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CONVERGENCE OF A PROXIMAL ALGORITHM FOR SOLVING THE DUAL
OF A GENERALIZED FRACTIONAL PROGRAM ∗
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Abstract. We propose to use the proximal point algorithm to regularize a “dual” problem of general-
ized fractional programs (GFP). The proposed technique leads to a new dual algorithm that generates
a sequence which converges from below to the minimal value of the considered problem. At each step,
the proposed algorithm solves approximately an auxiliary problem with a unique dual solution whose
every cluster point gives a solution to the dual problem. In the exact minimization case, the sequence
of dual solutions converges to an optimal dual solution. For a class of functions, including the linear
case, the convergence of the dual values is at least linear.
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1. Introduction

In this paper, we will be interested to generalized fractional programs of the form

(P ) λ∗ = inf
x∈X

max
i∈I

{
fi (x)
gi(x)

}

where I = {1, . . . ,m} ,m ≥ 1, and X a non empty subset of R
n. The functions fi and gi are defined on an open

subset K containing X , continuous and satisfy gi (x) > 0 for all x ∈ X and i ∈ I.
In the literature, several algorithms were considered for solving generalized fractional pro-

grams ([1–4,7–10,13, 16, 18, 19, 21]).
The Dinkelbach-type algorithms proposed in [9, 10] generalize Dinkelbach algorithm [11] to the multi-ratios

case. In these algorithms, the problem is reduced to a sequence of auxiliary problems.
Later, it was proposed in [13] a method based on the proximal point algorithm to surmount the difficulties

that can occur when the feasible set is unbounded or when the fractional program does not have a unique
solution.

In the same way, but by using the concept of bundle methods (see [6,15] for example), the authors proposed
in [21] new algorithms that use the bundle methods for solving generalized fractional programs. In this approach,
the auxiliary problems appearing in Dinkelbach-type algorithms are replaced by quadratic programs.
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Dual algorithms for solving GFP were introduced in [2, 3], and are based on duality approach.
The purpose of this paper is to use the proximal point algorithm to regularize a “dual” problem for generalized

fractional programs (GFP) proposed in [2]. At each step, the proposed algorithm solves approximately an
auxiliary problem with a unique pair of primal-dual solutions whose every cluster point gives a solution to
the primal and dual problems. The proposed technique leads to a new primal-dual algorithm that generates a
sequence which converges from below to the minimal value of the considered problem. For a class of problems,
including linear fractional programs, we establish that this algorithm converges at least linearly.

2. Dinkelbach-type algorithms and the proximal regularization methods

Before introducing and analyzing the dual approaches, we first recall the primal methods based on Dinkelbach
procedure ([11]) and their prox-regularized versions.

Dinkelbach-type algorithm introduced in [7,9,10] starts from an initial point x0 ∈ X and generates a sequence
{λk} by solving the parametric auxiliary problems

inf
x∈X

max
i∈I

{
fi(x) − λkgi(x)

}
where λk = max

i∈I

fi(xk)
gi(xk)

· (2.1)

The sequence {λk} is decreasing and converges at least linearly to the minimal value of (P ).
To improve the speed of convergence, an other version of the last method was introduced in [10]. The speed

of convergence may be superlinear without significant additional computational efforts. This version is based
on the same principle but solves at each iteration the following auxiliary problem

inf
x∈X

max
i∈I

{
fi(x) − λkgi(x)

gi(xk)

}
where λk = max

i∈I

fi(xk)
gi(xk)

· (2.2)

The idea of the proximal point algorithm (see for example [14]) was used in [13] to regularize the auxiliary
parametric programs generated by each one of the previous Dinkelbach-type methods. This technique is useful
when the parametric problems in Dinkelbach-type algorithms does not have unique solution or if the feasible
set is unbounded. In the prox-regularization algorithms proposed in [1, 13, 19] the generated subproblems have
unique solutions.

To describe the approach given in [13], we define for α > 0, and for all (λ, x, z) ∈ R ×X ×X the functions

J(x, λ) = inf
y∈X

max
i∈I

{fi(y) − λgi(y) + α‖x− y‖2},

Jz (x, λ) = inf
y∈X

max
i∈I

{
fi (y) − λgi (y)

gi (z)
+ α ‖x− y‖2

}
,

where ‖ . ‖ stands for the euclidean norm on R
n.

For a given sequence {ηk} of nonnegative numbers such that
∑∞

k=0

√
ηk < ∞, the prox-regularization algo-

rithm computes at iteration k a point xk+1 ∈ X such that

max
i∈I

{
fi(xk+1) − λkgi(xk+1)

}
+ α‖xk+1 − xk‖2 ≤ min{0, J(xk, λk) + ηk},

where

λk = max
i∈I

fi(xk)
gi(xk)

·

The sequence {λk} decreasingly converges to the minimal value of (P ).
As for the scaled version derived from the Dikelbach-type algorithm, a modified version of the previous

algorithm was also given in [13]. In this method one has to find xk+1 ∈ X such that

max
i∈I

{
fi(xk+1) − λkgi(xk+1)

gi(xk)

}
+ α‖xk+1 − xk‖2 ≤ min{0, Jxk

(xk, λk) + ηk},
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where

λk = max
i∈I

fi(xk)
gi(xk)

·

With this minor modification, the resulting method appears to be more efficient than the previous one.

3. Dual algorithms

The algorithms we have presented above are primal ones. In [2] Barros et al. proposed a partial dual formu-
lation of (P ) and then developed algorithms based on this description.

