length” to “time”, the free float FFuv of the activity (u, v) is 0 in the corresponding time network, that is, if
(u, v) ∈ μ∇

1→i, then
FFuv = 0 (3.8)

Proof. See Appendix G. �

Corollary 3.9. A path section μ1→i is the longest one μ∇
1→i in a length network in case the free floats of all

activities on μ1→i are 0 when equating the “length” to “time”, that is, if FFuv = 0 for ∀(u, v) ∈ μ∇
1→i, then

μ∇
1→i = μ1→i (3.9)

Proof. See Appendix H. �

Theorem 3.10. For an arc (u, v) on the longest path section μ∇
i→n in a length network, when equating the

“length” to “time”, the safety float SFuv of an activity (u, v) is 0 in the corresponding time network, that is, if
(u, v) ∈ μ∇

i→n, then
SFuv = 0 (3.10)

Proof. It is similar to the proof of Theorem 3.8. �

Corollary 3.11. A path section μi→n is the longest one μ∇
i→n in a length network in case the safety floats of

all activities on μi→n are 0 when equating the “length” to “time”, that is, if SFuv = 0 for ∀(u, v) ∈ μ∇
i→n, then

μ∇
i→n = μi→n (3.11)

Proof. It is similar to the proof of Corollary 3.9. �

Based on the generalized concept of a length network, the above relation laws between paths and time floats
show uniform qualities of networks in various disciplines and fields and apply to various types of networks. In
the next section, we illustrate applications of the above conclusions.

4. Illustration

The following illustrations validate the practicability of the reciprocal transformation of paths and time floats
for theoretical and practical problems.

4.1. Optimum allocation problem

A power generation enterprise plans to build 7 power plants in 4 districts, with the corresponding profits
as listed in Table 1. An optimum plan needs to be formulated subject to the following constraints: (1) at
least one power plant is allocated in each district; (2) total profit is at most 50 less than the maximum profit
(practical constraints on other objectives may result in unreality for the maximum profit); and (3) more power
plants should be allocated in under-populated and undeveloped district C and less, in populous and developed
district A.
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Figure 1. Length network to represent the power plant allocation problem.

Table 1. Profit of power plant allocation and number.

Area 1 2 3 4 5 6 7

A 300 550 670 770 850 930 1000
B 280 520 650 770 870 960 1050
C 250 470 670 860 990 1020 1100
D 190 400 600 800 1000 1200 1400

Process

The problem is to make a multiple objective decision. The primary objective is to allocate at least one power
plant in each district and make a total profit at most 50 less than the maximum profit. The secondary objective
is to ensure a suitable number of power plants in districts A and C.

(1) For convenience, we use the network shown in Figure 1 to represent the problem. Node S7 indicates the 7
power plants at the initial time; node Ai, the remaining i power plants after allocation in district A; length
of arc (S7, Ai), the profit of the 7 − i power plants in district A; node Bj , the remaining j power plants
after allocation in districts A and B ; length of arc (Ai, Bj), the profit of the i − j power plants in district
B ; node Ck, the remaining k power plants after allocation in districts A, B, and C ; length of arc (Bj , Ck),
the profit of the j − k power plants in district C ; node D0, there were no power plants left after allocation
in district D ; and length of arc (Ck, D0), the profit of the k power plants in district D.
In Figure 1, a path indicates a plan and its length, the profit. Thus, making a plan with profit at most 50
less than the maximum profit is translated into finding a path at most 50 shorter than the longest path.

(2) Simplify the path problem.
Simplification involves removing all paths more than 50 shorter than the longest path. However, this incurs
a high computational load, making it difficult to directly remove paths shown in Figure 1. We test and
verify that simplification is much simpler after translating the path problem into a time float problem.

The arc lengths in Figure 1 are considered as “time” i.e. activity durations to translate the length network into
a time network. The time parameters of nodes in the time network are computed as shown in Figure 2.
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Figure 2. Length network shown in Figure 1 represented as a time network.

Figure 3. Simplification of network shown in Figure 1.

(1) According to equation (3.4), TFi = LTi−ETi. If TFi > 50, then in the original length network, LTi−ETi >
50; each path μi passing the node (i) is more than 50 shorter than the longest path μ∇ and can be removed
by removing the node (i) and its adjacent arcs.

(2) Similarly, according to equation (3.1), if TFij > 50, then in the original length network, each path μij

passing the arc (i, j) can be removed by removing the arc (i, j).
Therefore, in Figure 2, we only need to compute the node floats and total floats of activities to remove
paths more than 50 shorter than the longest path μ∇ from the original length network, to give the simplified
network shown in Figure 3.

(3) Choose the optimum plan.
In Figure 3, the length of the longest path is 1730, indicating that the greatest profit is 1730. Paths with
lengths ≥ 1730 − 50 = 1680 indicate other feasible plans meeting the primary objective. Then, for the
secondary objective, two plans give the most (4 − 1 = 3) power plants in district C :
Plan 1: (S7) → (A6) → (B4) → (C1) → (D0)
Plan 2: (S7) → (A5) → (B4) → (C1) → (D0)
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Table 2. Equipment cost.

