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ALGORITHMS FOR THE QUICKEST TIME DISTRIBUTION OF DYNAMIC
STOCHASTIC-FLOW NETWORKS

Chin-Chia Jane
1

and Yih-Wenn Laih
2

Abstract. Quickest time, which is the least possible time necessary to transmit a fixed amount of data
from a source node to a destination node, has been widely explored in the past few years. A quickest
path transmits data via a single path, whereas a quickest flow transmits data via all possible paths. In a
dynamic stochastic-flow network in which each arc capacity is a discrete random variable having several
possible integer values, the quickest time is not a fixed value. Existing literature computes the reliability
that the specified amount of flow can be sent simultaneously from the source to the destination through
multiple k disjoint minimal paths within a given time horizon. This article presents a decomposition
algorithm to compute the probability distribution of the quickest time of a dynamic stochastic-flow
network from the viewpoint of flow (all disjoint and non-disjoint minimal paths simultaneously) rather
than of k disjoint minimal paths only. The distribution of quickest time is important for the design
and analysis of evacuation systems, as they are generally analyzed and optimized via the quickest
flow models. As a result, the expected quickest time and the probability that the quickest time is
no larger than a specified time threshold can be determined directly. The proposed algorithm can be
easily modified to approximate the probability distribution by trading off accuracy for execution time
when the network system is large. Computational experiments are conducted to illustrate the proposed
algorithms.
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1. Introduction

In the fields of operations research, transportation, logistics, and applied mathematics, static network flow
models have been widely employed to conduct performance analyses of real-world systems, such as shortest
path problems, maximum flow problems, min-cost max-flow problems, and transportation problems [2, 10], in
the past five decades. While static network flow models are useful to analyze a variety of optimization problems,
they fail to capture two crucial elements of many practical problems. One is the evolution of systems over time,
and the other is the transmission probabilities of flows through arcs.

To treat the evolution of systems over time, Ford and Fulkerson [10] introduced the dynamic networks in
which flows take a discrete time to pass arcs of the network. The time is named transit time, and the flow
is called dynamic flow or flow over time Let s and t be the source and sink nodes respectively. Various dynamic
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network flow problems exist. The maximum dynamic flow problem is the most basic; it searches a dynamic flow
that maximizes the flow s to t within time horizon T . A maximum dynamic flow by every intermediate time
step up to and including T is named the earliest arrival flow or universal maximum flow [3,26]. Another variant
of the maximum dynamic flow problem is the minimum cost dynamic flow problem [9], which seeks a dynamic
flow that minimizes the total shipment cost of a commodity to satisfy demands at certain nodes within time
horizon T . Burkard et al. [5] and Lin and Jaillet [18] studied the quickest flow problem, which finds a feasible
dynamic flow that sends a given flow value from s to twithin the least possible time. This problem is considered
the inverse of the maximum dynamic flow problem. When multiple sources and multiple sinks are present, the
corresponding quickest flow problem is named the quickest transshipment problem [11]. Thus far, only Hoppe and
Tardos [11] have proposed polynomial-time algorithms for the general quickest transshipment problem, which
transforms the quickest transshipment problem into a lexicographic max-flow problem. According to Hoppe
and Tardos [11], converting a quickest transshipment problem into a quickest flow problem by adding a super
source and a super sink and then connecting them to the source and sink nodes cannot simplify the problem.
Meanwhile, the quickest path problem [7,21] is a special case of the quickest flow problem because it focuses on
a single path to send the flow from s to t Different quickest path problems are explored, including constrained
quickest path problem [6], first k quickest paths problem [8, 23], and all-pairs quickest path problem [16].

Algorithms for evaluating the reliability of static flow networks have been explored extensively to deal with
the transmission probabilities of flows through arcs [1, 12, 15, 17, 22, 24]. Assuming each arc is a binary ran-
dom variable that switches between function and failure with associated probability, the two-terminal capacity
reliability (2TCR) computes the probability of successfully distributing a specified demand from s to t. The
2TCR is a combination of probability connection and demand fulfillment from s to t. Transit time and trans-
mission probability have recently been considered simultaneously. In Xue [27], Bang et al. [4], and Ruzika and
Thiemann [25], a most reliable quickest path is the quickest path among the most reliable ones, a quickest
most reliable path is the most reliable among the quickest paths, and a reliable quickest path is the quickest
path among all paths with at least a predefined path reliability, respectively. In practical network systems the
capacity of each arc is multi-valued because of failure, partial failure, maintenance, and so forth Lin [19, 20]
enlarged the dynamic network into a stochastic-flow network in which each arc capacity is a discrete random
variable having several possible integer values. He computed the reliability that a specified amount of flow can
be simultaneously sent from s to t through multiple k disjoint minimal paths within a given time horizon. Lin
proposed an algorithm based on pre-searched k disjoint minimal paths to search all minimal capacity vectors
that fulfill the requirements of flow units and time horizon. The reliability can then be calculated in terms of
these minimal capacity vectors. Recently, Yeh [28] presents an algorithm to speed up the search of all minimal
capacity vectors based on depth-first search.

In real-world network systems, data are transmitted in terms of flows (i.e., all disjoint and non-disjoint
minimal paths simultaneously). For instance, in an emergency evacuation, evacuees must move to a safety area
as quickly as possible. Restricting the movements of evacuees along specified k disjoint paths only is unrealistic.
This article is focused on computing the probability distribution of the least possible time needed by the network
system to successfully transmit a given amount of data from s to t. The main contribution of this work is it
evaluates the distribution of the least possible time of a quickest flow from the viewpoint of flow, rather than
of paths, contrary to what most of existing literature does. For brevity, we will simply refer to quickest time as
the least possible time for a feasible dynamic flow to transmit a given flow value from s to t in the quickest flow
problem.

