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SOLVING THE BI-OBJECTIVE ROBUST VEHICLE ROUTING PROBLEM
WITH UNCERTAIN COSTS AND DEMANDS ∗
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Abstract. In this paper, a bi-objective Vehicle Routing Problem (bi-RVRP) with uncertainty in
both demands and travel times is studied by means of robust optimization. Uncertain demands per
customer are modeled by a discrete set of scenarios representing the deviations from an expected
demand, while uncertain travel times are independent from customer demands. Then, traffic records
are considered to get discrete scenarios to each arc of the transportation network. Here, the bi-RVRP
aims at minimizing the worst total cost of traversed arcs and minimizing the maximum total unmet
demand over all scenarios. As far as we know, this is the first study for the bi-RVRP which finds
practical applications in urban transportation, e.g., serving small retail stores. To solve the problem,
different variations of solution approaches, coupled with a local search procedure are proposed: the
Multiobjective Evolutionary Algorithm (MOEA) and the Non-dominated Sorting Genetic Algorithm
(NSGAII). Different metrics are used to measure the algorithmic performance, the convergence, as well
as the diversity of solutions for the different methods.
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1. introduction

The Vehicle Routing Problem (VRP) is one of the most studied combinatorial optimization problem. The
aim of this NP-hard problem is to determine a set of routes in which a set of customers is to be served by a
fleet of vehicles with a fixed capacity, based at a depot node. Different variations on the components of the
VRP have been studied over the years e.g., the network, the demands, the objectives, and their nature, i.e.,
deterministic or uncertain. In particular, we are interested in solving the bi-objective Robust Vehicle Routing
Problem with uncertain demands and travel times. As presented in [5], several approaches such as stochastic
programming are available to model uncertainties, where uncertain data is modeled as random variables [25,32].
However, such approaches are limited to the cases where uncertainties have a stochastic nature (which is not
always the case) and when it is possible to identify the probability distribution [2]. Robust optimization is an
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alternative approach to stochastic programming, designed to avoid these drawbacks, in which the optimization
seeks to protect against the worst scenarios that might arise in the future.

Robust optimization is used here to deal with the bi-objective Robust Vehicle Routing Problem with uncer-
tainties (bi-RVRP). Readers are referred to [7] as a key-article for including robustness in multi-objective opti-
mization. The bi-RVRP can be formally defined on a complete digraph G = (V, A) with a set V = {0, 1, 2, . . . , n}
of n + 1 vertices (customers), including the depot (0), and a set A = {(i, j)|i, j ∈ V, i �= j} of arcs. Uncertain
data for the travel times are modeled as a set of p discrete scenarios W = {1, 2, . . . , p}, where each scenario
k ∈ W specifies one cost ck

ij ∈ R for every arc (i, j) ∈ A. In practice, one scenario can be observed in the streets
of a city at a given hour (a kind of picture of the network). An expected demand d∗i is associated with each
customer i ∈ V , and its variation is defined in a set of o discrete scenarios O = {1, 2, . . . , o}, where each scenario
b ∈ O specifies one demand db

i for each customer i. Split deliveries are not allowed. A fleet of identical vehicles
F = {1, 2, . . . , m} is available at the depot, each one with a capacity equal to Q. A solution is a set of vehicle
routes starting and ending at the depot, visiting customers following the service policy defined below. The bi-
RVRP aims at minimizing both the worst total cost of traversed arcs and the maximum total unmet demand,
over all scenarios. For a planned route, the following service policy is applied when arriving at a customer i
under scenario b and discovering the real demand db

i : if the total amount already delivered, plus db
i , does not

exceed vehicle capacity, then the customer is served, otherwise it is not served and the route proceeds with the
next planned customer. Note that the scenarios around the expected demand in O are independent from the
ones in W . Hence, to evaluate a given set of routes, we minimize the worst total travelling cost over all scenarios
and the total unmet demand according to the service policy.

The following contributions are given in this study: (i) we model the bi-RVRP as a robust optimization
problem taking into account uncertainties in demands and travel times. Uncertainties are addressed in the
objective function following the min-max optimization criterion; (ii) the Multiobjective Evolutionary Algorithm
(MOEA) and the Non-dominated Sorting Genetic Algorithm (NSGAII) together with a local search procedure
are applied to solve the bi-RVRP taking into account the uncertainties in demands and travel times; (iii)
uncertain travel times are handled as a bounded set of discrete scenarios on a directed network; one may note
that arc costs become asymmetric and they can represent different traffic conditions for two-way roads; (iv)
uncertainties over the demands are considered in a discrete set representing the possible variations for demands
per client.

The remaining of this work is organized as follows: a bibliographical review is introduced in Section 2,
followed by definitions and one example for the bi-RVRP in Section 3. The proposed multiobjective evolutionary
metaheuristics are detailed in Section 4. Then, a local search procedure is described in Section 5. Finally, the
computational experiments and concluding remarks are respectively given in Sections 6 and 7.

2. related works

In the literature, robust optimization is considered to solve the vehicle routing problem mainly to handle
uncertainty on time windows, travel times, travel costs and demands, giving a problem called the Robust Vehicle
Routing Problem (RVRP). Nevertheless, just a few works have focused on uncertainties in multiple parameters
of the VRPs. Moreover, there is a lack of studies dedicated to multiple uncertain parameters addressed by means
of multiobjective approaches. In this section, past contributions for RVRPs are described, considering single and
multiple parameters under uncertainty. Table 1 summarizes the works on RVRP where columns stand for the
authors, the methods, the uncertainty representation, and the location of uncertain data in the mathematical
model, respectively.