Year 1 2 3 4 5 6 7
Price pi 21 22 23 24 25 26 7

Table 3. Maintenance cost and benefit of equipment.

Year 0–1 1–2 2–3 3–4 4–5 5–6 6–7
Maintenance mi 5 6 7 9 11 14 18

Benefit bi 49 39 31 27 25 24 22
Net benefit bi − mi 44 33 24 18 14 10 4

Hence, Plan 1 with less (7− 6 = 1) power plants in district A is the optimum one. This plan gives 6− 4 = 2
power plants in district B and 1 power plant in district D. The total profit is 300 + 520 + 670+ 190 = 1680.

4.2. Equipment replacement problem

A factory purchases equipment at the beginning of the 1st year, and the manager plans for its maintenance
or replacement (early in one year) over the following seven years. The price, maintenance cost, and benefit of
this equipment are shown in Tables 2 and 3. Consider the following questions:

(1) How should a plan with the greatest net benefit be formulated?
(2) More expensive equipment has higher quality, lower energy consumption, and reduced emissions. Thus, how

should the optimum plan with (1) net benefits at most 3% less than the greatest one and (2) the higher
equipment cost be formulated?

Process

Subproblem (2) is a multi-object decision-making problem in which the primary objective is a net benefit of
not more than 3% less than the greatest one and a secondary objective of higher equipment cost.

(1) For convenience, we use the network shown in Figure 4 to represent the problem. Nodes (1)–(7) indicate
early times in the 1st–7th years and node (8) indicates a late time in the 7th year; and arc (i, j) indicates
running the new equipment from early in the ith year to late in the j − 1th year and its length lij indicates the
net benefit in the j − i years, that is,

lij =
j−1∑
k=i

(bi − mi) − pi

Thus, each path μ1→8 in Figure 4 indicates a plan for equipment replacement in seven years, and its length
indicates the net benefit. Therefore, the plan with the greatest net benefit is the longest path in Figure 4, and
the plan with net benefit not more than 3% less than the greatest one is the path that is not more than 3%
shorter than the longest one.

(2) Solve subproblem (1) and simplify subproblem (2).
We consider the arc lengths in Figure 4 as “time” i.e. activity durations, and we compute the time parameters

of nodes as shown in Figure 5. The project duration in Figure 5 is 186 (the bold path – (1) → (3) → (5) → (8) –
is the critical (longest) path). This indicates that the plan with the greatest net benefit (186) in the original
problem involves replacing the equipment early in the 3rd and 5th years.

As in Section 4.1, the simplification of subproblem (2) involves removing paths that are more than 186×3% ≈
6 shorter than the longest path shown in Figure 4. We compute the time floats of the nodes shown in Figure 5,



TRANSFORMATION OF PATH PROBLEM AND TIME FLOAT PROBLEM 51

Figure 4. Length network representing the equipment replacement problem.

Figure 5. Time network translated from length network shown in Figure 4.
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Figure 6. Length network after simplification.

remove nodes with TFi > 186 − 180 = 6 and their adjacent arcs, compute the total floats of the remaining
activities, and remove activities with TFij > 6, as shown in Figure 6.

(3) Choose optimum plan
We easily find the following paths that are not shorter than 186− 6 = 180 in Figure 6:

μ1 = (1) → (2) → (4) → (6) → (8)
μ2 = (1) → (3) → (5) → (8)
μ3 = (1) → (3) → (5) → (6) → (8)
μ4 = (1) → (4) → (6) → (8)

Their lengths are 182, 186, 180, and 184, respectively. The corresponding equipment replacement costs are 83,
70, 96, and 71, as listed in Table 2. Therefore, the plan with the highest equipment cost (96) corresponding
to μ3 is the optimum one (the net benefit is 180), that is, replacing the equipment early in the 3rd, 5th, and
6th years.

4.3. Path problem with required length

The longest- and shortest-path problems basically involve finding the required paths. The optimal solutions
of practical problems are often the paths with the required lengths instead of the longest or shortest ones.
For instance, the path for a city marathon is one with the required length. Current approaches for these path
problems are based upon lengths. In this study, we translate path problems into time float problems to realize
simpler approaches.

4.3.1. Method

We can use one of the following methods to find paths with length λ in a length network. We consider arc
lengths in the network as “time” i.e. activity durations and compute the time parameters of nodes.
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Method 1

Find a node (i) with TFi = ETn − λ. In the original length network, the longest path μ∇
i passing the node (i)

is the path with length λ. Next, we obtain μ∇
i as follows:

(1) In the time network, find an immediate preceding activity (h, i) with FFhi = 0 of the node (i); find an
immediate preceding activity (g, h) with FFgh = 0 of the activity (h, i); . . . ; and so on until we reach the
start node (1) and obtain a path section μ1→i = (1) → · · · → (g) → (h) → (i). In the original length
network, μ1→i is the longest path section μ∇

1→i from the start node (1) to the node (i).
(2) Find an immediate succeeding activity (i, j) with SFij = 0 of the node (i); find an immediate succeeding

activity (j, k) with SFjk = 0 of the activity (i, j); . . . ; and so on until we reach the end node (n) and obtain
a path section μi→n = (i) → (j) → (k) → · · · → (n). In the original length network, μi→n is the longest
path section μ∇

i→n from the node (i) to the end node (n). Then,

μ∇
i = μ∇

1→i + μ∇
i→n

Method 2

Find an activity (i, j) with TFij = ETn − λ. In the original length network, the longest path μ∇
ij passing the

arc (i, j) is the path with length λ. Next, we obtain μ∇
ij by the same process as μ∇

i .