Rather than examining each capacity vector one by one, a decomposition algorithm is presented to divide
the state space of capacity vectors into disjoint partitions. Each partition is bounded by an upper vector
and a lower vector so that all elements in the partition have an identical quickest time. As a result, the
probability of each partition can be directly calculated by its upper and lower bounding vectors. In addition to the
distribution of quickest time, performance indexes, such as expected quickest time and the probability/reliability
that the quickest time is no larger than a specified time threshold, can be established efficiently. For a large
network system, the proposed algorithm is modified to approximate the probability distribution of quickest time
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with an acceptable tolerance within a satisfactory execution time. Existing literature evaluates the reliability
that the specified amount of flow can be sent from s to t via multiple pre-specified k disjoint minimal paths
within a given time horizon. By contrast, the proposed algorithm is, to the best of our knowledge, a pioneering
one that evaluates the reliability problem of a stochastic-flow network from the viewpoint of system flows. We
note here that the quickest transshipment problem is much more difficult than the quickest flow problem [11].
Thus, the proposed algorithms are not suitable for the quickest transshipment problem.

The remainder of this paper is organized as follows. Section 2 introduces the network flow models. Section 3
presents algorithms to compute and approximate the probability distribution of quickest time. Section 4 conducts
computational experiments, and Section 5 contains concluding remarks.

2. Network flow models

A network G = (N , A) consists of a set N of n nodes and a set A of m directed arcs. Let the source s and
the sink t be two distinguished nodes in N . Each arc e in A is weighted with a capacity ce and a free-flow
transit time τe. The capacity ce is the maximum amount of data that can be transmitted on arc e per unit
time. Assume arc e is directed from node u to node v. If no flow occurs on arc e and one unit of flow in node
u is sent along arc e at time τ , then it arrives at node v at time τ + τe.

2.1. Static flows

For a node u ∈ N , let AO(u) ⊆ A denote the set of arcs in A that is directed out of u. Similarly, let AI(u) ⊆ A
denote the set of arcs in A that is directed into u. A static flow f on G is a real-valued function f on arc set A
that satisfies the following flow conservation constraints (2.1) and (2.2) and capacity constraints (2.3).

∑
e∈AO(s)

f(e) −
∑

e∈AI(s)

f(e) =
∑

e∈AI(t)

f(e) −
∑

e∈AO(t)

f(e) (2.1)

∑
e∈AO(u)

f(e) −
∑

e∈AI (u)

f(e) = 0, for u ∈ N\{s, t} (2.2)

0 ≤ f(e) ≤ ce, for e ∈ A. (2.3)

The value |f | =
∑

e∈AO(s)

f(e) − ∑
e∈AI (s)

f(e) of flow f is the net flow leaving source node s. A maximum flow is

a flow that has the largest value among all flows. In case each arc e is weighted with we, which denotes a cost
per unit of flow through e, the cost of a flow f is defined as

∑
e∈A

we f(e). A min-cost max-flow problem searches

a maximum flow with the smallest possible cost.

2.2. Dynamic flows

A dynamic flow is defined on network G = (N, A) with a finite time horizon T . The time itself can be either
discrete or continuous. This paper focuses on the discrete time case. Time horizon T is the time until which the
flow can travel in the network. It defines the set Γ = {0, 1, . . . , T } of the considered time moments. For e ∈ A
and τ ∈ Γ , a dynamic flow is a function h on A × Γ that satisfies the following constraints:

T∑
τ=0

∑
e∈AO(s)

h(e, τ) −
T∑

τ=0

∑
e∈AI (s),τ�τe

h(e, τ − τe) =
T

Σ
τ=0

∑
e∈AI(t),τ�τe

h(e, τ − τe) −
T∑

τ=0

∑
e∈AO(t)

h(e, τ) (2.4)

∑
e∈AO(u)

h(e, τ) −
∑

e∈AI (u),τ�τe

h(e, τ − τe) = 0, for u ∈ N\{s, t}, τ ∈ Γ (2.5)

0 ≤ h(e, τ) ≤ ce, for e ∈ A, τ ∈ Γ. (2.6)
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Constraints (2.4) mean the net flow leaving source node s during the T periods equals the net flow arriving at
sink node t within the time interval. Constraints (2.5) assert that for each intermediate node u and each time τ ,
the amount of flow that leaves u at time τ is equal to the amount that enters u at time τ . Constraints (2.6)

restrict the flow along an arc that cannot exceed its capacity. Let |h| =
T∑

τ=0

∑
e∈AO(s)

h(e, τ)−
T∑

τ=0

∑
e∈AI(s),τ�τe

h(e,

τ -τe) be the net flow value leaving s during periods T . The maximum dynamic flow is a dynamic flow that has
the maximum flow value |h|.

Ford and Fulkerson [10] showed that if the capacities and transit times are discrete and constant, the maximum
dynamic flow can be found by solving a min-cost flow problem on an enlarged network G+ = (N+, A+), where
N+ = N ∪{ t+} and A+ = A∪{ e+}. To be more specific, G+ comes from G by (1) adding a node t+ and an
arc e+ directed from t to t+ with dedicated capacity ce+ = ∞ and free-flow transit time τe+ = −(T + 1), and
(2) setting the cost of each arc e to its transit time τe.