Next we describe these methods. For this, let

f(x) =
(
f1(x), . . . , fm(x)

)� and g(x) =
(
g1(x), . . . , gm(x)

)�
.

From the equality

max
1≤i≤m

{
fi(x)
gi(x)

}
= max

y∈Σ

{
y�f(x)
y�g(x)

}

where

Σ =

{
y ∈ R

m

∣∣∣∣∣
m∑

i=1

yi = 1, yi ≥ 0, i = 1, . . . ,m

}
,

the authors consider in [2] the following problem

(R) max
y∈Σ

c(y)

where the function c : Σ −→ R is given by

c(y) = min
x∈X

{
y�f(x)
y�g(x)

}
·

For all (λ, y) ∈ R × R
m, define the function

φ(λ, y) = min
x∈X

{y�(f(x) − λg(x))}.

The dual algorithm solves at each iteration a parametric problem of the form

max
y∈Σ

φ(λ, y). (3.1)

Below we summarize this algorithm.

Algorithm 3.1.

(1) Take y0 ∈ Σ, compute λ0 = c(y0) and let k = 0.
(2) Determine

yk+1 ∈ argmax
y∈Σ

φ(λk, y).

(3) If φ(λk, yk+1) = 0, then yk+1 is an optimal solution of (R) and λk is the optimal value, and stop.
(4) Compute λk+1 = c(yk+1), let k = k + 1 and go to 2.
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The scaled version of Algorithm 3.1 follows the same strategy used to derive the procedure (3.1). Before pre-
senting this variant we introduce for xk ∈ X the vector-valued functions fk, gk given by

fk
i (x) :=

fi(x)
gi(xk)

and gk
i (x) :=

gi(x)
gi(xk)

·

We can now define the optimization problem

(Rk) max
y∈Σ

ck(y)

where the function ck : Σ −→ R is given by

ck(y) = min
x∈X

y�fk(x)
y�gk(x)

·

For all (λ, y) ∈ R × R
m, define the function

φk(λ, y) = min
x∈X

{
y�

(
fk(x) − λgk(x)

)}
.

The scaled version of Algorithm 3.1 is described by the following procedure.

Algorithm 3.2.

(1) Take y0 ∈ Σ and x0 ∈ X . Compute λ0 = c0(y0) and let k = 0.
(2) Determine (xk+1, yk+1) ∈ X ×Σ a solution of

max
y∈Σ

min
x∈X

{
y�

(
fk(x) − λkg

k(x)
)}
.

(3) If φk(λk, yk+1) = 0, then yk+1 is an optimal solution of (Rk) and λk is the optimal value, and stop.
(4) Compute λk+1 = ck+1(yk+1), let k = k + 1 and go to 2.

The convergence of these algorithms is established under some convexity assumptions (see the next section) and
the compactness of the constraints set X .

4. The regularization of the dual problem

In this section we propose to prox-regularize the “dual” problem (R) of (P ) with the same procedure used
in [19] to regularize (P ). Observe that (R) is a continuous fractional program and so the technique used in [19]
do not directly apply.

In all what follows we will assume that the feasible set X is nonempty and the functions fi, gi : K −→ R,
i ∈ I, are continuous and satisfy one of the following assumptions:

(C1) For every i ∈ I, the function fi : K −→ R is convex on X and nonnegative on X and the func-
tion gi: K −→ R is positive and concave on X .

(C2) For every i ∈ I, the function fi : K −→ R is convex on X and the function gi: K −→ R is positive and
affine on X .

Hereafter, we consider the problem (P ) with the notations of Section 3.
Let α > 0. For λ ∈ R and y ∈ Σ, we associate to the parametric problem (3.1), the regularized problem

(R(λ, y, α)) max
z∈Σ

{φ(λ, z) − α‖z − y‖2}.

The method we propose replaces in Algorithm 3.1, the step (2) by solving the regularized auxiliary problem
(R(λk , yk, αk)). Next, we describe in detail our algorithm.
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Algorithm 4.1. Let {αk} and {ηk} be two chosen or constructed sequences of nonnegative numbers such that∑
k≥0

√
ηk/αk <∞ and

∑
k≥0 ηk <∞.

(1) Choose a point y0 ∈ Σ, calculate c0 = c(y0) and let k = 0.
(2) Find yk+1 ∈ Σ such that

φ(ck, yk+1) − αk‖yk+1 − yk‖2 ≥ max
y∈Σ

{φ(ck, y) − αk‖y − yk‖2} − ηk.

(3) Calculate ck+1 = c(yk+1), set k = k + 1 and go to 2.

Remark 4.2.

(1) In order to make sense to our algorithm, we will assume in all what follows that the following problems

c(y) = inf
x∈X

y�f(x)
y�g(x)

and φ(λ, y) = inf
x∈X

{y�(f(x) − λg(x))}

have solutions for all λ ∈ R and y ∈ Σ.
(2) Notice that if the hypothesis (C1) is satisfied, then the positivity assumption implies that c(y) ≥ 0 for all

y ∈ Σ.

Notice that the important step in Algorithm 4.1 is to solve the minimax problem

(R(ck, yk, αk)) max
y∈Σ

{
φ(ck, y) − αk‖y − yk‖2

}
.

Before analyzing the convergence and the rate of convergence of the algorithm, we will give an equivalent simpler
formulation for (R(λ, y, α)).

Let
ψ(λ, y, α) = max

z∈Σ

{
φ(λ, z) − α‖z − y‖2

}
.