RVRPs have been mostly investigated for the case where uncertainties are associated with demands. For in-
stance, authors in [29] consider that demand vectors are deviations from an expected demand value, belonging
to different bounded sets. Their robust formulation handles the uncertain demands in the constraints follow-
ing the robust approach counterpart introduced by [2]. The open source branch-and-cut-based VRP found in
SYMPHONY library is implemented for solving the problem. Experiments have addressed three different sets
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Table 1. Vehicle routing problems with uncertainty.
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of instances, from the literature: random, clustered and modified ones, ranging from 15 to 100 customers. Results
indicate that robust solutions can support the variation on the demands, while incurring a small additional cost
compared to the deterministic version.

Authors in [18] consider the robust counterpart to handle uncertain distributions of the customers’ demands.
A hypothesis of this study is that distribution for demands are unknown. Then, a perturbation percentage from
the nominal demands is computed over the constraints, while the objective is to minimize the travel distances.
A Particle Swarm Optimization is presented and results are compared with the ones obtained by [29].

The VRP with heterogeneous fleet and uncertain demands is studied by [20]. The authors provide mathemat-
ical formulations based on the robust counterpart of the linear program and chance-constrained programming
with uncertainties on the right side of the constraints. A Branch-and-Cut (B&C) algorithm was proposed and
instances with up to 20 clients are tested using CPLEX under default parameters. Results are analyzed using
the extra cost required to achieve a certain level of feasible routes, number of unmet demands and recourse
costs, which is the extra cost, in case of failure, of returning to the depots for replenishment and resuming the
route.

Another study of the RVRP with uncertainties on demands is presented in [11]. The robust optimization
counterpart for several formulations and the robust rounded capacity inequalities are developed. The models
consider customer demands as random variables on the right-hand side of constraints and it determines the
minimum cost delivery plan that is feasible for all anticipated demands realization. CPLEX is used to solve
90 instances from 15 to 135 customers: its generic cuts are deactivated and replaced by Rounded Capacity
Inequalities (RCI) cuts. The results show that the best robust formulation, the Two-index Vehicle Flow formu-
lation (2VF), is improved even further if RCI cuts are used. Most instances with up to 50 nodes are solved to
optimality and the average gap for the other instances is below 5%.

The Open VRP with uncertain demands is introduced by [4]. A bounded uncertainty set for customer
demands is described and transportation costs and unsatisfied demands in the specific bounded uncertainty
set are minimized. A differential evolution algorithm is proposed and its performance is analyzed on different
strategies by considering the extra costs and unmet demand.

The most recent work considering uncertain demands is presented in [10]. The robust formulation allows
uncertain customer demands, and the objective is to determine a minimum cost delivery plan that remains
feasible for all demand realizations within a prespecified uncertainty set. The authors implemented an adap-
tive memory programming metaheuristic using two classes of uncertainty sets. Computational experiments on
benchmark intances with up to 483 customers and 38 vehicles are retrieved and new best solutions for a total
of 123 benchmark instances are found.

As presented in [26] and illustrated in Table 1, only a few works have dealt with uncertain travel times or
travel cost. A robust scenario approach for the vehicle routing problem with uncertain travel times is studied
by [12]. Multiple range forecasts in a set of time intervals are assumed. Uncertainty is handled by limiting the
number of uncertain parameters on the constraints allowed to deviate from the nominal values [3]. Then for
each realization (scenario) on an interval set of travel time, a robust route is identified, and the minimization of
the worst case among all scenarios is applied. A two-stage recourse stochastic programme solved by a Branch-
and-Bound (B&B) algorithm is used. Tests with instances with up to 25 customers are solved assuming normal
and severe traffic conditions.

The works [30, 31] handled the VRP with uncertain travel costs. The total travel cost is minimized and
uncertainty is expressed as intervals. The approach from [3] is implemented to control the degree of uncertainty
on the model. The ant colony system and its multiple versions are introduced in [30,31], respectively, and tested
on instances with up to 150 customers with different conservativeness degree configurations.

An approach for the RVRP with uncertain travel times has recently been studied by [27]. The set of arc costs
is replaced by a set of discrete scenarios and the main objective is to build a set of routes using the lexicographic
min-max criterion from [22]. Thus, the worst cost over all scenarios is minimized and ties are broken using the
other scenarios from the worst to the best. Different methods are proposed, i.e., a Greedy Randomized Adaptive
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Search Procedure (GRASP), an Iterated Local Search (ILS), a Multi-Start ILS (MS-ILS), and a MS-ILS based
on giant tours. Test on instances with up to 100 clients and 30 scenarios are provided.

Concerning multiple parameters under uncertainty, the article [21] takes into account uncertain demands,
travel times, costs and customers. The author outlines different robust models depending on the source of un-
certainty, the VRP formulation, and correlation between uncertain coefficients. Uncertainty in travel costs is
introduced in the objective function, and uncertain demands and travel time coefficients in the constraints. A
convex and bounded uncertainty set is estimated and the problem is solved using the robust counterpart ap-
proach. Results for small instances are provided and compared with the ones obtained by the chance constrained
and the stochastic with recourse models.

Finally, uncertainties on both travel times and demands are found in [17] for a VRP with customer dead-
lines. The budget uncertainty from [3] is defined by limiting the sum of deviations considering travel times, and
demands to their nominal values. The robustness of a solution is achieved by looking for a feasible solution for
any travel time and demand defined in the uncertainty sets which minimizes the travel time. A set-partitioning
formulation is proposed and solved with a column generation. The uncertainties are limited to the column gen-
eration subproblem using a robust version of a shortest path algorithm with resource constraints. Instances with
20 to 40 customers are solved to optimality. As far as we know, there are no works addressing the multiobjective
approach for the RVRP with uncertainties in both demands and travel times in the objective functions.

3. Notation, definitions and example

This section introduces the notation used throughout this article which is summarized on Table 2 and describes
the definitions considered for the bi-RVRP.

Without loss of generality, let us consider a minimization problem. A multiobjective optimization problem
can be described in mathematical terms as follows:

P = min {Z1(x), Z2(x), . . . , Zl(x)} (1)

Where the number of objectives (l) to minimize is higher than one (l > 1) and the solution x satisfies the
set of constraints. Then, the “optimality” in the multiobjective sense is handled by means of Pareto optimality
defined by the concept of dominance [8].