2.3. Quickest flows

A quickest flow is a feasible dynamic flow that sends σ units of flow from source s to sink t within the least
possible time τσ. That is, a dynamic flow h during periods T is a quickest flow for sending σ units of from
source s to sink t if it satisfies |h| < σ when T < τσ and |h| ≥ σ when T ≥ τσ. Recall that the least possible
time τσ is named as quickest time. The phrase “sends σ units of flow from source s to sink t” will also be
omitted if its meaning is clear from the context. Burkard et al. [5] showed that the maximum amount of flow
that can be sent through a network increases with time T . Thus, one can binary search over time T and solve
a maximum dynamic flow problem at each iteration until the minimum time needed to send the given amount
of flow is found. Burkard et al. also introduced a more complicated search algorithm with better worst-case
bounds than the binary search algorithm. This strongly polynomial algorithm is constructed by embedding
the strongly polynomial algorithm of Ford and Fulkerson [10] for the maximum dynamic flow problem into
Megiddo’s parametric search framework. Recently, Lin and Jaillet [18] design a new cost-scaling algorithm for
the quickest flow problem that runs in the same time bound as Goldberg and Tarjan’s cost-scaling algorithm.
Their result shows for the first time that the quickest flow problem can be solved within the same time bound
as the min-cost flow problem.

2.4. Stochastic-flow network

In a stochastic-flow network G = (N, A), the capacity of arc ei in A is a discrete random variable Xi that
takes values on one of the ni integers x1

i , x2
i , . . . , and xni

i with probabilities p1
i , p2

i , . . . , and pni
i , respectively.

It satisfies x1
i <x2

i <, . . . , <xni
i and

∑
1≤j≤ni

pj
i = 1, for 1 ≤ i ≤ m. Let X = (X1, X2, . . . , Xm) be a capacity

vector with finite state space. An element of the state space of X is a vector xγ = (xγ1
1 , xγ2

2 , . . . , xγm
m ), where

1 ≤ γi ≤ ni. For brevity, γ is used as a simplified representation for xγ = (xγ1

1 , xγ2

2 , . . . , xγm
m ). Obviously, 1 ≤ γ

≤ n, where 1 and n respectively represent x 1 = (x1
1, x1

2, . . . , x
1
m) and xn = (xn1

1 , xn2
2 , . . . , xnm

m ), which are the
smallest and largest capacity vectors. As a result, in a stochastic-flow network, the quickest time to transmit a
specified flow value from s to t is a random variable. Let Γσ(γ) be the quickest time for sending σ units of flow
from s to t under capacity vector γ. This work explores the distribution of Γσ(γ) for 1 ≤ γ ≤ n .

3. Decomposition algorithm

To compute the probability distribution of Γ σ(γ) for 1 ≤ γ ≤ n , we decompose Ω, the state space of X , into
disjoint subsets. These disjoint subsets satisfy two properties. One is all elements in a subset have an identical
quickest time. The other is each subset is bounded by an upper vector and a lower vector so that the probability
of each subset can be calculated efficiently. Given that the changes of the quickest time are due to the changes
of capacities on critical paths/flows, our decomposition algorithm focuses on searching such critical flows.
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3.1. State space decomposition

The following important lemma is adapted from Burcard et al. [5].

Lemma 3.1. Γ σ(·) is a monotonic decreasing function. That is, for λi � λj, Γ σ(λi) ≤ Γ σ(λj).

Proof. A quickest flow that sends σ units of flow from s to t under capacity vector λj is feasible under a non-
smaller capacity vector λi. Hence, the quickest time under λi is not larger than the quickest time under λj .
Lemma 3.1 is verified. �

Let τ and τ̄ denote the smallest and largest quickest times among all capacity vectors respectively. The
following Corollary 3.2 holds obviously.

Corollary 3.2. For 1 ≤ γ ≤ n, τ ≤ Γ σ(γ) ≤ τ̄ , where τ = Γ σ(n) and τ̄ =
∑
e∈A

τe+ σ -1.

Proof. According to Lemma 3.1, the smallest quickest time happens when the capacity vector is largest. Thus,
τ =Γ σ(n). Whenever nodes s and t are connected, the very first unit of flow can be sent from s to t in

∑
e∈A

τe

time. All the σ units of flow can be sent in no more than τ̄ =
∑
e∈A

τe+ σ -1 time. �

Definition 3.3. Partition. A subset ω of Ω is a (discrete) partition from Ω with lower end vector α and
upper end vector β if it consists precisely of all vectors γ satisfying α ≤ γ ≤ β. This partition is denoted by
ω = [α, β]. The probability of ω is pr(ω) =

m

Π
i=1

∑
αi≤j≤βi

pj
i .

Note that the state space of X is denoted as Ω = [1 ,n ]. A partition ω = [α, β] is further specified as
determined if Γ σ(λi) = Γ σ(λj) for any α ≤ λi �= λj ≤ β. Otherwise, ω is undetermined. A determined
partition ω is distinguished as a τ -partition if Γ σ(γ) = τ for all γ satisfying α ≤ γ ≤ β. In the following, an
efficient decomposition algorithm is presented to divide Ω into determined and disjoint partitions so that the
probability distribution of quickest time Γ σ(γ) can be easily computed.