Method 3

Find an immediate preceding activity (i, j) with 0 < FFij < ETn − λ of a critical node (with node float 0) and
its immediate preceding activity (h, i) with FFhi = ETn −λ−FFij . In the original length network, the longest
path passing the two arcs (h, i) and (i, j) is the path with length λ, that is,

μ∇
hi→ij = μ∇

1→h + (h, i) + (i, j) + μ∇
j→n

Method 4

Find an immediate succeeding activity (i, j) with 0 < SFij < ETn − λ of a critical node and its immediate
succeeding activity (j, k) with SFjk = ETn −λ−SFij . In the original length network, the longest path passing
the two arcs (i, j) and (j, k) is the path with length λ, that is,

μ∇
ij→jk = μ∇

1→i + (i, j) + (j, k) + μ∇
k→n

Method 5

Find an immediate preceding activity (i, j) with 0 < FFij < ETn − λ of a critical node; activities (h, i), (g, h),
(f, g), . . . , (b, c) with free floats 0; and an immediate preceding activity (a, b) with FFab = ETn − λ − FFij of
the activity (b, c). In the original length network, the longest path passing these arcs is the path with length λ,
that is,

μ∇
ab→ij = μ∇

1→a + (a, b) + (b, c) + · · · + (f, g) + (g, h) + (h, i) + (i, j) + μ∇
j→n

Method 6

Find an immediate succeeding activity (i, j) with 0 < SFij < ETn − λ of a critical node; activities (j, k), (k, l),
(l, m), . . . , (u, v) with safety floats 0; and an immediate succeeding activity (v, r) with SFvr = ETn−λ−SFij of
the activity (r, s). In the original length network, the longest path passing these arcs is the path with length λ,
that is,

μ∇
ij→uv = μ∇

1→i + (i, j) + (j, k) + (k, l) + (l, m) + · · · + (v, r) + (r, s) + μ∇
s→n

The processes of finding μ∇
1→i and μ∇

j→n in Methods 2–6 are same to that in Method 1. The proofs of the
above methods are presented in Appendix I.
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Figure 7. Example of a length network.

Figure 8. Time network translated from length network shown in Figure 7.

4.3.2. Illustration

We show an example of finding paths with lengths 280 and 244 in Figure 7.
We consider the arc lengths in Figure 7 as activity durations and compute the time parameters of nodes, as

shown in Figure 8.

(1) Find the path with length 280.

The node float of node (7) is TF7 = 324−280 = 44; hence, in Figure 7, the longest path μ∇
7 passing the node

is the required path with length 280. Next, we obtain μ∇
7 as follows:

(a) In Figure 8, find immediate preceding activity (6, 7) with FF6,7 = 0 of node (7); find immediate preceding
activity (2, 6) with FF2,6 = 0 of activity (6, 7); . . . ; and so on, until we reach start node (1). The longest
path section from start node (1) to node (7) in Figure 7 is

μ∇
1→7 = (1) → (2) → (6) → (7)
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(b) Find immediate succeeding activity (7, 10) with SF7,10 = 0 of node (7); find immediate succeeding activity
(10, 12) with SF10,12 = 0 of activity (7, 10); . . . ; and so on, until we reach end node (21). The longest path
from node (7) to end node (21) in Figure 7 is

μ∇
7→21 = (7) → (10) → (12) → (14) → (15) → (16) → (17) → (18) → (20) → (21).

Therefore,

μ∇
7 = μ∇

1→7 + μ∇
7→21

= (1) → (2) → (6) → (7) → (10) → (12) → (14) →
(15) → (16) → (17) → (18) → (20) → (21).

(2) Find the path with length 244.

There are no nodes (i) with TFi = 324 − 244 = 80. The total float of activity (10, 13) is TF10,13 = 80; hence,
in Figure 7, the longest path μ∇

10,13 passing arc (10, 13) is the required path with length 244. Next, we use a
method similar to that in step (1) to obtain

μ∇
10,13 = (1) → (2) → (6) → (7) → (10) → (13) → (15) →

(16) → (17) → (18) → (20) → (21).

These methods are mainly suited for special cases. For other generalized cases of finding paths with required
lengths, we can improve and develop these methods, e.g. develop methods for the kth shortest or longest paths
problems based on the principles of Methods 5 and 6.

