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A NOTE ON OPTIMAL PORTFOLIO CORRESPONDING
TO THE CVAR RATIO

Reza Keykhaei
1

Abstract. Various reward-risk performance measures and ratios have been considered in reward-
risk portfolio selection problems. This paper investigates the optimal portfolio corresponding to the
CVaR (STARR) ratio. Considering the LP solvability of CVaR, a method is proposed for detecting
the optimal portfolio by using the corresponding Mean-CVaR optimization problem. By applying LP
tools, a method is suggested for producing the optimal portfolio as a by-product during the procedure
of computing the efficient frontier of the Mean-CVaR problem.
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1. Introduction

Reward-risk ratio optimization is an important mathematical approach in finance. In reward-risk analysis,
a portfolio is preferred to another one if it has higher expected return and lower risk. For a given set of risky
assets and a riskless asset, all investors will choose an optimal portfolio which is a linear combination of the
riskless asset and a risky portfolio known as optimal risky portfolio (or briefly, optimal portfolio). The optimal
risky portfolio is given by the portfolio that maximizes the performance measure. Generally, this measure is
a ratio between the expected excess return and a risk measure of portfolio return (Biglova et al. [5]). Many
reward-risk ratios, such as Sharpe ratio and CVaR (STARR) ratio, have been extensively used in financial
portfolio management. Recently, Biglova et al. [5] provided an overview of various reward-risk performance
measures and ratios. Stoyanov et al. [15] investigated the general reward-risk ratio optimization problems. For
more reward-risk ratios and an empirical comparison, refer to [5, 10] and the references therein.

Markowitz [7] introduced his seminal work in modern portfolio theory for risky assets in the Mean-Variance
(M-V) framework using variance as the measure of risk. Tobin [16] demonstrated that in a M-V portfolio
selection problem, for a set of some risky assets and a riskless asset, each efficient portfolio can be represented
by a combination of riskless asset and a unique risky portfolio. This fact is known as two-fund separation
theorem. As a matter of fact, the optimal portfolio maximizes the Sharpe ratio [13, 14]

S(x) =
R̄(x) − rc

ϕ(x)
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between all feasible risky portfolios, where rc is the return of the riskless asset and the reward R̄(x) and the risk
ϕ(x) of a portfolio x are measured by the mean and the standard deviation of the portfolio return, respectively.
In this case, the optimal portfolio corresponds to the point of tangency, that is, the so-called tangency portfolio,
between the line originated from the rc on the Mean axis and the efficient frontier associated with the set of all
feasible risky portfolios in the Mean-Standard deviation plane (see Fig. 1). Tütüncü [17] introduced a simple
modification of Markowitz’s critical line method (which is commonly used for generating the M-V efficient
frontier) to determine the optimal (tangency) portfolio. Indeed, by using dual solutions, he has demonstrated
how this modification can be used to produce the optimal portfolio as a by-product during the method. Keykhaei
and Jahandideh [6] suggested a method which determines the location of the tangency portfolio in Mean-Risk
portfolio selection problems for which the original portfolio selection problem

min
x∈A

ϕ(x)

is equivalent to a Linear Programming (LP) problem

min
x∈B

ϕ̄(x) = C′x.

In this case the tangency portfolio maximizes the ratio

S(x) =
R̄(x) − rc

ϕ(x)

where ϕ is approximated by ϕ̄. The goal in this paper is to detect the optimal portfolio which is the portfolio
that maximizes the CVaR ratio

S(x) =
R̄(x) − rc

ϕ(x) + rc

proposed by Martin et al. [8], where ϕ(x) is measured by the CVaR associated to a portfolio x.
In this paper, by using dual solutions, the detection of the optimal portfolio and its production as a by-product

during the procedure of computing the efficient frontier corresponding to the set of feasible risky portfolios is
demonstrated. Indeed, according to this method, it is sufficient to realize the optimal portfolio between two
(extreme) efficient portfolios, but not all of them. This can be useful in large-scale portfolio selection problems.