For a partition ω = [α, β] (initially, ω = Ω), the simple binary search method of Burkard et al. [5] is first used
to solve the quickest flow problem under upper vector β. In practice, we binary search a min-cost flow on the
enlarged network G+ = (N+, A+), where the capacity of arc ei is set to xβi

i . Let Fσ(β) = (fσ(β)1,fσ(β)2, . . . ,
fσ(β)m) be the min-cost flow under β, where fσ(β)i is the flow passing arc ei. Owing to capacity constraints,
equation (2.3), Fσ(β) ≤ xβ = (xβ1

1 , xβ2
2 , . . . , xβm

m ).

Lemma 3.4. For ω = [α, β], if Fσ(β) ≤ xα = (xα1
1 , xα2

2 , . . . , xαm
m ), then ω is a Γσ(β)-partition.

Proof. For any γ ∈ ω, Fσ(β) ≤ xα ≤ xγ implies the min-cost flow Fσ(β) is feasible under capacity vector
xγ and σ units of flow can be sent from sto t within Γσ(β) time. According to Lemma 3.1, xβ � xγ implies
Γσ(β) ≤ Γσ(γ). Hence, Γσ(γ) = Γσ(β). Lemma 3.4 holds. �

Let I = {i |fσ(β)i >xαi
i , for 1 ≤ i ≤ m} = {k1, k2, . . . , kq |1 ≤ k1 <k2 <. . . <kq ≤ m } be a set of arc index.

According to Lemma 3.4, if I is empty, then partition ω is a Γ σ(β)-partition. The probability of ω, pr(ω),
contributes to the probability that the quickest time equals Γσ(β). In case I is not empty, critical integers θi

and δi for i ∈ I are computed according to equations (3.1) and (3.2) respectively.

δi = max {j|xαi

i ≤ j < fσ(β)i} , for i ∈ I (3.1)

θi = min
{
j|fσ(β)i ≤ j ≤ xβi

i

}
, for i ∈ I. (3.2)
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Accordingly, δi is the largest capacity of ei that is smaller than fσ(β)i, and θi is the smallest capacity of ei

that is not smaller than fσ (β)i. Namely, δi and θi are two successive capacities of arc ei that satisfy

xαi
i ≤ δi<fσ(β)i ≤ θi ≤ xβi

i (3.3)

We note here that capacities δi and θi of arc ei play critical roles in our decomposition algorithm. To
divide ω = [α, β] into disjoint sub-partitions, Y i = {xγi

i |xαi
i ≤ xγi

i ≤xβi
i } is employed to denote the set of

capacities of arc ei, 1≤ i ≤ m and represent ω by Y 1 × Y 2 × . . . × Y m. Let Yi = {xγi
i |xαi

i ≤ xγi
i ≤ δi} and

Yi = {xγi
i |θi ≤ xγi

i ≤ xβi
i }. According to equation (3.3), Y i = Yi ∪Yi and Yi ∩Yi = ∅. With respect to index

set I, partition ω = [α, β] = Y 1 × Y 2 × . . . × Y m is divided into disjoint sub-partitions ω1, ω2, . . . , ωq, and
ωq+1 according to the following procedure.

Division procedure:

ω = Y 1 × . . . × Y k1 × . . . × Y m

= Y 1 × . . . × Yk1 × . . . × Y n ∪ Y 1 × . . . × Yk1 × . . . × Y m

= ω1 ∪ Y 1 × . . . × Yk1 × . . . × Y m

= ω1 ∪ Y 1 × . . . × Yk1 × . . . × Yk2 × . . . × Y m ∪ Y 1 × . . . × Yk1 × . . . × Yk2 × . . . × Y m

= ω1 ∪ ω2 ∪ Y 1 × . . . × Yk1 × . . . × Yk2 × . . . × Y m

. . .

= ω1 ∪ ω2 ∪ . . . ∪ ωq−1 ∪ Y 1 × . . . × Yk1 × . . . × Yk2 × . . . × Ykq−1 × . . . × Y m

= ω1 ∪ ω2 ∪ . . . ∪ ωq−1 ∪ Y 1 × . . . × Yk1 × . . . × Yk2 × . . . × Ykq−1 × . . . × Ykq × . . . × Y m

∪ Y 1 × . . . × Yk1 × . . . × Yk2 × . . . × Ykq−1 × . . . × Ykq × . . . × Y m

= ω1 ∪ ω2 ∪ . . . ∪ ωq−1 ∪ ωq ∪ Y 1 × . . . × Yk1 × . . . × Yk2 × . . . × Ykq−1 × . . . × Ykq × . . . × Y m

= ω1 ∪ ω2 ∪ . . . ∪ ωq−1 ∪ ωq ∪ ωq+1.

Specifically, for i = 1, ω1 = [α1, β1] = Y 1 × . . . × Yk1 × . . . × Y m, where α1 equal to α represents
vector (xα1

1 , . . . , xαk1
k1 , . . . , xαk2

k2 , . . . , xαkq
kq , . . . , xαm

m ) and β1 is vector (xβ1
1 , . . . , δk1, . . . , x

βk2
k2 , . . . , xβkq

kq , . . . , xβm
m );

for 2 ≤ i ≤ q, ωi = [αi, βi] = Y 1 × . . . × Yk1 × . . . × Yki−1 × . . . × Yki × . . . × Y m, where vector
αi is (xα1

1 , . . . , θk1, . . . , θki−1, . . . , x
αki
ki , . . . , xαm

m ) and vector βi is (xβ1
1 , . . . , xβk1

k1 , . . . , xβki−1
ki−1 , . . . , δki, . . . , x

βm
m );

for i = q + 1, ωq+1 = [αq+1, βq+1] = Y 1 × . . . × Yk1 × . . . × Ykq × . . . × Y m, where vector αq+1 is
(xα1

1 , . . . , θk1, . . . , θkq, . . . , x
αm
m ) and vector βq+1 equal to β is (xβ1

1 , . . . , xβk1
k1 , . . . , xβkq

kq , . . . , xβm
m ).