4.4. Analysis of laws of anomalies in project under GPRs

Elmaghraby and Kamburowski [13] discovered an anomaly in GPRs networks: if durations of some critical
activities are prolonged, the length of the critical path (i.e. project duration) decreases. Now, a critical activ-
ity’s duration could be prolonged infinitely, but the project duration obviously cannot be shortened infinitely;
therefore, the above anomaly can only appear in a certain duration range. Therefore, the following questions
need to be solved urgently: (1) How to identify the range? (2) What phenomenon will appear beyond this range?
(3) What laws apply to the anomaly?

For simplifying these time problems, we use the relation laws of paths and time floats to translate them
into path problems and derive some conclusions. Figure 9 shows an abnormal critical activity A in a GPRs
network. Next, we explain the anomaly and research laws of the project duration when prolonging the duration
of activity A.

The critical path (bold path) in Figure 9 is μ∇ = (1) → · · · → (k) → (j) → (i) → (r) → · · · → (n). Durations
dij = dA and dji = −dA cause d′ij = dij + Δd and d′ji = dji − Δd when d′A = dA + Δd, Δd > 0. Furthermore,
(j, i) ∈ μ∇

ji = μ∇ and d′ji = dji −Δd cause L(μ∇′) = L(μ∇)−Δd, that is, the project duration will be shortened
when prolonging the duration dA of activity A.

In Figure 9, if assuming FFpi < SFjq and that activity A will keep criticality while its duration dA is
prolonged, we can derive the following conclusions:

(1) If 0 < Δd ≤ FFpi, the project duration will be shortened when increasing dA. That is, duration d′A = dA+Δd
for 0 < Δd ≤ FFpi causes L(μ∇′) = L(μ∇) − Δd.

(2) If FFpi < Δd ≤ SFjq, the project duration will keep L(μ∇′) = L(μ∇) − FFpi when increasing dA. That is,
duration d′A = dA + Δd for FFpi < Δd ≤ SFjq causes L(μ∇′) = L(μ∇) − FFpi.

(3) If SFjq < Δd ≤ FFpi + SFjq , the project duration
(
L(μ∇′) = L(μ∇) − FFpi

)
will be prolonged to L(μ∇)

at most when increasing dA. That is, duration d′A = dA + Δd for SFjq < Δd ≤ FFpi + SFjq causes
L(μ∇′) = L(μ∇) + Δd − (FFpi + SFjq) ≤ L(μ∇).

(4) If FFpi + SFjq < Δd < +∞, the project duration will be prolonged beyond L(μ∇). That is, duration
d′A = dA + Δd for FFpi + SFjq < Δd < +∞ causes L(μ∇′) = L(μ∇) + Δd − (FFpi + SFjq) > L(μ∇).
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Figure 9. Example of a GPRs network with abnormal critical activity A.

Figure 10. Diagram representing the laws of the project duration when prolonging the dura-
tion of abnormal critical activity A.

The following corollary summarizes the above conclusions:

Corollary 4.1. In Figure 9, if Δd > FFpi + SFjq, then L(μ∇′) > L(μ∇) and the project duration will be
prolonged; if Δd ≤ FFpi +SFjq, then L(μ∇′) ≤ L(μ∇) and the project duration will be unchanged or shortened.

Figure 10 shows the above conclusions, and the proof is presented in Appendix J.
The above examples clearly show that some difficult “path problems” become much simpler after being

translated into “time float problems” (Sects. 4.1–4.3) and that some difficult “time float problems” become
much simpler after being translated into “path problems” (Sect. 4.4). The reciprocal transformation provides a
new approach for studies and applications of these problems.
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5. Conclusion

Descartes created the Cartesian coordinate system to translate difficult geometric problems into simpler
algebraic problems, thus breaking bottlenecks in geometry and founding analytic geometry. Difficult algebraic
problems can also be translated into simpler geometric problems by using Cartesian coordinates. We used this
example to study the laws of relations of paths in length networks and time floats in time network and then
explore approaches for the reciprocal transformation of path problems and time float problems. By using the
generalized concept of length, many problems in other fields can also be translated into time float problems.
Furthermore, the reciprocal transformation of length and time networks embodies uniform qualities among
networks corresponding to various systems. In this study, we discussed illustrative problems in which reciprocal
transformation of path and time float problems were used to (1) simplify the optimum allocation problem and
equipment replacement problem, (2) easily solve the path problem with required lengths in the length network,
and (3) analyze anomalies and their laws in the GPRs network.

In accordance with the conclusions in Section 3 and the illustrations in Section 4, the conversion of the
path problems tackled to the corresponding time float problems is mainly to compute time parameters in time
network. In the computational process, we made a finite-time consideration to each arc so that the complexity
of the conversion is O(m) and m indicates the number of arcs. The conversion maintains the essences of original
problems, however, it provide an approach to simplify the original problems and decrease in the number of
variable (see Sects. 4.1–4.3). These applications in Section 4 validate the effectiveness of our proposed approach
to theoretical and applied researches in various disciplines and fields.