The remainder of this paper is organized as follows. Section 2 describes the formulation of the CVaR portfolio
optimization problem and applies the CVaR minimization algorithm presented in Rockafellar and Uryasev [11,12]
for risky assets. Section 3 describes the portfolio selection approach for a set of risky assets and a cash account
(as a riskless asset) and presents the analysis for the detection of the optimal portfolio. Section 4 investigates
the efficient frontier and describes the procedure for producing the optimal portfolio as a by-product during
the procedure of computing the efficient frontier of risky portfolios. An illustrative example is given in the last
section.

2. Minimization of CVaR for risky assets

Value-at-Risk (VaR) has become a standard measure of risk used by many financial institutions. It measures
the maximum amount that an investment may lose with a specified probability level over a certain time horizon.
VaR has some drawbacks, such as non-subadditivity and non-convexity, see [2, 3]. Conditional value-at-risk
(CVaR) introduced by Rockafellar and Uryasev [11, 12], is an alternative measure of risk. CVaR which is also
called Expected Tail Loss (ETL), Expected Shortfall (ES), or Tail VaR, is the expected loss conditional that the
loss is above the VaR. CVaR is convex and coherent in the sense of being positively homogeneous, subadditive,
monotonic and translation invariant, see [9]. Rockafellar and Uryasev [11, 12] demonstrated that for linear loss
functions, CVaR can be minimized by using LP algorithms.
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Consider an investment opportunity in a set of n ≥ 2 risky assets (in the scenes that their returns is not
deterministic). Let rj be the random rate of return (with mean r̄j) of the jth asset and xj be the proportion
allocated to the asset. Each portfolio is represented by its asset weights vector x = (x1, . . . , xn)′ ∈ R

n. Then
the portfolio x has the random return R := R(x) =

∑n
i =1 xiri = x′r and the expected return R̄ := R̄(x) =∑n

i =1 xir̄i = x′r̄, where r and r̄ are the random vector and the mean vector of the asset returns. A portfolio x
is feasible if it satisfies the following conditions:

Ax = b,
Cx ≥ d,

(2.1)

where b ∈ R
m, d ∈ R

p, A is an m × n, and C is a p × n matrix over R.
As [11], the negative of the portfolio return −R is considered as the loss function with the cumulative

distribution function FR(α) = P (−R ≤ α). The VaRβ of a portfolio x (with respect to a probability level
β ∈ (0, 1)) is defined as the β-quantile of loss function as follows:

VaRβ(x) := VaRβ(R) = min{α ∈ R : FR(α) ≥ β}.

In fact, this indicates that the probability that the possible portfolio loss exceeds VaRβ is less than 1 − β.
The CVaRβ of a portfolio x is the mean of the β-tail distribution of −R with distribution function:

F β
R(α) =

⎧⎪⎨
⎪⎩

0, if α < VaRβ(x),

FR(α) − β

1 − β
, if α ≥ VaRβ(x).

For continuous random variable R, as considered in this paper, CVaRβ is the conditional expectation of loss
subject to −R ≥ VaRβ (see Prop. 5 of [12]), that is,

CVaRβ(x) = E[−R| − R ≥ VaRβ(x)].

CVaR has been considered as an alternative measure of risk for VaR because of its desirable properties. The
convexity of CVaR has a key role in this investigation. As shown in [11, 12], CVaR can be minimized by using
the LP algorithms.

Consider the following Mean-CVaR portfolio selection problem for the expected portfolio return ρ:

Problem (1):
min
x∈Rn

CVaRβ(x),

s.t. r̄′x = ρ,

Ax = b,

Cx ≥ d.