As mentioned before, the bi-RVRP is defined in a complete digraph G = (V, A). Uncertain data for the travel
times and demands are modeled as a set of discrete scenarios.

The proposed bi-RVRP is stated in a 2-dimensional space with the total worst cost Z1 given in equation 2
and the worst unmet demand Z2 presented in equation 3, over all scenarios. The objective function for the
bi-RVRP is min(Z1, Z2).

Z1 = max
k∈W

∑
(i,j)∈A

ck
ijxij (2)

Z2 = max
b∈O

∑
i∈V

db
iyi (3)

The binary variable xij is equal to 1 if arc (i, j) is traversed by a vehicle, otherwise xij = 0. And, yi is the
boolean variable that specifies if a vehicle can attend a client yi = 1 or not yi = 0, according to the vehicle
capacity Q and the real demand of client i. The dominance relation for Z1 and Z2 in the Pareto sense is
defined for the bi-RVRP as follows. A solution ω′ dominates solution ω, if Z1(ω′) ≤ Z1(ω) and Z2(ω′) < Z2(ω),
or Z1(η) < Z1(ω) and Z2(η) ≤ Z2(ω). A solution is non-dominated if no other solution dominates it. The
Pareto-optimal front is given by the set of non-dominated robust solutions.
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Table 2. Notation for the bi-RVRP.

Notation

G Complete digraph
V Set of vertices
A Set of arcs
n Customers
W Set of discrete scenarios for travel times
p Number of scenarios for travel time
k Index of scenario for travel time
ck
ij Cost for each arc (i, j) in scenario k

d∗
i Expected demand for customer i

O Set of discrete scenarios for demands
o Number of scenarios for demand
b Index of scenario for demand
db

i Real demand of customer i in scenario b
F Set of m vehicles
Q Vehicles capacity

xij
Binary variable equal to 1 if arc (i, j) is traversed
by a vehicle, otherwise 0

yi
Binary variable equal to 1 if a vehicle serves a client i,
otherwise 0

Z1 Worst cost
Z2 Worst total unmet demand
ω, ω′ Solutions
cost(ω, k) Cost of solution ω for scenario k
unmet(ω, b) Unmet demand of solution ω for scenario b
r Number of solutions or chromosomes
Δ Cost variation of a solution for scenario k
u, v, w Nodes
P1, P2 Parents
C Offspring
Pop Size of the population
Π Front
ρ ρth solution in a front
weight Pseudo-weight
ϕ Rate for no-systematic local search
xi, yi Coordinates of each customer
dtot Total demand of customers
distij Euclidean distance for arc (i, j)
θ Deviation factor to the baseline distance
d̄∗ Average demand per customer
β Global perturbation for demands
[τ−

i , τ+
i ] Interval values for demands

ε
Percentage of customers allowed to change from their
expected value for the demands

Θ Number of solutions in the Pareto front
S Spacing
H Hypervolume
t Running time
vol Hypercube
Θ′ Average value for the number of solutions in the Pareto front
S′ Average value for the Spacing
H ′ Average value for the Hypervolume
t′ Average value for running time
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(a) Solution with expected values (b) Robust solution
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Figure 1. Examples of solutions for VRP and bi-RVRP.

Table 3. Summary of results for the VRP (left) and the bi-RVRP (right).

Route Cost (Z1) Un. Demand (Z2) Route Cost (Z1) Un. Demand (Z2)
0-1-2-0 16 0 0-1-2-0 16 4
0-4-7-0 17 0 0-4-7-3-0 25 8
0-3-6-5-0 12 0 0-6-5-0 9 0
Total 45 0 Total 50 16

The bi-RVRP is illustrated by a simple example in Figure 1. The problem considers a single depot (0) and
7 clients to be served by 3 vehicles with capacity equal to 10. Figure 1 shows the distances between customers
(indicated in the arrows) in normal traffic conditions in Figure 1a and with perturbated travel times in Figure 1b,
together with the demand per client (in brackets).

The summary of results can be found in Table 3. The set of routes for a solution constructed in normal con-
ditions uses the expected value for demands and travel times while dealing with uncertainties. The perturbated
scenarios for travel times and demands are handled and the total cost Z1 and unmet demand Z2 are calculated.
In Figure 1b, one perturbated scenario is considered. The solution is composed of the following three routes,
the route sequence 0-1-2-0, a second one that follows the route 0-4-7-3-0 and the last one with route 0-6-5-0.
Then, over the perturbated demands for route 0-1-2-0 the vehicle cannot satisfy demand for client 2 dealing
with 4 units of unmet demand and a total cost of 16. In Route 0-4-7-3-0, the demands of clients 4 and 3 are
satisfied for a total cost of 25, while client 7 is skipped (unmet demand: 8). Finally, for route 0-6-5-0 all clients
are served and the total cost for the route is 9. A similar evaluation is done for the VRP (Figure 1a), but in
this case a total cost of 45 is found and all clients are attended. For each solution we totalize the cost and the
unmet demand obtaining a total cost of 45 and 0 unmet demand in the VRP, and in the RVRP a total cost
of 50 with 16 units on the unmet demand. In the case we deal with more scenarios, the maximum values after
evaluating Z1 and Z2 over all scenarios are minimized.

4. Multiobjective algorithms for the bi-rvrp

After the first studies on evolutionary multiobjective optimization (EMO), different multiobjective genetic
algorithms (MOGAs) have been proposed along the time. Selecting the best multiobjective algorithm for solving
the bi-RVRP is not straightforward. In this paper, we consider the standard version of MOEA and NSGAII,
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Table 4. Example of chromosome.

0 1 2 0 4 7 3 0 6 5 0

mainly for their flexible structure and successful applications on multiobjective combinatorial optimization
problems [14,16,23]. The following subsections describe in detail the shared components and the adaptation of
both methods.