The simple stochastic-flow network G = (N, A) in Figure 1 and Table 1 is utilized to illustrate the Division
procedure. Consider σ = 2 units of flow are sent from source node 1 to sink node 4. Consider Ω = [α, β] = Ω,
where α = 1 represents x 1 = (0, 0, 0, 0, 0) and β = n represents xn = (3, 4, 4, 4, 3). The min-cost flow F2(β) =
(f2(β)1, f2(β)2, f2(β)3, f2(β)4,f2(β)5) is (0, 2, 0, 0, 2) with quickest time Γ2(β) = 4. Accordingly, arc index
set I = {i|f2(β)i >xαi

i , 1 ≤ i ≤ 5}= {2, 5}. For i = 2, δ2 = max{j |xα2
2 ≤ j<f2(β)2}= max{j|0 ≤ j <2}= 0,

θ2 = min{j |f2(β)2 ≤ j ≤xβ2
2 }= min{j |2 ≤ j ≤ 4}= 2, Y2 = {0}, and Y2 = {2,4}. Similarly, for i = 5,

δ5 = 1, θ5 = 2, Y5 = {0,1}, and Y5 = {2,3}. Sub-partitions Ω1 = [α1, β1] = Y 1 ×Y2 ×Y 3 ×Y 4 ×Y 5, where
α1 = (0, 0, 0, 0, 0) and β1 = (3, 0, 4, 4, 3); Ω2 = [α2, β2] = Y 1×Y2×Y 3×Y 4×Y5, where α2 = (0, 2, 0, 0, 0) and
β2 = (3, 4, 4, 4, 1); and ω3 = [α3, β3] = Y 1×Y2×Y 3×Y 4×Y5, where α3 = (0, 2, 0, 0, 2) and β3 = (3, 4, 4, 4, 3).
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1 4

e4

e5

e1

e2

e3

2

3

Figure 1. The illustration network.

Table 1. Capacities and transit times of arcs in Figure 1.

Arc Capacity τ ei

e1 0 1 3 2
e2 0 2 4 2
e3 0 1 2 4 3
e4 0 2 4 3
e5 0 1 2 3 4

According to the Division procedure, partitions ω1, ω2, . . . , ωq, and ωq+1 satisfy the following Lemmas 3.5
and 3.6.

Lemma 3.5. Partitions ω1, ω2, . . . , ωq, and ωq+1 are disjoint, i.e., ωi∩ ωj = ∅, for 1 ≤ i �= j ≤ q + 1.

Proof. Given that ω1 comes from ω by restricting the capacities of ek1 in Yk1, ω2 comes from ω\ω1 (i.e.,
capacities of ek1 in Yk1) by restricting the capacities of ek2 in Yk2, . . . , ω

q comes from ω\ ⋃
1≤i≤q−1

ωi by re-

stricting the capacities of ekq in Ykq. Finally, ωq+1 comes from ω\ ⋃
1≤i≤q−1

ωi by restricting the capacities of

ekq in Ykq. Thus, Lemma 3.5 holds. �
Lemma 3.6. Partition ωq+1 is a Γσ(β)−partition.

Proof. Let γ be an element of ωq+1. According to the Division procedure, for i ∈ I, θi ≤ xγi
i ≤ xβi

i ; for i /∈ I,
xαi

i ≤ xγi
i ≤ xβi

i . Due to equation (3.2) and definition of index set I, fσ(β)i ≤ θi and fσ(β)i ≤ xαi
i respectively.

As a result, Fσ(β) ≤ xγ ≤ xβ . Lemma 3.6 comes from Lemma 3.4. �

Lemma 3.6 shows that a Γ σ(β)-partition ωq+1 can be derived from ω = [α, β]. The probability of ωq+1,
pr(ωq+1), contributes to the probability that the quickest time equals Γ σ(β). However, ω1, ω2, . . ., and ωq are
not guaranteed to be determined. The proposed algorithm recursively divides each ωi(1 ≤ i ≤ q) according to
Division procedure until all partitions are determined.

3.2. Distribution of the quickest time

Let RT
σ be the probability that the quickest time to send σ flow from s to t via the stochastic-flow network

is T . To compute RT
σ , τ ≤ T ≤ τ̄ , the proposed algorithm starts at the state space Ω = [α, β] = [1, n]. It first

evaluates the quickest time Γ σ(β), searches min-cost flow Fσ(β), and lists the set of arc index I. Then it verifies
if I is empty or not. If I is empty, Ω itself is an Γσ(β)-partition. Thus, Γσ(β) = Γσ(n) = τ , and Rστ = 1. If
not, integers δi and θi, for i ∈ I, are computed according to equations (3.1) and (3.2). Finally, it divides ω = Ω
into disjoint sub-partitions ωi = [αi, βi], 1 ≤ i ≤ q + 1. Given that ωq+1 = [αq+1, βq+1] is a τ -partition, where
τ = Γσ(βq+1), Rτ