It was illustrated in [11] that by using a set of scenarios R1, . . . ,RN sampled from the joint distribution of the
asset returns, the minimizing of CVaRβ(x) over a set of feasible portfolios S is equivalent to minimizing of the
approximating expression

F̃ (x, α) = α +
1

N(1 − β)

N∑
j=1

[−x′Rj − α]+

over S × R, that is,

min
x∈S

CVaRβ(x) = min
(x,α)∈S×R

F̃ (x, α). (2.2)
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Also, if (x∗, α∗) minimizes the F̃ (x, α), then x∗ minimizes the CVaRβ(x). Moreover, F̃ (x, α) is convex with
respect to (x, α) (see Thm. 2.2 of [11] and its following discussions). Finally Problem (1) can be reduced to the
following LP problem:

Problem (2):

min
x∈Rn α∈R y∈RN

H(α,y) = α + γ

N∑
j=1

yj ,

s.t. r̄′x = ρ,

Ax = b,

Cx ≥ d′

yj ≥ −x′Rj − α, yj ≥ 0, j = 1, . . . , N,

where γ = (N(1 − β))−1.
Zhu et al. [18] proposed the following CVaR robust Mean-Variance portfolio optimization problem:

min
x∈S

{CVaRβ(x) + λx′Q̄x} = min
(x,α)∈S×R

{
F̃ (x, α) + λx′Q̄x

}
, (2.3)

where Q̄ is an estimate of the covariance matrix of asset returns and λ ≥ 0 is the risk aversion parameter.
Obviously, by letting λ = 0 the optimization problem in equation (2.2) can be obtained. Applying a smoothing
approach, Zhu et al. [18] reformulated problem (2.3) into the following problem:

min
(x,α)∈S×R

⎧⎨
⎩α + γ

N∑
j=1

ρε(−x′Rj − α) + λx′Q̄x

⎫⎬
⎭ , (2.4)

where ρε(z) is defined as: ⎧⎪⎪⎨
⎪⎪⎩

z if z ≥ ε,

z2

4ε
+

1
2
z +

1
4
ε if − ε ≤ z ≤ ε,

0 otherwise.

In the formulation of Problem (2), generating a new sample adds an additional variable and constraint. For n
risky assets and N mean return samples, Problem (2) has a total of O(n+N) variables and O(n+N) constraints.
On the other hand, the smoothing formulation (2.4) has only O(n) variables and O(n) constraints. Therefore,
an increase in the sample size N does not change the number of variables and constraints. The linearity of the
objective function, as in Problem (2), is essential in this study. Note that the objective function in problem (2.4)
includes a piecewise quadratic and a quadratic term. So, in the following, the LP Problem (2) is investigated.

By the Karush−Kuhn−Tucker (K-K-T) conditions, (x∗, α∗,y∗) is a (primal) solution of Problem (2), if and
only if, there exist vectors λρ ∈ R, λb ∈ R

m, λd ∈ R
p and λy, λ0 ∈ R

N such that:

λρr̄ + A′λb + C′λd + Rλy = 0, (2.5)

1 − E′λy = 0, (2.6)

γE− λy − λ0 = 0, (2.7)

r̄′x∗ = ρ, Ax∗ = b, λ′
d(Cx∗ − d) = 0, (2.8)
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λ′
y(R′x∗ + α∗E + y∗) = 0, λ′

0y
∗ = 0, (2.9)

Cx∗ ≥ d, y∗ ≥ −R′x∗ − α∗E, y∗ ≥ 0, (2.10)

λd ≥ 0, λy ≥ 0, λ0 ≥ 0, (2.11)

where R = [R1, . . . ,RN ] and E is a N -column vector of ones.
For any expected return ρ let Ω(ρ) denote the set of all primal-dual solutions (x∗, α∗,y∗, Λ) of Problem (2),

satisfying (2.5)−(2.11), where Λ = (λρ, λd, λd, λy, λ0). λρ is called an optimal reward multiplier which is not
necessarily unique. Considering equation (2.2), if (x∗, α∗,y∗, Λ) ∈ Ω(ρ), then x∗ is the optimal solution of
Problem (1) such that:

H(α∗,y∗) = F̃ (x∗, α∗) = CVaRβ(x∗) (2.12)

and α∗ is the corresponding VaR (see Thm. 2 of [11]).