Appendix A. Algorithms of the earliest and latest times of nodes in time

network

Assume nodes (1) and (n) respectively indicate start and end nodes of a time network, dij indicates duration
of an activity (i, j), and ETi and LTi respectively indicate the earliest and latest times of a node (i).

(1) For the CPM network, algorithms for ETi and LTi are as follows:

Step 1. Let j = 2, 3, . . . , n, {
ET1 = 0
ETj = max

i
{ETi + dij} (A.1)

Step 2. Let j = n − 1, n − 2, . . . , 1, {
LTn = ETn

LTj = min
k

{LTk − djk} (A.2)

(2) For the GPRs network, algorithms for ETi and LTi are as follows:

Step 1. Let
ET1 = 0 (A.3)

Let

w(1)(1, i) = d1i, i = 2, 3, . . . , n

For t = 2, 3, . . .,

w(t)(1, i) = max
h

{w(t−1)(1, h) + dhi}, i = 2, 3, . . . , n

If t := k and for i = 2, 3, . . . , n,

w(k)(1, i) = w(k−1)(1, i)
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then,
ETj = w(k)(1, i) (A.4)

Step 1. Let
LTn = ETn (A.5)

Let

w(1)(i, n) = LTn − din, i = 1, 2, . . . , n − 1

For t = 2, 3, . . .,

w(t)(i, n) = min
j

{w(t−1)(j, n) − dij}, i = 1, 2, . . . , n − 1

If t := k and for i = 1, 2, . . . , n − 1,

w(k)(i, n) = w(k−1)(i, n)

then,
LTj = w(k)(j, n) (A.6)

Appendix B. Proof of Lemma 3.1

In a length network, the length of the longest path section μ∇
1→i from start node (1) to a node (i) is

L(μ∇
1→i) =

∑
(u,v)∈µ∇

1→i

luv = max
∑

(u,v)∈µ1→i

luv

luv indicates the length of the arc (u, v) in the length network, and when equating “length” to “time”, it indicates
the duration duv of the activity (u, v) in the corresponding time network, that is, duv = luv.

According to Appendix A, in a time network such as a CPM network or GPRs network, the earliest times of
a node (i) and its immediate preceding nodes satisfy

ETi = max
h

{ETh + dhi}
then,

ETi = max
h

{ETh + dhi}
= max

h
{max

g
{ETg + dgh} + dhi}

= max
h

{max
g

{max
f

{ETf + dfg} + dgh} + dhi}
= max

h
{max

g
{max

f
{· · · {max

1
{ET1 + d1a} + dab} + · · · + dfg} + dgh} + dhi}

= ET1 + max{d1a + dab + · · · + dfg + dgh + dhi}
According to equations (A.1) and (A.3), ET1 = 0, then

ETi = max{d1a + dab + · · · + dfg + dgh + dhi}
Corresponding to the original length network, duv = luv and

max{d1a + dab + · · · + dfg + dgh + dhi} = max{l1a + lab + · · · + lfg + lgh + lhi}
= max

∑
(u,v)∈µ1→i

luv = L(μ∇
1→i)

therefore,

ETi = L(μ∇
1→i)

Equation (3.1) and Lemma 3.1 are correct. This completes the proof.
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Appendix C. Proof of Lemma 3.2

In a length network, the length of the longest path section μ∇
i→n from a node (i) to end node (n) is

L(μ∇
i→n) =

∑
(u,v)∈µ∇

i→n

luv = max
∑

(u,v)∈µi→n

luv

The arc (u, v) with length luv in the length network, when equating “length” to “time”, indicates the activity
(u, v) with duration duv in the corresponding time network, that is, duv = luv.

According to Appendix A, in a time network, the latest times of a node (i) and its immediate succeeding
nodes satisfy

LTi = min
j

{LTj − dij}

then,

LTi = min
j

{LTj − dij}
= min

j
{min

k
{LTk − djk} − dij}

= min
j

{min
k

{min
l
{LTl − dkl} − djk} − dij}

= min
j

{min
k

{min
l
{· · · {min

n
{LTn − dyn} − dxy} − · · · − dkl} − djk} − dij}

= LTn + min{−dij − djk − dkl − · · · − dxy − dyn}
= LTn − max{dij + djk + dkl + · · · + dxy + dyn}

Corresponding to the original length network, duv = luv and

max{dij + djk + dkl + · · · + dxy + dyn} = max{lij + ljk + lkl + · · · + lxy + lyn}
= max

∑
(u,v)∈µi→n

luv = L(μ∇
i→n)

Furthermore, according to equation (3.1), let i = n; then,

ETn = L(μ∇
1→n) = L(μ∇)

According to equations (A.2) and (A.5),

LTn = ETn = L(μ∇) (C.1)

therefore,

LTi = LTn − max{dij + djk + dkl + · · · + dxy + dyn}
= L(μ∇) − L(μ∇

i→n)

Equation (3.2) and Lemma 3.2 are correct. This completes the proof.