4.1. Shared components of the bi-objective metaheuristics

4.1.1. Chromosome and evaluation

Each solution for the bi-RVRP is encoded as a set of routes, in which the customers appear in the order
they are visited (see Tab. 4). Delimiters are used as a separator between different routes (grey color). The
ranking procedure for the bi-RVRP initially evaluates the cost and the unmet demand over all scenarios for
each chromosome. Let cost(ω, k) be the cost of solution ω for scenario k and unmet(ω, b) the unmet demand
of solution ω for scenario b, where k stands for the index of the scenario on travel times and b the index
scenario for the demands. Then, the maximum total cost, max {cost(ω, k) | k ∈ W} and the maximum unmet
demand, max {unmet(ω, b) | b ∈ O}, are stored with the chromosome. Considering these computed values
for each individual, a second evaluation is performed to classify all individuals in the population, following a
minimization.

4.1.2. Initial population

The generation of the initial population Pop composed of r chromosomes is built using a random generation
of solutions and an adaptation of the best insertion heuristic. The first r/2 individuals (rounded up) to enter
in Pop are built using the best insertion heuristic and the remaining individuals are randomly generated. The
principle of the best insertion heuristic from [28] is to create a set of routes by selecting unserviced customers
and inserting each of them in one of the partial routes already created. The heuristic builds routes in parallel,
by initially selecting a customer i to be inserted in the first route, a second customer to be included in the
second route, etc. until m initial customers (seed customers) have been assigned to each route. Then, unserviced
clients are sorted in decreasing order of nominal demands and inserted one by one in the emerging routes in
this order. We determine the cheapest insertion of the incumbent client v after each node u, while respecting
vehicle capacity. If v is inserted between nodes u and w, the insertion cost for scenario k (or cost variation of the
solution for this scenario) is Δ = ck

uv + ck
vw − ck

uw. For the bi-RVRP, the initial solutions use one cost scenario
k selected at random, for the travel time, and the nominal demands (i.e., the scenarios for demands are not
considered). Since demands cannot be split, the insertion heuristic can fail to use only m vehicles. Thus, extra
vehicles can be added to the solution in order to ensure each customer is visited by a vehicle. This violation
on the number of vehicles is not repaired, and is left to be managed by MOEA and NSGAII. On the random
generation, unserviced customers are assigned sequentially to a first route. When no other customer can be
added, a second route is created. The procedure stops when all customers are attended by one vehicle.

4.1.3. Crossover operator

The ordered crossover (OX) introduced by [6] is applied. As the classical version of the OX does not consider
trip delimiters, a modification on the procedure is implemented. Initially, the selection of parents P1 and P2

follow the binary tournament selection [9]. For this purpose, two random solutions are compared. Then, the
solution with the smallest rank is kept as P1. This process is repeated to select P2. Then, the main idea of the
OX is to select a sequence of customers from P1 and insert it relating to the best insertion in P2. Repeated
customers are dropped from the offspring C to ensure that each customer i is visited once.
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4.2. MOEA and NSGAII for the bi-RVRP

The standard MOEA and NSGAII have been applied to solve the bi-RVRP. For the sake of clarity, the
standard MOEA developed here relies on an evolutionary genetic algorithm using the ranking operator to classify
solutions in fronts at each iteration of the algorithm. Half of the initial population for both metaheuristics is
randomly generated and half is created by means of the best insertion heuristic, as mentioned in Section 4.1.2.
Solutions are then classified using the ranking operator. The population is renewed using the crossover OX and
the binary tournament selection. The structure of the MOEA and the NSGAII are detailed below.

4.2.1. NSGAII

NSGAII proposed by [8] is presented in Algorithm 1. The general structure computes successive generations
of solutions into non-dominated fronts. The non-dominated set is identified and constitutes the level 1 or front 1.
The partition of the population is completed according to the level of non-domination. NSGAII uses a ranking
and a crowding distance as operators to classify the solutions in the population. The crowding comparison
procedure gives the density of solutions in the neighborhood, whereas the ranking allows to set the solutions in
a Pareto front on the search space. At each iteration of the algorithm, r solutions are generated. The solutions
are sorted and set in successive fronts of non-dominated solutions. Thus, the ranking (line 3) and the crowding
distance (line 4) for each solution is computed. Considering our two objectives for the bi-RVRP and a front Π ,
the crowding distance is computed as follows:

Crowding(Π(ρ)) =
Z1(Π(ρ) + 1) − Z1(Π(ρ) − 1)

Zmax
1 − Zmin

1

+
Z2(Π(ρ) − 1) − Z2(Π(ρ) + 1)

Zmax
2 − Zmin

2

(4)

Where Π(ρ)+1 and Π(ρ)−1 are respectively the successor and the predecessor values for the ρth solution in
the sorted front. For the extreme points in all fronts, the crowding(Π(ρ)) = ∞. The goal is to favor the extreme
points on the selection.

In order to generate a new solution, two parents P1 and P2 are selected (line 8) considering the binary
tournament selection. Then, the ordered crossover (OX) is applied to obtain an offspring C (line 9). The new
offspring C is added to the population if it is unique (line 10). At the end of each iteration, the population
contains 2r solutions. After a non-dominated ranking on the 2r solutions, only the best r solutions are kept for
the next iteration (line 15). The procedure is repeated until a prespecified number of iterations.