3. Portfolio selection framework

Now consider the investment opportunity in the set of risky assets and a cash account xc with the certain rate
of return rc. In this case, each investor invests the portion xc of his wealth in the cash account and invests the
remainder 1−xc in a feasible risky portfolio x satisfying conditions (2.1). Now the portfolio is ẋ = ((1−xc)x, xc).
The portfolio return of ẋ is (1 − xc)R + xcrc. In the following, x := (x, 0) and xc := (0, 1) means the totally
risky and the totally cash investment, respectively. Note that since

CVaRβ(R + rc) = CVaRβ(R) − rc,

then the corresponding CVaR of the totally cash investment xc = (0, 1) is equal to −rc (for example see Cor. 12
of [12]). In this paper, actually, the risk of a typical portfolio ẋ is considered by φβ(ẋ) which is defined as follows:

φβ(ẋ) = CVaRβ(ẋ) + rc. (3.1)

So, a cash investment has zero risk. Obviously, the minimization of φβ(ẋ) is equivalent to minimization of
CVaRβ(ẋ), which leads to the minimization Problem (2). In fact, the portfolio optimization in the Mean-φβ

framework is aimed at. Let us consider totally risky investments. A portfolio is said to be efficient if it has the
highest expected return among all feasible portfolios with the same risk and has the lowest risk among all feasible
portfolios with the same expected return. Let ρmin be the expected return of an efficient portfolio which has
the minimum risk. Also let ρmax be the highest obtainable expected return of feasible portfolios. Actually, any
efficient portfolio has expected return ρ ∈ [ρmin, ρmax]. The graph which plots the risk of any efficient portfolio
against its expected return is called the efficient frontier (see Fig. 1). Following [6], the function φ is defined as

φ : [ρmin, ρmax] −→ R

ρ �→ φβ(x∗); (3.2)

where (x∗, α∗,y∗, Λ) ∈ Ω(ρ). Indeed φ(ρ) is a approximate optimal risk (obtained from Problem (2)) corre-
sponding to mean return ρ. Since CVaR is a convex function [9], φ is also a convex function which is not
necessarily smooth. Indeed, for any ρ, it might be more than one subderivative of φ at ρ. Note that the scaler
c is a subderivative of φ at ρ, if and only if

φ(ρ1) ≥ φ(ρ) + c(ρ1 − ρ)

for any ρ1 ∈ [ρmin, ρmax]. The subdifferential ∂φ(ρ) of φ at ρ is the set of all subderivative. Here we recall the
Proposition 2.1 of Keykhaei and Jahandideh [6].
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optimal portfolio

Figure 1. The efficient frontier of Mean-φβ portfolio selection problem.

Proposition 3.1. ∂φ(ρ) is equal with the set of optimal reward multipliers of Problem (2).

Now suppose the portion λ ≥ 0 of our wealth can be invested in a feasible risky portfolio x and the remainder
in the cash account, that is ẋ = λx + (1 − λ)xc. Using properties of CVaR (see [9]) we obtain:

φβ(λx + (1 − λ)xc) = CVaRβ(λx + (1 − λ)xc) + rc

= λCVaRβ(x) − (1 − λ)rc + rc

= λ(CVaRβ(x) + rc)
= λφβ(x) + (1 − λ)φβ(xc).

Also, such a portfolio has the expected return λR̄+(1−λ)rc. Thus, any portfolio which is a convex combination
of a feasible risky portfolio and the cash account can be represented by a point on the line that connects the
feasible portfolio and the cash account in the φβ-Mean plane. In this case, the efficient frontier is a straight line
which dominates the other lines, passing from the rc on Mean axis and the tangency portfolio as the optimal
portfolio on the efficient frontier of risky assets (see Fig. 1). Obviously, the slope of this line is a subderivative of
φ at the mean return of the tangency portfolio in the Mean-φβ framework and is the highest obtainable slope.
In fact optimal portfolio maximizes the CVaR ratio (or STARR ratio)

S(x) :=
E[x′r − rc]

CVaRβ(x′r − rc)
=

x′r̄− rc

φβ(x)
, (3.3)

proposed by Martin et al. [8], among all feasible portfolios (also, see [15]). Note that, since F̃ (x, α) is not
necessarily strictly convex, it is possible that there exist more than one tangency point. In the following let
IT = [ρT1 , ρT2 ] (possibly the single point ρT ) denote the interval of the expected returns of all optimal portfolios
(see Fig. 2). Keykhaei and Jahandideh [6] presented the following lemma.