First of all, recall that
φ(λ, z) = min

x∈X

{
z�

(
f(x) − λg(x)

)}
,

and remark that

z�
(
f(x) − λg(x)

) − α‖z − y‖2 = z�
(
f(x) − λg(x) + 2αy

) − α‖z‖2 − α‖y‖2.

Now, let
Ly

α,λ(x, z) = z�
(
f(x) − λg(x) + 2αy

) − α‖z‖2.

Then, it follows from these notations that

ψ(λ, y, α) = max
z∈Σ

min
x∈X

Ly
α,λ(x, z) − α‖y‖2. (4.1)

Let
Ψy

α,λ(x) = f(x) − λg(x) + 2αy.

Then we have
Ly

α,λ(x, z) = −α‖z‖2 + z�Ψy
α,λ(x). (4.2)
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Proposition 4.3. Let λ ∈ R, α > 0 and y ∈ R
m. Assume that either (C1) is fulfilled and λ ≥ 0 or (C2) is

satisfied. Then we have

ψ(λ, y, α) = inf
x∈X

μ∈R, z∈R
m

{
α‖z‖2 + μ− α‖y‖2

∣∣ Ψy
α,λ(x) − μe− 2αz ≤ 0

}
,

where e denotes the m-vector whose components are all equal to 1.

Proof. Let λ ∈ R, α > 0, y ∈ R
m and x ∈ X ; and consider the minimization problem⎧⎨

⎩
minα‖u‖2 − u�Ψy

α,λ(x)
e�u = 1,
u ≥ 0.

Observe that by assumptions, the functions fi − λgi are convex and so is the function u�Ψy
α,λ(.) for all u ∈ Σ.

Now, the Lagrangian associated to this problem is defined on R
m × R × R

m by

Ly
α,λ(u, μ, ν) = α‖u‖2 − u�Ψy

α,λ(x) + μ(e�u− 1) − ν�u,

and its dual problem is ⎧⎨
⎩

sup infu∈Rm Ly
α,λ(u, μ, ν)

μ ∈ R,
ν ≥ 0.

Let z be a critical point of Ly
α,λ(. , μ, ν). Then

∇uLy
α,λ(z, μ, ν) = 0

which implies that
2αz − Ψy

α,λ(x) + μe− ν = 0

and
z =

1
2α

(Ψy
α,λ(x) − μe+ ν).

Then
inf

u∈Rm
Ly

α,λ(u, μ, ν) = α‖z‖2 − z�Ψy
α,λ(x) + μ(e�z − 1) − ν�z.

Thus

sup
μ∈R,ν≥0

inf
u∈Rm

Ly
α,λ(u, μ, ν) = sup

z∈R
m,μ∈R, ν≥0

{
α‖z‖2 − z�Ψy

α,λ(x) + μ(e�z − 1) − ν�z

∣∣∣∣∣ z =
1
2α

(Ψy
α,λ(x) − μe+ ν))

}
.

(4.3)
Replacing Ψy

α,λ(x) by 2αz + μe− ν we get

α‖z‖2 − z�Ψy
α,λ(x) + μ(e�z − 1) − ν�z = −α‖z‖2 − μ.

So,

sup
z∈R

m

μ∈R, ν≥0

{
α‖z‖2 − z�Ψy

α,λ(x) + μ(e�z − 1) − ν�z

∣∣∣∣∣ z =
1
2α

(Ψy
α,λ(x) − μe+ ν))

}

= sup
z∈R

m

μ∈R, ν≥0

{ − α‖z‖2 − μ | Ψy
α,λ(x) − μe− 2αz + ν = 0

}
. (4.4)
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By (4.3) and (4.4), we get

sup
μ∈R,ν≥0

inf
u∈Rm

Ly
α,λ(u, μ, ν) = sup

z∈R
m

μ∈R, ν≥0

{ − α‖z‖2 − μ | Ψy
α,λ(x) − μe− 2αz + ν = 0

}

= sup
z∈R

m, μ∈R

{ − α‖z‖2 − μ | Ψy
α,λ(x) − μe− 2αz ≤ 0

}
(4.5)

= − inf
z∈R

m, μ∈R

{
α‖z‖2 + μ | Ψy

α,λ(x) − μe− 2αz ≤ 0
}
. (4.6)

Using ([17], Cor. 28.2.2 and Thm. 28.4), we get

sup
μ∈R

ν≥0

inf
u∈Rm

Ly
α,λ(u, μ, ν) = min

e�u=1
u≥0

{
α‖u‖2 − u�Ψy

α,λ(x)
}

= min
u∈Σ

{
α‖u‖2 − u�Ψy

α,λ(x)
}
. (4.7)

Then using (4.6) and (4.7), we obtain

min
u∈Σ

{
α‖u‖2 − u�Ψy

α,λ(x)
}

= − inf
z∈R

m, μ∈R

{
α‖z‖2 + μ | Ψy

α,λ(x) − μe− 2αz ≤ 0
}
.

Therefore,

max
u∈Σ

{ − α‖u‖2 + u�Ψy
α,λ(x)

}
= inf

z∈R
m, μ∈R

{
α‖z‖2 + μ | Ψy

α,λ(x) − μe− 2αz ≤ 0
}
. (4.8)

Since the function x 
−→ −α‖u‖2+u�Ψy
α,λ(x) is convex for all u ∈ Σ, and the function u 
−→ −α‖u‖2+u�Ψy

α,λ(x)
is concave for all x ∈ X ; and the sets X and Σ are convex and Σ is compact, then Sion’s theorem ([20], Thm. 3.4
and Cor. 3.3) implies that

min
x∈X

max
u∈Σ

{ − α‖u‖2 + u�Ψy
α,λ(x)

}
= max

u∈Σ
min
x∈X

{ − α‖u‖2 + u�Ψy
α,λ(x)

}
.