Appendix D. Proof of Theorem 3.3

In a length network, the longest path μ∇
ij passing an arc (i, j) is composed of μ∇

1→i, (i, j), and μ∇
j→n. The

arc (i, j) with length lij in the length network, when equating “length” to “time”, indicates the activity (i, j)
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with duration dij in the corresponding time network, that is, dij = lij . According to equations (2.1), (3.1), (3.2),
and (C.1),

L(μ∇) − L(μ∇
ij) = L(μ∇) − (

L(μ∇
1→i) + lij + L(μ∇

j→n)
)

= LTn − (ETi + dij + LTn − LTj)
= LTj − ETi − dij

= TFij

Equation (3.3) and Theorem 3.3 are correct. This completes the proof.

Appendix E. Proof of Theorem 3.4

In a length network, the longest path μ∇
j = μ∇

1→j + μ∇
j→n and μ∇

ij = μ∇
1→i + (i, j) + μ∇

j→n. The arc (i, j) with
length lij in the length network, when equating “length” to “time”, indicates the activity (i, j) with duration
dij in the corresponding time network. According to equations (2.2), (3.1) and (3.2),

L(μ∇
j ) − L(μ∇

ij) =
(
L(μ∇

1→j) + L(μ∇
j→n)

) − (
L(μ∇

1→i) + lij + L(μ∇
j→n)

)
= (ETj + LTn − LTj) − (ETi + dij + LTn − LTj)
= ETj − ETi − dij

= FFij

Equation (3.4) and Theorem 3.4 are correct. This completes the proof.

Appendix F. Proof of Theorem 3.7

In a length network, assume a path

μ = (1) → (p) → (q) → (r) → · · · → (u) → (v) → (n)

whose length is L(μ) = l1p + lpq + lqr + · · · + luv + lvn =
∑

(i,j)∈µ

lij . The arc (i, j) with length lij in the

length network, when equating “length” to “time”, indicates the activity (i, j) with duration dij in the
corresponding time network. And here μ is composed of the activities (1, p), (p, q), (q, r), · · · , (u, v), (v, n).
According to equation (2.2),

∑
(i,j)∈µ

FFij = FF1p + FFpq + FFqr + · · · + FFuv + FFvn

= (ETp − ET1 − d1p) + (ETq − ETp − dpq) + (ETr − ETq − dqr) + · · ·
+(ETv − ETu − duv) + (ETn − ETv − dvn)

= ETn − ET1 − (d1p + dpq + dqr + · · · + duv + dvn).

According to equations (A.1), (A.3), and (C.1), ET1 = 0 and ETn = L(μ∇); then,
∑

(i,j)∈µ

FFij = L(μ∇) − (d1p + dpq + dqr + · · · + duv + dvn).

Corresponding to the original length network, dij = lij and

d1p + dpq + dqr + · · · + duv + dvn = l1p + lpq + lqr + · · · + luv + lvn = L(μ∇)
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therefore,

L(μ∇) − L(μ) =
∑

(i,j)∈µ

FFij .

Similarly, it can be proved that

L(μ∇) − L(μ) =
∑

(i,j)∈µ

SFij .

Equation (3.7) and Theorem 3.7 are correct. This completes the proof.

Appendix G. Proof of Theorem 3.8

In a length network, for an arc (i, j) ∈ μ∇
1→i, (i), (j) ∈ μ∇

1→i causes μ∇
1→u and μ∇

1→v satisfy μ∇
1→u, μ∇

1→v ⊂ μ∇
1→i

and μ∇
1→v = μ∇

1→u + (u, v). Therefore,

L(μ∇
1→v) − L(μ∇

1→u) − lij = 0 (G.1)

The arc (i, j) with length lij in the length network, when equating “length” to “time”, indicates the activity
(i, j) with duration dij in the corresponding time network. According to equation (3.1), L(μ∇

1→v) = ETv,
L(μ∇

1→u) = ETu; we then substitute them in equation (G.1) such that

ETv − ETu − duv = 0.

According to equation (2.2),

FFuv = ETv − ETu − duv = 0.

Equation (3.8) and Theorem 3.8 are correct. This completes the proof.

Appendix H. Proof of Corollary 3.9

In a length network, assume a path section

μ1→i = (1) → (e) → (f) → (r) → · · · → (p) → (q) → (i).

When equating “length” to “time”, as in Appendix F,
∑

(u,v)∈µ1→i

FFuv = FF1e + FFef + FFfr + · · · + FFpq + FFqi

= (ETe − ET1 − d1e) + (ETf − ETe − def ) + (ETr − ETf − dfr) + · · ·
+(ETq − ETp − dpq) + (ETi − ETq − dqi)

= ETi − ET1 − (d1e + def + dfr + · · · + dpq + dqi)
= L(μ1→i) − (d1e + def + dfr + · · · + dpq + dqi).