Lemma 3.2. Let (x∗, α∗,y∗, Λ) ∈ Ω(ρ), for which

λρ =
φ(ρ)

ρ − rc
,

then x∗ is an optimal portfolio.
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Figure 2. The Mean-φβ efficient frontier with non-unique optimal portfolio.

In the following, some results are presented which could be useful to detect the optimal portfolio. For
(x∗, α∗,y∗, Λ) ∈ Ω(ρ) define

θ(Λ) := rcλ̃ρ + b′λb + d′λd,

where λ̃ρ = λρ + 12

Theorem 3.3. Let (x∗, α∗,y∗, Λ) ∈ Ω(ρ).

(I) If θ(Λ) = 0, then x∗ is an optimal portfolio.
(II) If ρ ∈ (ρT2 , ρmax] (ρ ∈ [ρmin, ρT1)), then θ(Λ) < 0 (θ(Λ) > 0).

Proof. Let (x∗, α∗,y∗, Λ) ∈ Ω(ρ). Adding equation (2.5) multiplied by −x∗′, equation (2.6) multiplied by α∗,
and equation (2.7) multiplied by y∗′, gives

α∗ + γy∗′E = λρρ + b′λb + d′λd, (3.4)

by considering (2.8) and (2.9). If θ(Λ) = 0, then by (3.4)

λρ =
α∗ + γy∗′E + rc

ρ − rc
·

So, by (2.12), (3.1) and (3.2) we have λρ = φ(ρ)/(ρ − rc). Then x∗ is an optimal portfolio by Lemma 3.2.
Considering Proposition 3.1, for any ρ ∈ (ρT2 , ρmax] we have

λρ >
φ(ρ)

ρ − rc
·

Thus, by (3.4),
λρ(ρ − rc) > α∗ + γy∗′E + rc = λρρ + b′λb + d′λd + rc,

then θ(Λ) < 0. The reminder of the claim can be proved similarly. �

The proof of the following corollary is similar to that of Corollary 3.3 of [6] and therefore is omitted

Corollary 3.4. Let (x∗, α∗,y∗, Λ) ∈ Ω(ρmax) (Ω(ρmin)). If θ(Λ) > 0 (θ(Λ) < 0), then x∗ is an optimal portfolio.

2Keykhaei and Jahandideh [6] set θ(Λ) = rcλρ + b′λb + d′λd.
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4. Efficient frontier analysis

Employing the method of Aneja and Nair [1], Keykhaei and Janahdideh [6] proposed a method for LP
solvable portfolio selection problems that computes all extreme efficient portfolios and the efficient frontier of
risky assets. Also, they demonstrated how a tangency portfolio can be produced as a by-product during the
process. Here, a modification of the method of Keykhaei and Jahandideh is introduced. Considering Problem 2,
the procedure first finds two efficient extreme points z(1) (z(2)) corresponding to ρ = ρmax (ρ = ρmin). To
obtain the i’th efficient extreme point (i ≥ 3), using the two efficient extreme points z(r) = (z(r)

1 , z
(r)
2 ) and

z(s) = (z(s)
1 , z

(s)
2 ) considered by the algorithm, the following problem (associated with Problem 2) is used:

Problem (i):

min
X=(x,α,y)

aiZ2(X) − biZ1(X) := ai[α + γ

N∑
j=1

yj ] − bir̄′x,

s.t. Ax = b,

Cx ≥ d′

y + R′x + αE ≥ 0,

y ≥ 0,

where ai = |z(r)
1 − z

(s)
1 | and bi = |z(r)

2 − z
(s)
2 |. If there are alternative optima, a portfolio with highest return is

chosen. Now, Problem (i) produces a new efficient extreme point, if there exists a solution which improves the
objective function in comparison to z(r) and z(s). The algorithm terminates when no extreme point is available.