It follows from (4.1), (4.2) and (4.8) that

ψ(λ, y, α) + α‖y‖2 = min
x∈X

max
u∈Σ

{ − α‖u‖2 + u�Ψy
α,λ(x)

}
= min

x∈X
inf

z∈R
m, μ∈R

{
α‖z‖2 + μ | Ψy

α,λ(x) − μe− 2αz ≤ 0
}

= inf
x∈X

z∈R
m, μ∈R

{
α‖z‖2 + μ | Ψy

α,λ(x) − μe− 2αz ≤ 0
}
.

Therefore
ψ(λ, y, α) = inf

x∈X
z∈R

m, μ∈R

{
α‖z‖2 + μ− α‖y‖2 | Ψy

α,λ(x) − μe− 2αz ≤ 0
}
. (4.9)

�

Now we present an equivalent ordinary convex problem to (R(λ, y, α)).

Proposition 4.4. Let λ ∈ R, α > 0 and y ∈ R
m. Assume that either C1 is fulfilled and λ ≥ 0 or C2 is satisfied.

Let (x̄, μ̄, z̄) ∈ X × R × R
m be an optimal solution of the problem

(Req(λ, y, α)) inf
x∈X

μ∈R, z∈R
m

{
α‖z‖2 + μ

∣∣ Ψy
α,λ(x) − μe− 2αz ≤ 0

}
,

Then z̄ is the solution of (R(λ, y, α)).
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Proof. Let L y
α,λ(x, μ, z, u) denotes the Lagrangian associated to (Req(λ, y, α)). Then

L y
α,λ(x, μ, z, u) = α‖z‖2 + μ+ u�(Ψy

α,λ(x) − μe− 2αz).

We start first by finding the dual of (Req(λ, y, α)). So, for all u ≥ 0 we have

inf
x∈X

μ∈R, z∈R
m

L y
α,λ(x, μ, z, u) = inf

x∈X
μ∈R, z∈R

m

{
α‖z‖2 + μ+ u�(Ψy

α,λ(x) − μe− 2αz)
}

= inf
x∈X

μ∈R, z∈R
m

{
α‖z‖2 − 2αu�z + μ(1 − u�e) + u�Ψy

α,λ(x)
}
.

Observe that for all u ∈ R
m, the function

z 
−→ α‖z‖2 − 2αu�z + μ(1 − u�e) + u�Ψy
α,λ(x)

achieves its infimum at the unique point z = u for all (x, μ) ∈ X × R. It follows that

inf
x∈X

μ∈R, z∈R
m

L y
α,λ(x, μ, z, u) = inf

x∈X, μ∈R

{
− α‖u‖2 + μ(1 − u�e) + u�Ψy

α,λ(x)
}

=

{
min
x∈X

{ − α‖u‖2 + u�Ψy
α,λ(x)

}
if u�e = 1

−∞ if u�e �= 1.

Notice that from the assumption on φ(λ, y) in Remark 4.2 we have ψ(λ, y, α) > −∞, and that from (4.9) we
have ϑ(Req(λ, y, α)) = ψ(λ, y, α)+α‖y‖2, where ϑ(Req(λ, y, α)) denotes the infimal value of (Req(λ, y, α)). So,

sup
u≥0

inf
x∈X

μ∈R, z∈R
m

L y
α,λ(x, μ, z, u) = sup

e�u=1
u≥0

inf
x∈X

{ − α‖u‖2 + u�Ψy
α,λ(x)

}
. (4.10)

Remember that,

ψ(λ, y, α) = min
x∈X

max
u∈Σ

{ − α‖u‖2 + u�Ψy
α,λ(x) − α‖y‖2

}
= max

u∈Σ
min
x∈X

{ − α‖u‖2 + u�Ψy
α,λ(x) − α‖y‖2

}
.

So, by virtue of (4.10) we have

ψ(λ, y, α) = sup
u≥0

inf
x∈X

μ∈R, z∈R
m

L y
α,λ(x, μ, z, u) − α‖y‖2

= max
u∈Σ

min
x∈X

{ − α‖u‖2 + u�Ψy
α,λ(x) − α‖y‖2

}
.

It follows that if ū is an optimal solution of the problem

sup
u≥0

inf
x∈X

μ∈R, z∈R
m

L y
α,λ(x, μ, z, u) (4.11)

then ū is an optimal solution of (R(λ, y, α)) ; and vice versa, if ū is an optimal solution of (R(λ, y, α)), then ū
is an optimal solution of (4.11).

On the other hand, by using the convexity assumptions and ([17], Thms. 28.2 and 28.4) we get

sup
u≥0

inf
x∈X

μ∈R, z∈R
m

L y
α,λ(x, μ, z, u) = inf

x∈X
μ∈R, z∈R

m

{
α‖z‖2 + μ

∣∣ Ψy
α,λ(x) − μe− 2αz ≤ 0

}
,
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and if ū is an optimal solution of (R(λ, y, α)) and (x̄, μ̄, z̄) is an optimal solution of (Req(λ, y, α)), then

sup
u≥0

inf
x∈X

μ∈R, z∈R
m

L y
α,λ(x, μ, z, u) = inf

x∈X
μ∈R, z∈R

m

L y
α,λ(x, μ, z, ū)

= sup
u≥0

L y
α,λ(x̄, μ̄, z̄, u)

= L y
α,λ(x̄, μ̄, z̄, ū).