Corresponding to the original length network, dij = lij and

d1e + def + dfr + · · · + dpq + dqi = l1e + lef + lfr + · · · + lpq + lqi = L(μ1→i)

therefore,

L(μ∇
1→i) − L(μ1→i) =

∑
(i,j)∈µ1→i

FFuv
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and obviously μ∇
1→i = μ1→i for

∑
(i,j)∈µ1→i

FFuv = 0. According to Appendix A, ETv = max{ETu + duv}; then

ETv ≥ ETu + duv and FFuv ≥ 0 based on equation (2.2). Hence,
∑

(i,j)∈µ1→i

FFuv = 0 means FFuv = 0 for

∀(i, j) ∈ μ1→i, and equation (3.9) and Corollary 3.9 are correct. This completes the proof.

Appendix I. Proof of algorithms in Section 4.3

(1) The proof of Method 1.
According to equations (3.6) and (C.1), L(μ∇

i ) = ETn − TFi. If TFi = ETn − λ, then

L(μ∇
i ) = ETn − TFi

= ETn − (ETn − λ)
= λ

In the length network, μ∇
i = μ∇

1→i + μ∇
i→n. According to Theorem 3.8, if seeing the network as a time

network, FFef = 0 for ∀(e, f) ∈ μ∇
1→i and SFuv = 0 for ∀(u, v) ∈ μ∇

i→n. Therefore, μ∇
1→i could be found

by finding immediate preceding activities with free floats 0 one-by-one from the node (i) to start node (1),
and μ∇

i→n could be found by finding immediate succeeding activities with safety floats 0 one-by-one from
the node (i) to end node (n). Then, we obtain the path μ∇

1→i.
(2) The proof of Method 2 is similar to that in (1).
(3) The proof of Method 3.

The longest path passing two connected arcs (h, i) and (i, j) is μ∇
hi→ij = μ∇

1→h + (h, i) + (i, j) + μ∇
j→n. If

seeing the network as a time network, according to equations (3.7) and (3.8),

L(μ∇
hi→ij) = ETn −

∑
(u,v)∈µ∇

hi→ij

FFuv

= ETn −
⎛
⎝ ∑

(e,f)∈µ∇
1→h

FFef + FFhi + FFij +
∑

(u,v)∈µ∇
j→n

FFuv

⎞
⎠

According to Theorem 3.8,
∑

(e,f)∈µ∇
1→h

FFef = 0. The activity (i, j) is an immediate preceding one of the

critical node (j); hence, μ∇
j→n ⊂ μ∇ and

∑
(u,v)∈µ∇

j→n

FFuv = 0. Therefore,

L(μ∇
hi→ij) = ETn −

⎛
⎝ ∑

(e,f)∈µ∇
1→h

FFef + FFhi + FFij +
∑

(u,v)∈µ∇
j→n

FFuv

⎞
⎠

= ETn − (FFhi + FFij)

If FFhi = ETn − λ − FFij , that is, FFhi + FFij = ETn − λ, then

L(μ∇
hi→ij) = ETn − (FFhi + FFij)

= ETn − (ETn − λ)
= λ

(4) The proof of Method 4 is similar to that in (3).
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(5) The proof of Method 5.
According to the known conditions, FFbc = · · · = FFfg = FFgh = FFhi = 0, that is,

∑
(p,q)∈µb→i

FFpq = 0,

μb→i = (b) → (c) → · · · → (g) → (h) → (i). The longest path passing arc (a, b), path section μb→i, and
arc (i, j) are μ∇

ab→ij = μ∇
1→a + (a, b) + μb→i + (i, j) + μ∇

j→n. If seeing “length” as “time”, according to
equations (3.7) and (3.8),

L(μ∇
ab→ij) = ETn −

∑
(u,v)∈µ∇

ab→ij

FFuv

= ETn −
⎛
⎝ ∑

(e,f)∈µ∇
1→a

FFef + FFab +
∑

(p,q)∈µ∇
b→i

FFpq + FFij +
∑

(u,v)∈µ∇
j→n

FFuv

⎞
⎠

According to Theorem 3.8,
∑

(e,f)∈µ∇
1→a

FFef = 0. The activity (i, j) is an immediate preceding one of the

critical node (j); hence, μ∇
j→n ⊂ μ∇ and

∑
(u,v)∈µ∇

j→n

FFuv = 0. Therefore,

L(μ∇
ab→ij) = ETn −

⎛
⎝ ∑

(e,f)∈µ∇
1→a

FFef + FFab +
∑

(p,q)∈µ∇
b→i

FFpq + FFij +
∑

(u,v)∈µ∇
j→n

FFuv

⎞
⎠

= ETn − (FFab + FFij)

If FFab = ETn − λ − FFij , that is, FFab + FFij = ETn − λ, then

L(μ∇
ab→ij) = ETn − (FFab + FFij)

= ETn − (ETn − λ)
= λ

(6) The proof of Method 6 is similar to that in (5).

This completes the proof.