Algorithm 1. Non-dominated sorting genetic algorithm for the bi-RVRP.
1: Require G = (V, A), m, Q,W, d∗

i ∀i ∈ V, O
2: Initialize Pop with r
3: Pop←Non-Dominated Ranking(Pop)
4: Get crowding distance(Pop)
5: repeat
6: //Generation of r new solutions
7: while | Pop |< 2r do
8: Choose P1 and P2

9: C ← Crossover(P1, P2)
10: Add C to Pop if C is not a clone
11: end while
12: //Create a new population
13: Pop←Non-Dominated Ranking(Pop)
14: Get crowding distance(Pop)
15: Reduce Pop to its best r solutions
16: until stopping condition
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4.2.2. The MOEA

A modified version of the standard MOEA introduced by [13] is proposed for solving the bi-RVRP. The
general structure of this MOEA is provided in Algorithm 2. The structure is similar to NSGA-II (Algorithm 1),
but in the standard MOEA solutions are sorted using only the ranking procedure. Then, lines 4 and 17 in
Algorithm 1 are removed, and in the selection process between two solutions with different non-domination
ranks, the MOEA prefers the one with the lower rank. Otherwise, if both solutions belong to the same front
the selection is indifferent on which one is selected.

Algorithm 2. Multiobjective evolutionary algorithm for the bi-RVRP.
1: Require G = (V, A), m, Q,W, d∗

i ∀i ∈ V, O
2: Initialize Pop with r
3: Pop←Non-Dominated Ranking(Pop)
4: repeat
5: //Generation of r new solutions
6: while | Pop |< 2r do
7: Choose P1 and P2

8: C ← Crossover(P1, P2)
9: Add C to Pop if C is not a clone

10: end while
11: //Create a new population
12: Pop←Non-Dominated Ranking(Pop)
13: Reduce Pop to its best r solutions
14: until stopping condition

5. local search

The general definition of the standard MOEA and the NSGAII does not include local search procedures.
Nevertheless, a local search procedure is added to improve the results and to accelerate the convergence. The
cost and the unmet demand of a solution ω are computed for each scenario if the move is performed and a first
improvement strategy is applied. The whole local search stops when all neighborhoods are explored without
finding any improvement. Relocation, Interchanges, 2-opt, and a modification of 2-opt moves are developed for
the bi-RVRP. For instance, relocation applied intra-routes moves one or two continuous customers to a different
position. Interchange permutates 1 or 2 consecutive customers from the same route. Moreover, 2-opt inverts the
sequence of customers from i to j when it is applied to intra-routes (j must be after i). When the 2-opt is applied
to two different routes, the vehicle capacity constraint must be ensured before computing the variations on the
cost and the unmet demand. In addition, a modification over 2-opt is also applied to consider the asymmetric
cost when a route is inverted. For this move the customers sequence in a route before i and after j are inverted.

5.1. Acceptance criteria of moves in the local search

Deciding to perform a move on the previous presented neighbourhoods is a little more complicated for the
bi-RVRP than for a mono-objective RVRP, since the evaluation relies on a two-dimentional space considering
minimizing both, the worst total cost and the worst total unmet demand over all scenarios. Thus, this section
clarifies how to efficiently perform such evaluation. In the following, the criteria used to decide if a move ω → ω′

improves the incumbent solution are as follows:
LS1: Pareto dominance. Solution ω′ dominates solution ω if (Z1(ω′) ≤ Z1(ω) and Z2(ω′) < Z2(ω), or

Z1(ω′) < Z1(ω) and Z2(ω′) ≤ Z2(ω)).
LS2: Convex combination. A move to be accepted must improve the function weight · [Z1(ω′) − Z1(ω)] +

(1−weight) · [Z2(ω′)−Z2(ω)] with weight ∈ [0, 1]. The main objective is to improve solutions in the first front
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Table 5. Versions for the evolutionary metaheuristics.

Method Description Acceptance criteria
MOEA(1) without local search n.a.
MOEA(2) local search on new solutions LS1
MOEA(3) local search on first front LS2
MOEA(4) local search on new solutions+local search on first front LS1+LS2
NSGAII(1) without local search n.a.
NSGAII(2) local search on new solutions LS1
NSGAII(3) local search on first front LS2
NSGAII(4) local search on new solutions+local search on first front LS1+LS2

conducting the search by descending values with emphasis on the extreme solutions, while preserving the space
between solutions [19]. Therefore, the pseudo-weight weight must be computed for a given solution ω. Authors
in [19] use Equation 5 in which Zmin

1 , Zmax
1 , Zmin

2 and Zmax
2 are respectively the minimum and the maximum

values of each criterion. This formula gives diverging directions when applied to non-dominated solutions.

weight =

Z1(ω) − Zmin
1

Zmax
1 − Zmin

1

Z1(ω) − Zmin
1

Zmax
1 − Zmin

1

+
Z2(ω) − Zmin

2

Zmax
2 − Zmin

2

(5)

Since this criterion may change the fronts, it must be followed by a second call of the Non-Dominated
Ranking(Pop).

5.2. Integrating the local search on multiobjective heuristics

The local search can be applied in different positions of the multiobjective evolutionary metaheuristics ac-
cording to a systematic or no-systematic search. The systematic search implies that the local search procedure is
applied to all iterations, and the no-systematic is applied according to a fixed rate. Table 5 summarizes the vari-
ations on the position of the local search together with the acceptance criterion applied. Regarding MOEA(2)
and NSGAII(2), a no-systematic local search on children is applied with a fixed rate ϕ and introduced after
line 9 in Algorithm 1. In MOEA(3) and NSGAII(3), a systematic local search is incorporated after line 13 in
Algorithm 1 and applied on solutions in front 1. The last consideration found in MOEA(4) and NSGAII(4)
consists of combining the no-systematic and the systematic local search from version 2 and 3 of the MOEA
and the NSGAII. This means that the no-systematic local search applied on children with LS1 as acceptance
criterion and the systematic local search applied on the solutions in front 1 with LS2 as acceptance criterion
are both applied.

6. computational experiments

The computational experiments were performed on an HP ZBook, Intel Core i7-4800MQ, 2.7 GHz with 16GB
of RAM. The proposed metaheuristics were developed in C++ on Visual Studio Professional 2013. The following
subsections describe the instances used and the results.