Since the function
z 
−→ α‖z‖2 − 2αū�z + μ(1 − ū�e) + ū�Ψy

α,λ(x)

achieves its infimum at the unique point z = ū for all (x, μ) ∈ X × R, then it follows that

inf
x∈X

μ∈R, z∈R
m

L y
α,λ(x, μ, z, ū) = inf

x∈X, μ∈R

inf
z∈Rm

L y
α,λ(x, μ, z, ū)

= inf
x∈X, μ∈R

L y
α,λ(x, μ, ū, ū)

= L y
α,λ(x̄, μ̄, z̄, ū)

and z̄ = ū.
Finally, ū = z̄ is the solution of (R(λ, y, α)). �

5. Convergence and rate of convergence of Algorithm 4.1

To prove the convergence and give the rate of convergence of our algorithm, we begin by showing some
intermediate results.

Later, we will use the following notations:

δ = inf
x∈X

min
i∈I

gi(x) and Δ = sup
x∈X

max
i∈I

gi(x).

We assume that δ > 0 and Δ <∞.

5.1. Convergence of Algorithm 4.1

Lemma 5.1. Let y ∈ Σ and λ ≤ μ. Then

(1) φ(λ, y) ≥ φ(μ, y) + (μ− λ)δ,
(2) φ(μ, y) ≥ φ(λ, y) − (μ− λ)Δ.

Proof. For all y ∈ Σ and λ ≤ μ we have

(1)

φ(λ, y) = min
x∈X

{y�(f(x) − λg(x))}
= min

x∈X
{y�(f(x) − μg(x) + (μ− λ)g(x))}

Thus,

φ(λ, y) ≥ min
x∈X

{y�(f(x) − μg(x))} + (μ− λ) min
x∈X

{y�g(x)}
= φ(μ, y) + (μ− λ) min

x∈X
{y�g(x)}

≥ φ(μ, y) + (μ− λ)δ.
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(2)

φ(μ, y) = min
x∈X

{y�(f(x) − μg(x))}
= min

x∈X
{y�(f(x) − λg(x) − (μ− λ)g(x))}.

Therefore,

φ(μ, y) ≥ min
x∈X

{y�(f(x) − λg(x))} − (μ− λ)max
x∈X

{y�g(x)}
=φ(λ, y) − (μ− λ)max

x∈X
{y�g(x)}

≥φ(λ, y) − (μ− λ)Δ. �

Lemma 5.2. Let λ∗ denotes the infimal value of (P ). Then we have

(1) for all y ∈ Σ, φ(c(y), y) = 0,
(2) if the problem (P ) has an optimal solution, then φ(λ∗, y∗) = 0 and c(y∗) = λ∗ for all y∗ ∈

argmaxy∈Σ φ(λ∗, y).

Proof.

(1) For all y ∈ Σ let xy ∈ X be such that

c(y) := min
x∈X

y�f(x)
y�g(x)

=
y�f(xy)
y�g(xy)

·

Then y�(f(xy) − c(y)g(xy)) = 0. Since

φ(c(y), y) = min
x∈X

y�
(
f(x) − c(y)g(x)

)
,

then φ(c(y), y) ≤ 0.
On the other hand, from the definition of c(y) we have

c(y) ≤ y�f(x)
y�g(x)

for all x ∈ X,

which implies that y�(f(x) − c(y)g(x)) ≥ 0 for all x ∈ X . So, φ(c(y), y) ≥ 0. Finally φ(c(y), y) = 0.
(2) Let y∗ ∈ argmaxy∈Σ φ(λ∗, y). Then

φ(λ∗, y∗) = max
y∈Σ

min
x∈X

y�
(
f(x) − λ∗g(x)

)
= min

x∈X
max
y∈Σ

y�
(
f(x) − λ∗g(x)

)
= min

x∈X
max

1≤i≤m

{
fi(x) − λ∗gi(x)

}
.

It is then easy to see that φ(λ∗, y∗) = 0 when (P ) has an optimal solution. Now, let x∗ ∈ X be such that

φ(λ∗, y∗) = min
x∈X

y�∗
(
f(x) − λ∗g(x)

)
= y�∗

(
f(x∗) − λ∗g(x∗)

)
. (5.1)



CONVERGENCE OF A PROX-ALGORITHM FOR THE DUAL OF A GFP 995

Then y�∗ (f(x∗) − λ∗g(x∗)) = 0 which implies that

λ∗ =
y�∗ f(x∗)
y�∗ g(x∗)

≥ c(y∗). (5.2)

On the other hand, since φ(λ∗, y∗) = 0 then from (5.1) we get

y�∗
(
f(x) − λ∗g(x)

) ≥ 0 for all x ∈ X.

Therefore
y�∗ f(x)
y�∗ g(x)

≥ λ∗ for all x ∈ X.

This means that c(y∗) ≥ λ∗. The equality follows from (5.2). �

Remark 5.3. Let xy ∈ X be such that

c(y) := min
x∈X

y�f(x)
y�g(x)

=
y�f(xy)
y�g(xy)

·

Then even if c(y) = λ∗, xy is not necessarily a solution of (P ). This is shown by the next example.