σ is updated by Rτ
σ+ pr(ωq+1). Each undetermined ωi, 1 ≤ i ≤ q, is recursively divided by the

above steps until the partitions are determined.
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Disjoint sub-partitions ωi, 1 ≤ i ≤ q+1, are stored in a storage Z. According to the Division procedure, each
ωi = [αi, βi], 1 ≤ i ≤ q+1 is derived from α, β, δi, and θi for i ∈ I, whereas δi and θi are derived from Fσ(β)
and I. To minimize the space of storage Z, a collection with respect to ω is stored instead of ω1, ω2, . . . , ωq,
and ωq+1. The collection with respect to ω is a set {α, β, Fσ(β), I, q, i}. The index i points to the first ωi to
be retrieved for further division. When ωi is retrieved, i is updated by i+1 as long as i ≤ q. When i>q, RT

σ is
updated by RT

σ + pr(ωq+1), where T = Γσ(βq+1), and the top collection on Z is discarded. The decomposition
algorithm for computing RT

σ is summarized as the following pseudo code.

Exact algorithm:

Input : G = (N, A), s, t, σ, Ω = [1 , n].

Output : RT
σ , τ ≤ Γσ(γ) ≤ τ̄ .

Steps:

1 Compute τ = Γσ(n) and τ̄ =
∑

e∈A

τe + σ−1, search Fσ(n) and arc index setI

2 Set RT
σ = 0, for τ ≤ T ≤ τ̄

3 Z = {α = 1 , β = n, Fσ(β) = Fσ(n), I, q, i = 1 }//initial collection w.r.t. Ω //
4 if I = ∅ then Rστ = 1, and top collection on Z is discarded
5 whileZ �= ∅ do

6 {Compute αi and βi according to the index i in top collection on Z

7 Set α = αi, β = βi, and ω = [α, β]
8 if i ≤ q then {Set i = i+1 //update top collection on Z//
9 Compute Γσ(β), search Fσ(β) and I

10 if I = ∅ then update RT
σ by RT

σ + pr(ω) where T = Γσ(β)
11 else Put {α, β, Fσ(β), I, q, i = 1} on top of Z

12 else {Update RT
σ byRT

σ + pr(ω) where T = Γσ(β);
13 Pop out top collection on Z }
14 }//end of step 5 while do //.

Lemma 3.7. When dividing state space Ω according to the exact algorithm until all partitions are determined,
the number of disjoint sub-partitions is upper bounded by

m

Π
i=1

ni.

Proof. The worst case happens if the lower vector and upper vector of each determined sub-partition are
identical. In such a case, each sub-partition contains one capacity vector only. There are

m

Π
i=1

ni determined

sub-partitions derived from Ω. Lemma 3.7 holds. �

Remark 3.8. In the worst case, the exact algorithm acts like a complete enumeration for all capacity vectors.
However, in the computational experiments, the running time of the exact algorithm is much shorter than the
time of the complete enumeration. This result implies that the worst case rarely happens.

Lemma 3.9. Running time of the exact algorithm is O( max[min ( log σ, fmax) m log n(m + n log n),∑
1≤i≤m

ni]
m

Π
i=1

ni), where fmax, n, and m are the value of the maximum static flow and the numbers of nodes

and arcs, respectively.

Proof. To search the quickest flow using the binary search method of Burkard et al. [5], Steps 1 and 9 take
O(min(log σ, fmax)m log n(m + nlog n)) time. According to Corollary 3.2, Step 2 needs O(

∑
e∈A

τe+ σ -1) time.

Steps 3, 4, 11, and 13 need O(m) time to discard/put a collection from/into storage Z. Steps 5 and 8 use O(1)
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time. Steps 6 and 7 take O(m) time to scan each arc once. The probability pr(ω) =
m

Π
i=1

∑
αi≤j≤βi

pj
i is the multi-

plication of the summation of probabilities between pαi

i and pβi

i for ei, Steps 10 and 12 takeO(
∑

1≤i≤m

ni) time.

Owing to Lemma 3.7, the while . . . do loop (Steps 5–14) repeats O(
m

Π
i=1

ni) times. As a result, the exact

algorithm takesO(max[min(log σ, fmax)m log n(m + nlog n),
∑

1≤i≤m

ni]
m

Π
i=1

ni) time. �

In the forthcoming computational experiments section, the exact algorithm is found to spend considerable
time for large network systems. To improve its performance, the exact algorithm is modified so that accuracy
is traded-off for execution time. The modification is made by ignoring insignificant partitions. Specifically,
partitions whose probabilities are less than a pre-specified threshold are discarded and excluded from further
division. Let tolerance be the summation of probabilities of discarded partitions. The modified method reaches
an acceptable tolerance with satisfactory execution time by decreasing the pre-specified thresholds one by one.
The modified algorithm that approximates RT

σ is listed as the following pseudo code.

Approximation algorithm:

Input : G = (N ,A), s, t, σ, Ω =[1 , n ], threshold ρ.
Output : RT

σ , τ ≤ T ≤ τ̄ .
Steps:
1 Compute τ = Γσ(n) and τ̄ =

∑
e∈A

τe+ σ -1, search Fσ(n) and arc index set I

2 Set RT
σ = 0, for τ ≤ T ≤ τ̄

3 Z = {α = 1 , β = n , Fσ(β) = Fσ(n), I, q, i = 1 }//initial collection w.r.t. Ω //
4 if I= ∅ then Rστ = 1, and top collection on Z is discarded
5 while Z �= ∅ do
6 {Compute αi and βi according to the index i in top collection on Z
7 Set α = αi, β = βi, and ω = [α, β]
8 if pr(ω) � ρ then
9 if i ≤ q then {Set i = i+ 1 //update top collection on Z//
10 Compute Γσ(β), search Fσ(β) and I
11 if I=∅ then update RT

σ byRT
σ + pr(ω) where T = Γσ(β)

12 else Put {α, β, Fσ(β), I, q, i = 1}on top of Z
13 else {Update RT

σ byRT
σ + pr(ω) where T = Γσ(β);

14 Pop out top collection on Z }
15 else Pop out top collection on Z//in case pr(ω) <ρ //
16 }//end of step 5 while . . .do //.