6.1. Test instances

The computational experiments are based on two sets of random-instances called set A and set B. Set A
contains instances for which the total demand for all clients sligtly differs from the total expected demand dtot

for all clients. Thus, after computing the total deviation from the total expected demand, a portion is randomly
selected for individual clients. The two sets contain 24 instances with n = {30, 40, 50} customers, m = {3, 4, 5},
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p = {20, 30} and o = {3, 5}. They are generated as follows: the customers are randomly placed according to
an uniform distribution in the main square, i.e., the coordinates xi and yi of each customer i are randomly
selected in [0, 1000]. We ensure that | xi − xj |≥ 1 and | yi − yj |≥ 1. All node coordinates are recorded with
the instance, as real numbers. Concerning the depot node 0, the main square is divided into 3 × 3 smaller
squares and this node is randomly placed in the central square, i.e., its coordinates x0 and y0 are drawn in the
interval [333.33, 666.67]. For each scenario on travel time k and each arc (i, j), the arc cost is randomly drawn
in [distij , θ × distij ], where distij denotes the Euclidean distance and θ ∈ {1.1, 1.5, 2} is a maximum deviation
factor to this baseline distance. The arc costs are rounded to the closest integer.

The nominal or ideal values of the demands are generated assuming a vehicle capacity Q. The average demand
per customer is first computed as d̄∗ = Q/m and then the demand d∗i of each customer i is randomly set as an
integer in [1, 2d̄∗]. These demands are finally adjusted to obtain a total demand dtot such that dtot

∼= 90%×mQ,
i.e., 90% of the total capacity available. Then, a customer is randomly selected and its demand is diminished
(if dtot > 90% × mQ) or augmented (if dtot < 90% × mQ) by a random integer between 1 and 5 (included).
This process is repeated until 10% of spare capacity is obtained. The file names recall the values n–m–p–θ–o.

In particular, for set A, the discrete scenarios on demands are generated according to a global perturbation
β of the total demand dtot in percent, where β = {5%, 25%}. Thus, the individual variation for the demand on
each client i is random selected and limited by the global perturbation such as

∑
i∈V

di = β dtot.

For set B uncertainties on demands are defined between a lower and an upper value [τ−
i , τ+

i ], respectively,
per each customer i. Here, the interval variation is fixed according to a range of [−50%, 100%] over d∗i and
the number of clients allowed to change from their expected value of the demand is limited by a percentage
ε = 50%.

6.2. Evaluation criteria

The performance of the proposed metaheuristics is gives through four metrics: the number of solutions in
the Pareto front (Θ), the distribution of solutions in the Pareto front called spacing (S), the hypervolume (H)
and the running time (t) in seconds. The spacing proposed by [24] estimates the relative distance between two
consecutive solutions obtained in the non-dominated set, as follows:

S =

√√√√ 1
|Θ|

|Θ|∑
i=1

(γi − γ̄)2 (6)

Where γi minimizes the sum of the absolute difference in objective function values between the ith solution
and any other solution in the non-dominated set. Moreover, γ̄ is the mean value of the above distance measure.
When solutions are near uniformly spaced, the corresponding distance measure will be small. Thus, an heuristic
having a smaller spacing S is better.

The hypervolume introduced by [33] is the volume covered by members of Θ. Mathematically, for each solution
ω ∈ Θ, a hypercube voli is constructed with a reference point. The reference point is defined by the maximal
value of Z1 and Z2 in the initial population. Thereafter, a union of all hypercubes is found and its hypervolume
H is calculated. An heuristic with a large value of H is desirable.

H = volume

⎛
⎝

|Θ|⋃
i=1

voli

⎞
⎠ (7)

The spacing and the hypervolume are not free from arbitrary scaling objectives. The above metrics are
evaluated by using normalized objective functions in the interval [0, 1].
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Figure 2. Example of convergence on NSGAII(1) for instance 30-3-30-100-3, β = 5% on set A.
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Figure 3. Example of convergence on NSGAII(1) for instance 50-5-20-100-5, β = 25% on set A.

6.3. Parameter tuning

For the set of instances, calibration with different parameter configurations is used to see which one produces
the best results from the metaheuristics. To select the parameters, a fine-tuning procedure is used, beginning
from a promising configuration using 100 and 200 iterations. The population size was defined according to the
number of customers per each instance [23]. Moreover, the rate of local search is defined in ϕ = 10% when the
no-systematic local search is applied.

Results showed that in general the best compromise between solution quality and running time is obtained
with r = |V | and 200 iterations achieving lower values for S and prevailing in average high values for Θ and
H . According to these results, the same configuration of parameters is considered on the different variations
of NSGAII and MOEA in order to have a fair comparison between both methods. Figures 2, 3, 4 present an
example of the convergence for the NSGAII(1) on three representative instances, instance 30-3-30-100-3 with
β = 5%, instance 50-4-30-50-5 with β = 25% for the set A and instance 50-5-20-100-5 with ε = 50% for the set
B, showing best Pareto front after 50, 100, 200 iterations for a population size of r = |V |.
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Figure 4. Example of convergence on NSGAII(1) for instance 50-5-20-100-5, ε = 50% on set B.

Table 6. Average results for the set A.

Method
β = 5% β = 25%

Θ′ S′ H ′ t′ Θ′ S′ H ′ t′

MOEA(1) 5.2 0.18 0.99 190.33 7.7 0.15 0.99 193.25
MOEA(2) 4.7 0.17 0.99 209.04 7.2 0.12 0.99 206.50
MOEA(3) 4.8 0.22 0.99 213.75 7.0 0.15 0.99 211.50
MOEA(4) 4.8 0.16 0.99 217.75 5.8 0.15 0.99 215.50
NSGAII(1) 5.6 0.15 0.99 193.33 8.3 0.10 0.98 196.00
NSGAII(2) 5.1 0.16 0.99 212.04 8.1 0.18 0.99 211.50
NSGAII(3) 4.5 0.20 0.99 215.75 6.9 0.18 0.99 213.50
NSGAII(4) 4.5 0.15 0.99 220.75 6.5 0.16 0.99 218.50

Table 7. Average results for the set B.