Let Ωi denotes the set of all primal-dual solutions (X∗, Λ̂) of Problem (i), where Λ̂ = (λ̂b, λ̂d, λ̂y, λ̂0) in
which λ̂b, λ̂d, λ̂y and λ̂0 are the Lagrangian multipliers corresponding to the first constraint, the second and
so on, respectively. Note that applying the SIMPLEX method enables the extraction of the dual solutions from
its tableau, for example see [4]. Moreover, most of LP solvers in mathematical softwares such as MATLAB,
compute dual solutions as well as primal solutions.

Lemma 4.1. Let (X∗, Λ̂) ∈ Ωi in which X∗ = (x, α,y). Then (x, λρ, λb, λd, λy, λ0) ∈ Ω(ρ), where ρ =
Z1(X∗) = r̄′x , λρ = bi/ai and (λb, λd, λy, λ0) = (1/ai)Λ̂.

Proof. Using K-K-T necessary optimality condition for (X∗, Λ̂) and the fact that ai > 0, the rela-
tions (2.5)−(2.11) can be obtained for (x, λρ, λb, λd, λy, λ0). This completes the proof. �

For (X∗, Λ̂) ∈ Ωi let3

θ̂(Λ̂) := (ai + bi)rc + b′λ̂b + d′λ̂d.

Theorem 4.2. Let (X∗, Λ̂) ∈ Ωi.

(I) If θ̂(Λ̂) = 0, then x in X∗ is an optimal portfolio.
(II) If Z1(X∗) ∈ (ρT2 , ρmax] (Z1(X∗) ∈ [ρmin, ρT1)), then θ̂(Λ̂) < 0 (θ̂(Λ̂) > 0).

Proof. By Lemma 4.1, Λ̂ introduces the dual solution Λ = (1/ai)(bi, λ̂b, λ̂d, λ̂y, λ̂0) for Problem 2. Then θ(Λ) =
(1/ai)θ̂(Λ̂). Now Theorem 3.3 completes the proof. �

3Keykhaei and Jahandideh [6] set θ̂(Λ̂) = birc + b′λ̂b + d′λ̂d.
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In the following, how an optimal portfolio can be recognized during the procedure of detecting extreme
efficient portfolios for the set of feasible portfolio of risky assets (2.1) is discussed. At the first step, the sign of
θ(Λ) at z(1) and z(2) corresponding to ρ = ρmax and ρ = ρmin, respectively, is examined. If θ(Λ) ≥ 0 (θ(Λ) ≤ 0),
then z(1) (z(2)) is a tangent point. Otherwise, If an efficient extreme point in which θ̂(Λ̂) = 0 is met, then this
point corresponds to an optimal portfolio. In the last case, if two adjacent efficient extreme points for which θ̂(Λ̂)
takes different sign are recognized, then the point which maximizes the ratio (3.3) corresponds to an optimal
portfolio. In fact, this method allows for the comparison of the value of (3.3) only between two points. This
property is quite useful, especially for large-scale portfolio selection problems which produce a large number of
efficient extreme points.