Appendix J. Proof of conclusions in Section 4.4

According to equation (2.1),

TFpi = LFi − ETp − dij

= (LFi − ETi) + (ETi − ETp − dij)
= TFi − FFpi

In Figure 9, the activity A is a critical one and (j, i) ∈ μ∇; hence, TFi = 0 and TFpi = FFpi. If FF ′
pi = 0, a

new critical path will appear. Similarly, if SF ′
jq = 0, a new critical path will appear. Therefore, we first study

the laws of FFpi and SFjq when prolonging dA. Assume FFpi < SFjq .

(1) Study the law of FFpi when prolonging dA.
According to equation (3.4), FFpi = L(μ∇

i )−L(μ∇
pi); FFpi could be studied in terms of μ∇

i and μ∇
pi. For μ∇

i ,

μ∇
i = (1) → · · · → (k) → (j) → (i) → (r) → · · · → (n) = μ∇
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(j, i) ∈ μ∇
i = μ∇ and dji = −dA cause d′ji = dji − Δd and L(μ∇′) = L(μ∇′

i ) = L(μ∇
i ) − Δd = L(μ∇) − Δd

when d′A = dA + Δd. For μ∇
pi,

μ∇
pi = (1) → · · · → (p) → (i) → (r) → · · · → (n)

(i, j) /∈ μ∇
pi and (j, i) ∈ μ∇

pi cause L(μ∇′
pi ) = L(μ∇

pi) when d′A = dA + Δd. Hence, if d′A = dA + Δd, then

FF ′
pi = L(μ∇′

i ) − L(μ∇′
pi )

=
(
L(μ∇

i ) − Δd
) − L(μ∇

pi)

=
(
L(μ∇

i ) − L(μ∇
pi)

) − Δd

= FFpi − Δd

1. If 0 < Δd < FFpi, then FF ′
pi = FFpi − Δd > 0 and L(μ∇′) = L(μ∇) − Δd, that is,

L(μ∇′) = L(μ∇) − Δd

for dA < dA + Δd ≤ dA + FFpi, as in Figure 10.
2. If Δd = FFpi, then FF ′

pi = 0 and μ∇
pi will become a new critical path, that is,

L(μ∇
pi) = L(μ∇′) = L(μ∇) − Δd = L(μ∇) − FFpi

3. If Δd > FFpi, because A /∈ μ∇ = μ∇
pi, the path length L(μ∇

pi) = L(μ∇′) = L(μ∇)−FFpi will be unchanged
when prolonging dA, that is, the critical path length L(μ∇′) = L(μ∇)−FFpi for d′A > dA+FFpi. However,
the prolongation Δd of dA is restricted by SFjq, and therefore, it cannot be indefinite, as in Figure 10.

(2) Study the law of SFjq when prolonging dA.
According to equation (3.5), SFjq = L(μ∇

j )−L(μ∇
jq); then, SFjq could be studied in terms of two paths μ∇

j

and μ∇
jq . For μ∇

jq,

μ∇
jq = (1) → · · · → (k) → (j) → (q) → · · · → (n)

(i, j) /∈ μ∇
jq and (j, i) /∈ μ∇

jq cause L(μ∇′
jq ) = L(μ∇

jq) and will be unchanged when d′A = dA + Δd. For μ∇
j ,

μ∇
j = (1) → · · · → (k) → (j) → (i) → (r) → · · · → (n)

dji = −dA and (j, i) /∈ μ∇
j cause d′ji = dji −Δd and L(μ∇′

j ) = L(μ∇
j )−Δd when d′A = dA + Δd. According

to equation (3.5),

SF ′
jq = L(μ∇′

j ) − L(μ∇′
jq )

=
(
L(μ∇

j ) − Δd
) − L(μ∇

jq)

=
(
L(μ∇

j ) − L(μ∇
jq)

) − Δd

= SFjq − Δd

1. If 0 < Δd < SFjq, then SF ′
jq = SFjq − Δd > 0. Based on Corollary 3.11, the path μ∇

jq passing the arc
(j, q) will not be a new critical path and will not affect the project duration.

2. If Δd = SFjq , then SF ′
jq = SFjq − Δd = 0, which means that the path μ∇

jq passing the arc (j, q) (also
path μ∇

ij) will be a new critical path, that is,

μ∇ = μ∇
jq = μ∇

ij = (1) → · · · → (p) → (i) → (j) → (q) → · · · → (n)

Therefore, if FFpi ≤ Δd ≤ SFjq, then L(μ∇′) = L(μ∇) − FFpi, that is,

L(μ∇′) = L(μ∇) − FFpi

for dA + FFpi ≤ dA + Δd ≤ dA + SFjq , as in Figure 10.
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3. If Δd > SFjq , then (j, i) ∈ μ∇ = μ∇
ij causes

L(μ∇′) = L(μ∇) − FFpi + Δd − SFjq

= L(μ∇) − (FFpi + SFjq) + Δd

Therefore, if SFjq ≤ Δd ≤ FFpi + SFjq , then L(μ∇′) ≤ L(μ∇) and the project duration will be unchanged or
shortened; and if Δd > FFpi + SFjq, then L(μ∇′) > L(μ∇) and the project duration will be prolonged.

This completes the proof.
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