4. Computational experiments

To evaluate the reliability problem of a dynamic stochastic-flow network, existing algorithms [19,20,28] restrict
the transmission of demands on pre-specified k disjoint minimal paths. These algorithms are different from our
probability distribution problem in which demands are transmitted simultaneously via flows, that is, by way of
all possible minimal paths (including disjoint and non-disjoint ones). Experiences in solving multi-state network
reliability problems [13, 14] suggest that exhaustive and indirect methods are the two possible alternatives.

An exhaustive method completely enumerates all
m

Π
i=1

ni state vectors. An indirect method consists of three

steps: Step 1 searches all minimal paths; Step 2, based on all minimal paths, searches all minimal capacity
vectors that fulfill the requirements of demand and time horizon; and Step 3 uses the inclusion–exclusion
principle to evaluate RT

σ based on all minimal capacity vectors. With restrictions on k disjoint minimal paths,
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Figure 2. The testing network.

Table 2. Capacities, operation probabilities, and transit times of arcs in Figure 2.

Arc Capacity Operation probability τ ei

e1 0 1 3 5 0.05 0.05 0.05 0.85 2
e2 0 1 3 5 0.05 0.05 0.10 0.80 2
e3 0 1 2 4 0.05 0.05 0.05 0.85 3
e4 0 1 3 0.05 0.05 0.90 3
e5 0 1 3 5 0.05 0.05 0.05 0.85 2
e6 0 1 2 4 6 0.05 0.05 0.05 0.05 0.80 3
e7 0 1 2 4 0.05 0.05 0.05 0.85 3
e8 0 2 0.05 0.95 1
e9 0 1 2 4 6 0.05 0.05 0.05 0.05 0.80 2
e10 0 1 2 4 5 7 0.05 0.05 0.05 0.10 0.10 0.65 2
e11 0 1 2 4 6 0.05 0.05 0.10 0.10 0.70 4
e12 0 2 0.05 0.95 4

the methods of Lin [19,20] and Yeh [28] are available to search minimal capacity vectors in Step 2 of the indirect
method. However, to the best of our knowledge, when common arcs are present among minimal paths (i.e.,
minimal paths are not disjoint), there is no method developed to search the minimal capacity vectors. In the
following, we conduct computational experiments and compare the proposed algorithm with the exhaustive
method. The first testing network, which has 8 nodes and 12 arcs (Fig. 2), is cited from Lin [20]. Table 2 lists
the capacities, operation probabilities, and transit times of arcs. Computation results are listed in Table 3. The
following observations are made:

(1) The quickest time is set to infinite ∞ to denote that the source and sink nodes are not connected. In the
testing, the probability that source and sink are not connected is R∞

σ = 0.00029. The R∞
σ is independent

of σ. Note that the infinite quickest time is excluded from the computation of the expected quickest time.
(2) A large demand σ results in a large range of quickest time value. The expected quickest times for σ = 10, 15,

and 20 are 8.064776, 8.349875, and 8.864810, respectively. The CPU times for σ = 10, 15, and 20 are 3375,
3563, and 3828 units, respectively.

(3) The reliability/probability that the quickest time is no larger than a specified T ∗ can be evaluated by∑
T≤T∗

RT
σ . For instance, in case σ = 15, the probability that the quickest time is no larger than 10 is

R8
15 + R9

15 + R10
15 = 0.98763.

(4) In the experiments, the presented algorithm computes probability distribution in less than 4 seconds (4000
time units) for all three cases. By contrast, the execution time of the exhaustive method ranges from 345
to 402 seconds. The proposed algorithm is faster than the exhaustive method.

The benchmark network of Ford and Fulkerson [10] in Figure 3, which has 11 nodes and 21 arcs, is tested
to explore the performance of the proposed method. For simplicity, each arc has three states, which results
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Table 3. Computational results of Figure 2.

Probability RT
σ

Demand σ
10 15 20

Quickest timeT

∞ 0.000229 0.000229 0.000229
8 0.947118 0.712549 0.330472
9 0.045229 0.249909 0.545061
10 0.004956 0.025172 0.088903
11 0.001254 0.007306 0.022122
12 0.000491 0.001559 0.005369
13 0.000022 0.001543 0.004009
14 0 0.000790 0.000580
15 0.000162 0.000226 0.001194
16 0.000349 0.000017 0.000847
17 0.000186 0 0.000491
18 0.000003 0 0.000022
20 0.000162 0
21 0.000349 0
22 0.000186 0
23 0.000003 0
25 0.000162
26 0.000349
27 0.000186
28 0.000003

Expected quickest time∗ 8.064776 8.349875 8.864810

CPU time†
Proposed algorithm 3375 3563 3828
Exhaustive method‡ 345127 379681 401233

∗ The infinite quickest time is not included in the computation of expected quickest time; † The unit of CPU time is
0.001 second; ‡ There are 9216000 capacity vectors.
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Figure 3. A large network.

in a total of 321 ≈ 1010 capacity vectors. Table 4 lists the capacities, operation probabilities, and transit times
of arcs in Figure 3. Both the proposed and exhaustive methods cannot compute the probability distribution
within three hours. The RT

σ is estimated by a modified approximation algorithm. In the experiments, demand
is σ = 50, and the threshold ρ decreases from 10−10 to 10−12, 10−14, until 10−16. Results are listed in Table 5.
Observations from Table 5 are drawn as follows:

According to Table 5, a small threshold ρ results in a small tolerance and a large CPU time. In contrast
to the exact and exhaustive methods that cannot compute the probability distribution within three hours
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Table 4. Capacities, operation probabilities, and transit times of arcs in Figure 3.