Method
ε = 50%

Θ′ S′ H ′ t′

MOEA(1) 9.7 0.12 0.98 188.92
MOEA(2) 8.8 0.17 0.98 220.79
MOEA(3) 7.3 0.19 0.99 209.42
MOEA(4) 8.1 0.16 0.99 232.79
NSGAII(1) 9.7 0.12 0.98 190.92
NSGAII(2) 6.6 0.15 0.99 224.79
NSGAII(3) 6.6 0.19 0.99 222.79
NSGAII(4) 7.8 0.13 0.99 240.75

6.4. Results

The detailed results for each set of instances are listed from Tables A.1 to A.6 (see Appendix). Each line
on the detailed results corresponds to an instance then, the metrics Θ, S, H and t are shown for MOEA and
NSGAII. The detailed results are summarized in Tables 6 and 7, using the average values for the metrics (Θ, S,
H , t) defined respectively by the headings Θ′, S′, H ′ and t′, and graphic examples are also provided in order
to see the behavior of methods with a fixed number of iterations and they are presented in Figures 5 and 6.

As can been seen in Tables 6 and 7, in terms of Θ, generally NSGAII found a higher number of solutions in
the non-dominated Pareto front for set A giving to the decision maker a set of solutions with a good compromise
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Figure 5. Impact of the different methods with a fixed number of iterations for instance
50-5-20-100-3 with β = 5% on set A.
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Figure 6. Impact of the different methods with a fixed number of iterations for instance
50-5-20-100-3 with β = 5% on set A.

between the worst total cost and the total unmet demand. Regarding the metric H , both methods have a good
coverage in the objective space by solutions from the non-dominated fronts. In most of the cases, NSGAII has
got better results for the metric S than MOEA over its different variations which induces a better distribution
on the non-dominated pareto fronts. It is important to mention that the position of the solutions in the search
space has a direct impact on the metric S. Even when the metrics H and Θ improve their values, that does
not guarantee better values for S. As was expected the running time t differs on MOEA and NSGAII, due to
their different operators to classify the population. Concerning the results achieved with β = 5%, NSGAII(1)
has obtained the most interesting results with H ′ = 0.99,the highest value for Θ′ = 5.6, and the lowest value
found over all methods for S′. Regarding the results with β = 25%, MOEA(2) produces relevant results,
with H ′ = 0.99, Θ′=7.2, and S′=0.12. And with set B, significant results has retrieved by NSGAII(4) with
H ′ = 0.99, Θ′ = 7.8, and S′ = 0.13. However, the difference on the proposed methods is not significant,
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Table 8. Average results for Time budget with set A.

Method
β = 5% β = 25%

Θ′ S′ H ′ niter′ Θ′ S′ H ′ niter′

MOEA(1) 5.3 0.16 0.99 290 6.8 0.13 0.99 264
MOEA(2) 5.1 0.18 0.99 271 7.1 0.17 0.99 239
MOEA(3) 5.1 0.16 0.99 262 7.1 0.15 0.99 230
MOEA(4) 4.4 0.14 0.99 253 5.9 0.15 0.99 224
NSGAII(1) 5.8 0.13 0.99 282 7.9 0.12 0.98 258
NSGAII(2) 5.6 0.16 0.99 264 8.3 0.14 0.98 230
NSGAII(3) 4.6 0.20 0.99 257 7.2 0.17 0.99 227
NSGAII(4) 4.6 0.19 0.99 247 7.1 0.15 0.99 220

Table 9. Average results for Time budget with set B.

Method
ε = 50%

Θ′ S′ H ′ niter′

MOEA(1) 9.5 0.13 0.98 181
MOEA(2) 8.4 0.14 0.98 184
MOEA(3) 7.0 0.19 0.99 116
MOEA(4) 7.1 0.18 0.99 148
NSGAII(1) 8.5 0.10 0.98 140
NSGAII(2) 7.9 0.15 0.98 135
NSGAII(3) 6.5 0.20 0.99 178
NSGAII(4) 7.1 0.15 0.99 162
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Figure 7. Impact of the different methods with a limited running time for instance 50-5-20-
100-3 with ε = 50% on set B.

therefore the behavior of the metaheuristics under a common time limit (200 s) has been evaluated using set
A and B, to see their behavior the limited time. The results are summarized in Tables 8 and 9 considering
the average values for the performance metrics and two graphic examples are also included considering the
Time Budget (see Figs. 7 and 8). Apropos of the results, for set A with β = 5% NSGAII(1) is still a better
than all the performance metrics with H ′ = 0.99, Θ′ = 5.8, and S′ = 0.13. About results for instances with
β = 25%, NSGAII(4) produces interesting results (H ′ = 0.99, Θ′ = 7.1, and S′ = 0.13) but comparable results
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Figure 8. Impact of the different methods with a limited running time for instance 50-5-20-
100-3 with ε=50% on set B.
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Figure 9. Impact of β for instance 10-2-20-50-3 on the NSGAII(1).

are also obtained with MOEA(1). In regard to set B, the method with the most promising behavior is found
by NSGAII(4) which in average could obtained a high value for H ′ = 0.99, a good value for Θ′ = 7.1 and a low
value for S′ = 0.15.

These results indicate that if an individual perturbation on demands is considered, the local search is helpful.
However when the global perturbation is applied for small percentage values (i.e., within 5%), the local search
procedure seems not to be useful. On the contrary, whenever perturbations increase to up to 25%, the local
search is interesting to be applied.