Example 5.4. Let n = 1, m = 2, f1(x) = 1, g1(x) = x, f2(x) = x, g2(x) = 1 and X = [1, 2].
The problem (P ) is to solve

min
x∈X

max
{

1
x
, x

}
·

Then the minimal value is λ∗ = 1 and achieved at x = 1.
On the other hand, for y = (y1, y2)� ∈ Σ we have

c(y) = min
x∈X

y1 + y2x

y1x+ y2
· (5.3)

For y1 = y2 = 1/2, we have c(y) = 1 = λ∗, and

c(y) = min
x∈X

y1 + y2x

y1x+ y2

= min
x∈X

(1 + x)/2
(1 + x)/2

= 1

and the minimum is attained at all x ∈ X . This shows that a minimum of (5.3) is not necessarily a solution of
(P ) even when y is a solution of the dual.

Furthermore,

φ(λ∗, y) = min
x∈X

{y1(1 − x) + y2(x − 1)}
= min

x∈X
{(1 − x)/2 + (x− 1)/2}

= 0

where the minimum is reached at every x ∈ X . This also shows that a solution of the last problem is not
necessarily a solution of (P ) even when y is a solution of the dual.
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Lemma 5.5. Let ȳk+1 be the optimal solution of (R(ck, yk, αk)). Then, for all y ∈ Σ we have

φ(ck, ȳk+1) − φ(ck, y) ≥ −2αk〈ȳk+1 − yk, y − ȳk+1〉
= −αk‖y − yk‖2 + αk‖y − ȳk+1‖2 + αk‖yk − ȳk+1‖2.

Proof. Apply for example ([12], Prop. 2.2, p. 37) to the function −φ(ck, .). �

Lemma 5.6. Let {μk}, {βk} be sequences of nonnegative reals such that
∞∑

j=1

μj <∞,
∞∑

j=1

βj <∞,

and let {uk} be a sequence of reals such that

uk+1 ≤ (1 + μk)uk + βk.

Then, the sequence {uk} converges to some u ∈ R ∪ {−∞}.
Proof. See [19]. �

Lemma 5.7. Assume that
∑

k≥0 ηk < ∞. Then, the sequence {ck} generated by Algorithm 4.1 converges to
some c∗ ∈ R.

Proof. From the definition of yk+1 in Algorithm 4.1, we have

ψ(ck, yk, αk) − ηk ≤ φ(ck, yk+1) − αk‖yk+1 − yk‖2 ≤ φ(ck, yk+1).

From the definition of φ(ck, yk+1), we get

φ(ck, yk+1) ≤ y�k+1

(
f(x) − ckg(x)

) ∀x ∈ X.

On the other hand, since ck+1 = c(yk+1), there exists some x̂k ∈ X such that

ck+1 =
y�k+1f(x̂k)
y�k+1g(x̂k)

,

which implies that
ψ(ck, yk, αk) − ηk ≤ φ(ck, yk+1) ≤ y�k+1g(x̂k)(ck+1 − ck).

From the definition of ψ(ck, yk, αk), we deduce that ψ(ck, yk, αk) ≥ φ(ck, yk) = 0, where the last equality follows
from Lemma 5.2. Thus,

−ηk ≤ φ(ck, yk+1) ≤ y�k+1g(x̂k)(ck+1 − ck). (5.4)

It follows that
y�k+1g(x̂k)(λ∗ − ck+1) ≤ y�k+1g(x̂k)(λ∗ − ck) + ηk. (5.5)

Inequality (5.5) implies that

λ∗ − ck+1 ≤ λ∗ − ck +
ηk

y�k+1g(x̂k)
≤ λ∗ − ck +

ηk

δ
· (5.6)

It is easy to see that since

ck := c(yk) := min
x∈X

{
y�k f(x)
y�k g(x)

}
,

then ck ≤ λ∗, so that λ∗ − ck ≥ 0.
Using Lemma 5.6 with uk = λ∗− ck ≥ 0, μk = 0, βk = ηk/δ, we conclude that {λ∗− ck} converges in R. This

implies that {ck} converges to some c∗ ∈ R. �
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Lemma 5.8. For all k ∈ N, let ȳk+1 be the optimal solution of (R(ck, yk, αk)). Then

‖yk+1 − ȳk+1‖ ≤
√
ηk

αk
·

Proof. From Lemma 5.5 we have for all y ∈ Σ,

φ(ck, ȳk+1) ≥ φ(ck, y) + αk

[ − ‖y − yk‖2 + ‖y − ȳk+1‖2 + ‖ȳk+1 − yk‖2
]
. (5.7)

From the definition of yk+1, we have for all y ∈ Σ

φ(ck, yk+1) − αk‖yk+1 − yk‖2 ≥ φ(ck, y) − αk‖y − yk‖2 − ηk.

For y = ȳk+1 in the last inequality, we obtain

φ(ck, yk+1) − αk‖yk+1 − yk‖2 + αk‖ȳk+1 − yk‖2 + ηk ≥ φ(ck, ȳk+1). (5.8)

Considering this inequality and (5.7) with y = yk+1, we arrive to

ηk ≥ αk‖yk+1 − ȳk+1‖2. �

Lemma 5.9. Let ȳk be the optimal solution of (R(ck−1, yk−1, αk−1)). Then for all k ∈ N
∗ and for all y ∈ Σ,

we have

‖y − yk‖2 ≤
(

1 + 2
√
ηk−1

αk−1

)
‖y − ȳk‖2 + 2

√
ηk−1

αk−1
+
ηk−1

αk−1
·

Proof. We have
‖y − yk‖2 = ‖y − ȳk‖2 + ‖ȳk − yk‖2 + 2〈y − ȳk, ȳk − yk〉.