Arc Capacity Operation probability τ ei

e1 0 20 50 0.01 0.05 0.94 3
e2 0 10 30 0.05 0.15 0.80 6
e3 0 10 15 0.01 0.09 0.90 8
e4 0 20 50 0.05 0.10 0.85 2
e5 0 10 15 0.01 0.05 0.94 2
e6 0 10 25 0.05 0.15 0.80 2
e7 0 15 45 0.01 0.05 0.94 1
e8 0 10 15 0.05 0.10 0.85 8
e9 0 5 10 0.01 0.05 0.94 3
e10 0 5 10 0.01 0.09 0.90 1
e11 0 10 20 0.01 0.05 0.94 3
e12 0 30 90 0.01 0.05 0.94 9
e13 0 5 10 0.05 0.15 0.80 8
e14 0 20 60 0.01 0.09 0.90 5
e15 0 5 10 0.05 0.05 0.90 1
e16 0 15 20 0.01 0.05 0.94 2
e17 0 5 10 0.05 0.15 0.80 2
e18 0 40 80 0.01 0.05 0.94 4
e19 0 5 10 0.01 0.09 0.90 1
e20 0 5 10 0.05 0.15 0.80 3
e21 0 5 10 0.05 0.10 0.85 3

Table 5. Computational results of Figure 3.

Approximated RT
50

Threshold ρ

10−10 10−12 10−14 10−16

Quickest timeT

∞ 3.625*10−5 3.701*10−5 3.705*10−5 3.705*10−5

17 3.939*10−1 3.969*10−1 3.969*10−1 3.969*10−1

18 5.893*10−1 5.866*10−1 5.866*10−1 5.867*10−1

19 3.767*10−3 3.327*10−3 3.072*10−3 3.068*10−3

20 9.698*10−3 9.838*10−3 9.996*10−3 9.997*10−3

21 5.720*10−4 5.493*10−4 5.464*10−4 5.462*10−4

22 3.032*10−4 3.017*10−4 3.008*10−4 3.008*10−4

23 7.242*10−8 3.379*10−8 1.714*10−8 1.579*10−8

24 2.370*10−10 1.188*10−9 9.410*10−10 1.982*10−9

25 2.059*10−3 2.140*10−3 2.145*10−3 2.145*10−3

26 2.133*10−4 2.576*10−4 2.615*10−4 2.616*10−4

27 4.865*10−5 5.369*10−5 5.418*10−5 5.420*10−5

28 3.080*10−9 6.163*10−8 7.081*10−8 7.181*10−8

29 0 2.000*10−11 4.790*10−10 5.850*10−10

30 0 3.000*10−12 1.030*10−10 1.470*10−10

Tolerance§ 5.329*10−5 1.124*10−6 1.586*10−8 1.560*10−10

Expected quickest time∗ 17.6471 17.6458 17.6459 17.6459

CPU time†
Approximation algorithm 76738 252209 493711 653839

Exhaustive method‡ >1.08*107 >1.08*107 >1.08*107 >1.08*107

§ Tolerance is the total probabilities of discarded partitions; ∗ The infinite quickest time is not included in the
computation of expected quickest time; † The unit of CPU time is 0.001 second; ‡ There are more than 1010 capacity

vectors, 1.08*107 CPU time is 3 hours.
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(10 800 000 CPU time), the approximation algorithm, which attains 5.329 × 10−5, 1.124 × 10−6, 1.586 × 10−8,
and 1.560 × 10−10 tolerances (summation of probabilities of discarded partitions) in 76.738, 252.209, 493.711,
and 653.839 seconds, respectively, is an acceptable alternative to estimate the probability distribution of the
quickest time.

5. Conclusions

This paper considers a dynamic stochastic-flow network in which each arc is simultaneously weighted with
capacity, transit time, and operation probability. It uses the network to present an exact algorithm that can
solve the probability distribution problem of the quickest time in transmitting a fixed amount of data from a
source node to a sink node. This work is the first one in which the transmission is via a quickest flow rather than
via disjoint quickest paths as the majority of literature does. The proposed algorithm utilizes the simple binary
search method for the quickest flow problem as suggested by Burkard et al. [5]. Efficient but sophisticated
algorithms for the quickest flow problem are available from Burkard et al. [5] and Lin and Jaillet [18]. The
expected quickest time and the probability that the quickest time is no larger than a specified time threshold
can be determined directly from the distribution of the quickest time. When solving a large network system,
the proposed algorithm can be easily modified to approximate the probability distribution of the quickest
time. The modification is made by discarding partitions whose probabilities are smaller than a pre-specified
threshold. Computational experiments verify that the approximation algorithm attains an acceptable tolerance
by decreasing the threshold one by one until a satisfactory execution time is reached.
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