In order to see the quality of the solutions, the evaluation of the bi-RVRP with 10 and 20 clients for set A
using β = 5% and 25% is considered and compared with the deterministic VRP i.e., nominal values for the
demands and travel times. Figures 9, 10, 11 and 12 show the results obtained with NSGAII(1). One can notice
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Figure 10. Impact of β for instance 10-2-20-50-5 on the NSGAII(1).
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Figure 11. Impact of β for instance 20-3-20-100-3 on the NSGAII(1).

the price to pay for a robust solution against the deterministic case and the impact of the perturbation level
β on the final solutions. As expected, even when we can achieve the same costs found on the VRP we can fall
into an increasing value for the total unmet demand that varies according to the percentage β and the number
of scenarios.

It can be also seen that when the number of scenarios increases there is a clear enlargement on the Pareto
front due to the increment on the worst total cost or the maximum total unmet demand, which is more evident
to see in larger instances. It is important to emphasise that when we are dealing with a multiobjective problem,
the improvement that could be obtained in one of the objective functions will affect the other one. This situation
is observed in the cases when the worst total cost of the deterministic case is reached but with a higher value for
the maximum total unmet demand, or in the opposite way when the maximum total unmet demand is improved
and the worst total cost becomes worst.
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Figure 12. Impact of β for instance 20-3-20-100-5 on the NSGAII(1).

7. concluding remarks

In this paper the bi-RVRP with uncertainty in both demands and travel times is studied by means of robust
optimization. Here, the bi-RVRP aims at minimizing the worst total cost of traversed arcs and minimizing the
maximum total unmet demand over all scenarios. To the best of our knowledge, this version of the bi-RVRP
has never been studied before and finds practical applications in urban transportation. MOEA and NSGAII
are adapted to solve the bi-RVRP together with a local search. Different variations for both metaheuristics
were considered on the location of the proposed local procedure in the MOEA and NSGAII structure. Different
analyses are computed including the impact that the level of perturbation have on the worst total cost and the
total unmet demand, the impact of the local search on the MOEA and NSGAII, and the convergence as well
as the diversity for the different methods. The computational experiments are based on two sets of random-
instances in order to see the impact that the application of different representations of uncertain demands has
on the bi-RVRP, one that specifies a perturbation over the total demand of clients, while the other considers
for each client an individual variation defined in an interval. Regarding the impact of the local search procedure
on the different variations for the MOEA and the NSGAII, It can be seen that the local search is sensitive
to the perturbation rate. In some cases, it is relevant to apply a local search, i.e., when perturbation is up
to 25%. On the contrary, if perturbation is small, i.e., within 5%, the local search seems not to be helpful.
In terms of the number of non-dominated solutions the NSGAII found better solutions than MOEA. With
respect to the hypervolume both metaheuristics, the MOEA and the NSGAII, have a good coverage on the
solutions. However, when the hypervolume and the number of non-dominated solutions improve their values,
that does not guarantee a good spread of the solution on the Pareto front. Nevertheless results show that in
general our proposed methods have a good behavior on all the performance metrics. Although in the cases
where the deterministic version of the VRP gives solutions with no unmet demands our proposed method can
find solutions that support the variations which might arise in the future with a good comprise between the
cost and unmet demand. Regarding future research, there is room for including other representations for the
uncertainties and to design exact approaches handling the bi-RVRP. An interesting option would be to accept
split deliveries, for instance by delivering a maximum amount to each customer when its demand cannot be
completely satisfied.
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Appendix A. Detailed results for each instance

Table A.1. Results for NSGAII(1), NSGAII(2), MOEA(1) and MOEA(2) with o = 3, o = 5 and
β = 5% for set A.
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Table A.2. Results for NSGAII(1), NSGAII(2), MOEA(1) and MOEA(2) with o = 3, o = 5
and β = 25% for set A.
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Table A.3. Results for NSGAII(3), NSGAII(4), MOEA(3) and MOEA(4) with o = 3, o = 5
and β = 5% for set A.
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Table A.4. Results for NSGAII(3), NSGAII(4), MOEA(3) and MOEA(4) with o = 3, o = 5
and β = 25% for set A.
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Table A.5. Results for NSGAII(1), NSGAII(2), MOEA(1) and MOEA(2) with o = 3, o = 5
and ε= 50% for set B.
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Table A.6. Results for NSGAII(3), NSGAII(4), MOEA(3) and MOEA(4) with o = 3, o = 5
and ε= 50% for set B.
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[29] I. Sungur, F. Ordóñez and M. Dessouky, A robust optimization approach for the capacitated vehicle routing problem with

demand uncertainty. IIE Trans. 40 (2008) 509–523.
[30] N.E. Toklu, R. Montemanni and L.M. Gambardella, An ant colony system for the capacitated vehicle routing problem with

uncertain travel costs. In IEEE Symposium on Swarm Intelligence (SIS) (2013) 32–39.
[31] N.E. Toklu, R. Montemanni and L.M. Gambardella, A robust multiple ant colony system for the capacitated vehicle routing

problem. In IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2013) 1871–1876.
[32] R.J.B. Wets, Stochastic programming models: Wait-and-see versus here-and-now. In Decision Making Under Uncertainty.

Vol. 128 of The IMA Vol. Math. Appl. Springer, New York (2002) 1–15.
[33] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca and V.G da Fonseca, Performance assessment of multiobjective optimizers:

an analysis and review. IEEE Trans. Evol. Comput. 7 (2003) 117–132.

http://dx.doi.org/10.1287/trsc.2014.0559

	introduction
	related works
	Notation, definitions and example
	Multiobjective algorithms for the bi-rvrp
	Shared components of the bi-objective metaheuristics
	Chromosome and evaluation
	Initial population
	Crossover operator

	MOEA and NSGAII for the bi-RVRP
	NSGAII
	The MOEA


	local search
	Acceptance criteria of moves in the local search
	Integrating the local search on multiobjective heuristics

	computational experiments
	Test instances
	Evaluation criteria
	Parameter tuning
	Results

	concluding remarks
	Detailed results for each instance
	References