5. Illustrative example

In this section a numerical example is presented by using historical price data of n = 30 stocks4 chosen from
S&P 100. The daily (closing) prices from 9/14/2009 to 2/10/2012 are used. Two-week period (ten business
days) investment is considered. N = 600 two-week rates of return for every stock i is used and calculated as
follows:

rit =
pt+10

i

pt
i

− 1,

where pt
i denotes the price of the ith stock at day t. The mean rate of return for stuck i is computed as

r̄i = E(ri) = 1
T

∑T
i = 1 rit. The rate of return for any cash account is set to 0.75 % over two weeks. The feasible

region is set as S = {x ∈ R
n :

∑n
i =1 xi = 1; xi ≥ 0, i = 1, . . . , n}. The primal-dual solutions are computed

using SIMPLEX method in MATLAB. The efficient extreme points obtained by Aneja−Nair method and their
corresponding amount of θ̂(Λ̂) are represented in Table 1 (Also, see Fig. 3). A solution of Problem (i) is considered
as a new efficient extreme point if, in comparison to z(r) and z(s), it improved the objective function more than
10−5. Note that θ(Λ) is only computed for z(1) and z(2) and θ̂(Λ̂) is computed for the other efficient extreme
points. The i’th efficient point is shown by z(i) and is obtained from two closest points with the lower labels
at its left and its right sides. For example for β = 0.99, z(6) is obtained from z(4) and z(3). As can be seen,
the number of efficient extreme points increases when β decreases. For each level of β, the optimal portfolio

Table 1. Efficient extreme points corresponding to three levels β = 0.99, 0.95, 0.9.

β = 0.99 z(1)∗ z(5) z(4) z(7) z(6) z(8) z(3) . . . z(17) z(2)

mean (%) 1.713 1.682 1.513 1.438 1.435 1.334 1.3 . . . 0.97 0.928

risk (%) 11.083 10.729 9.101 8.47 8.448 7.758 7.538 . . . 6.172 6.157

θ(Λ); θ̂(Λ̂)(10−5) 228.37 3.07 10.56 2.12 7.23 5.11 32.11 . . . 3.91 6092.63

β = 0.95 z(1) z(6) z(7) z(5) z(9)∗ z(8) z(10) . . . z(30) z(2)

mean(%) 1.713 1.682 1.623 1.593 1.586 1.517 1.484 . . . 0.921 0.864

risk(%) 8.702 8.388 7.814 7.538 7.478 6.887 6.603 . . . 4.555 4.532

θ(Λ); θ̂(Λ̂)(10−5) −1005.16 −0.76 −0.45 −0.28 0.22 0.45 0.23 . . . 4.8 4513.77

β = 0.9 z(1) z(6) . . . z(4) z(16)∗ z(15) z(17) . . . z(37) z(2)

mean(%) 1.713 1.66 . . . 1.5 1.488 1.459 1.449 . . . 0.935 0.897

risk(%) 7.462 6.931 . . . 5.497 5.4 5.198 5.13 . . . 3.671 3.668

θ(Λ); θ̂(Λ̂)(10−5) −2341.29 −2.26 . . . −1.48 −0.001 0.229 0.228 . . . 2.62 3673.28

4The chosen stocks are: AAPL, ABT, AEP, ALL, APA, AXP, BAX, BMY, CL, COP, DELL, EMR, ETR, FDX, GOOG, HNZ,
IBM, JPM, KO, MCD, NKE, NWSA, OXY, RTN, SLB, TXN, UPS, V, WFC and XOM.
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Figure 3. The Mean-φβ efficient frontiers corresponding to Table 1 for three levels β =
0.99, 0.95, 0.9. Black disks denote the efficient extreme portfolios.

is denoted by ∗. For β = 0.99, the portfolio with the highest obtainable mean return has positive θ(Λ). So, at
the first step the optimal portfolio can be introduced. For other values of β, the optimal portfolio is chosen
between two successive portfolios with different signs of θ̂(Λ̂). Note that, if the interest is only on the optimal
portfolio, then the procedure can be stopped after realization of the optimal portfolio z(r)∗. Also, if borrowing is
not allowed, the points z(1) − z(r)∗ which are successively presented in the table and z(0) = (0.0075, 0) construct
the set of efficient extreme points corresponding to the Mean-φβ portfolio selection problem consisting of the
aforementioned n risky assets (with the feasible region (2.1)) and a cash account with rc = 0.75 %.
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