The Schwartz inequality implies

‖y − yk‖2 ≤ ‖y − ȳk‖2 + ‖ȳk − yk‖2 + 2‖y − ȳk‖‖ȳk − yk‖.

Using Lemma 5.8, we get

‖y − yk‖2 ≤ ‖y − ȳk‖2 +
ηk−1

αk−1
+ 2‖y − ȳk‖

√
ηk−1

αk−1
·

Remarking that ‖y − ȳk‖ ≤ 1 + ‖y − ȳk‖2, we get

‖y − yk‖2 ≤
(

1 + 2
√
ηk−1

αk−1

)
‖y − ȳk‖2 + 2

√
ηk−1

αk−1
+
ηk−1

αk−1
· �

Lemma 5.10. If λ ≤ λ∗ is such that φ(λ, y) ≤ 0 for all y ∈ Σ, then λ = λ∗.

Proof. For all y ∈ Σ, if φ(λ, y) ≤ 0 then from the assumption in Remark 4.2, there exists x ∈ X such that
φ(λ, y) = y�(f(x) − λg(x)) ≤ 0. Obviously, the last inequality is equivalent to

y�f(x)
y�g(x)

≤ λ.

Thus c(y) ≤ λ for all y ∈ Σ. It follows that
max
y∈Σ

c(y) ≤ λ. (5.9)
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Using the convexity assumptions on fi and gi, the function x 
−→ y�f(x)
y�g(x)

is quasiconvex and continuous on X

for every y ∈ Σ and the function y 
−→ y�f(x)
y�g(x)

is quasiconcave and continuous on Σ for every x ∈ X .

Combining the last results with the convexity of X and Σ and the compactness of Σ, and using Sion’s
theorem, we get

max
y∈Σ

min
x∈X

y�f(x)
y�g(x)

= min
x∈X

max
y∈Σ

y�f(x)
y�g(x)

·

On the other hand, we have

min
x∈X

max
y∈Σ

y�f(x)
y�g(x)

= min
x∈X

max
i∈I

fi(x)
gi(x)

= λ∗. (5.10)

But

max
y∈Σ

min
x∈X

y�f(x)
y�g(x)

= max
y∈Σ

c(y).

So, this equality together with (5.9) and (5.10) give λ∗ ≤ λ. The equality λ∗ = λ follows from the assump-
tion λ ≤ λ∗. �

Theorem 5.11. Suppose that
∑

k≥0 1/αk = +∞, that
∑

k≥0

√
ηk/αk < +∞ and that

∑
k≥0 ηk <∞. Then the

sequence {ck} converges to λ∗.

Proof. From (5.7) and (5.8), we obtain for all y ∈ Σ,

φ(ck, yk+1) − φ(ck, y) + αk‖y − yk‖2 + ηk ≥ αk‖y − ȳk+1‖2. (5.11)

Using Lemma 5.9 in this inequality, we obtain for all y ∈ Σ,

‖y − ȳk+1‖2 ≤
(

1 + 2
√
ηk−1

αk−1

)
‖y − ȳk‖2 + 2

√
ηk−1

αk−1
+
ηk−1

αk−1
+
ηk

αk

+
1
αk

(
φ(ck, yk+1) − φ(ck, y)

)
(5.12)

Since δ ≤ y�g(x) ≤ Δ for all y ∈ Σ and x ∈ X , and the sequence {ck} converges, by Lemma 5.7, inequalities (5.4)
give,

lim
k−→∞

φ(ck, yk+1) = 0. (5.13)

We assert that
lim

k−→∞
φ(ck, yk+1) − φ(ck, y) ≥ 0 for all y ∈ Σ. (5.14)

Indeed, assume the contrary. Then there exists ŷ ∈ Σ, ε > 0 and k0 ∈ N such that

φ(ck, yk+1) − φ(ck, ŷ) < −ε for all k ≥ k0.

So, for all k ≥ k0, inequality (5.12) with y = ŷ gives

‖ŷ − ȳk+1‖2 ≤
(

1 + 2
√
ηk−1

αk−1

)
‖ŷ − ȳk‖2 + 2

√
ηk−1

αk−1
+
ηk−1

αk−1
+
ηk

αk
− ε

αk
· (5.15)

Then

‖ŷ − ȳk+1‖2 ≤
(

1 + 2
√
ηk−1

αk−1

)
‖ŷ − ȳk‖2 + 2

√
ηk−1

αk−1
+
ηk−1

αk−1
+
ηk

αk
· (5.16)



CONVERGENCE OF A PROX-ALGORITHM FOR THE DUAL OF A GFP 999

Using the assumptions of the theorem, we have

∑
k≥1

√
ηk−1

αk−1
< +∞ and

∑
k≥1

(
2
√
ηk−1

αk−1
+
ηk−1

αk−1
+
ηk

αk

)
< +∞,

and from (5.16), Lemma 5.6 entails that {‖ŷ − ȳk‖} converges. Consequently,

∑
k≥1

√
ηk−1

αk−1
‖ŷ − ȳk‖2 < +∞.

Summing in (5.15) over k = k0, . . . , n, we get

‖ŷ − ȳn+1‖2 − ‖ŷ − ȳk0‖2 ≤ 2
n∑

k=k0

√
ηk−1

αk−1
‖ŷ − ȳk‖2

+
n∑

k=k0

(
2
√
ηk−1

αk−1
+
ηk−1

αk−1
+
ηk

αk

)
−

n∑
k=k0

ε

αk
· (5.17)

Evidently, the inequality (5.17) can not hold because of the assumption
∑

k≥0 1/αk = +∞. We then conclude
that (5.14) holds and we have

φ(c∗, y) ≤ 0 for all y ∈ Σ.

Since c∗ ≤ λ∗, Lemma 5.10 implies that c∗ = λ∗. �

Proposition 5.12. The sequence {yk} is bounded and, if the assumptions of Theorem 5.11 are fulfilled then
every accumulation point is a solution of (R).

Proof. For all k ∈ N, ck is defined by

ck = min
x∈X

y�k f(x)
y�k g(x)

·

This means that

ck ≤ y�k f(x)
y�k g(x)

for all x ∈ X.

The sequence {yk} is bounded since {yk} ⊂ Σ. Let ŷ ∈ Σ be an accumulation point of {yk}. From Theorem 5.11
the sequence {ck} converges to λ∗, and we have

λ∗ ≤ ŷ�f(x)
ŷ�g(x)

for all x ∈ X.

It follows that

λ∗ ≤ min
x∈X

ŷ�f(x)
ŷ�g(x)

≤ max
y∈Σ

min
x∈X

y�f(x)
y�g(x)

= λ∗.

Finally

min
x∈X

ŷ�f(x)
ŷ�g(x)

= max
y∈Σ

min
x∈X

y�f(x)
y�g(x)

= max
y∈Σ

c(y),

and ŷ is a solution of (R). �
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5.2. Rate of convergence of Algorithm 4.1

Hereafter, we focus on the study of the rate of convergence of Algorithm 4.1. For this, let

Γ = Σ and Γ ∗ = argmax
y∈Σ

φ(λ∗, y).

Next, we will denote by (H) the following assumption:

(H) ∃ρ > 0 ∃κ > 0 such that − φ(λ∗, y) ≥ κ dist(y, Γ ∗)2 for all y ∈ B(Γ ∗, ρ) ∩ Γ
where

B(Γ ∗, ρ) =
⋃

ȳ∈Γ∗
B(ȳ, ρ), B(ȳ, ρ) = {y ∈ R

m | ‖y − ȳ‖ ≤ ρ}

and
dist(y, Γ ∗) = inf

ȳ∈Γ∗
‖ȳ − y‖.

Proposition 5.13. Assume that f − λ∗g is a linear map, and X is a polyhedral set. Then assumption (H) is
satisfied.

Proof. Let
D = (−f + λ∗g)(X).

The support function of D is defined, for all y ∈ R
m by

δ∗(y | D) := sup
x∈X

{y�(−f(x) + λ∗g(x))}
= −φ(λ∗, y).

Theorem 19.3 in [17] implies that D is a polyhedral set. Corollary 19.2.1 in [17] then implies that δ∗(y | D) is
polyhedral. Following ([5], Thm. 3.5 and Cor. 3.6), we deduce that

∃κ > 0 such that − κ dist(y, Γ ∗) ≥ φ(λ∗, y) for all y ∈ Γ,

since for all y∗ ∈ Γ ∗, φ(λ∗, y∗) = 0. Then, for 0 < ρ < 1 and y ∈ B(Γ ∗, ρ)∩Γ , we have dist(y, Γ ∗) ≤ 1 and thus
dist(y, Γ ∗) ≥ dist(y, Γ ∗)2. It follows that

−κ dist(y, Γ ∗)2 ≥ φ(λ∗, y) for all y ∈ B(Γ ∗, ρ) ∩ Γ. �

Theorem 5.14. In addition to the hypothesis of Theorem 5.11, assume that the assumption (H) is fulfilled.
Assume on the other hand that Algorithm 4.1 is performed in its exact form with αk ≥ ᾱ > 0 for all k ∈ N. Then
the sequence {yk} converges to some solution of (R) and for αk sufficiently small, the sequence {ck} converges
linearly to λ∗.

Proof. In the case of exact minimization, we have yk+1 = ȳk+1. Let y∗ be an accumulation point of {yk}. Then
from Proposition 5.12, y∗ is an optimal solution of (R). With y = y∗ and ηk = 0 in (5.12) we obtain

‖y∗ − yk+1‖2 ≤ ‖y∗ − yk‖2 +
1
αk

(
φ(ck, yk+1) − φ(ck, y∗)

)
. (5.18)

By considering (5.4) with ηk = 0, we see that ck+1 − ck ≥ 0 for all k ∈ N, and we obtain from Lemma 5.1 and
the fact that φ(ck+1, yk+1) = 0 the inequality

φ(ck, yk+1) ≤ Δ(ck+1 − ck). (5.19)
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Since from Lemma 5.2 we have φ(λ∗, y∗) = 0, then Lemma 5.1 also gives

φ(ck, y∗) ≥ δ(λ∗ − ck). (5.20)

Taking into account the fact that by (5.20), φ(ck, y∗) ≥ 0, inequality (5.18) with (5.19) then gives

‖y∗ − yk+1‖2 ≤ ‖y∗ − yk‖2 +
Δ

ᾱ

(
ck+1 − ck

)
.

It follows from Lemma 5.6 with uk = ‖y∗−yk‖2, μk = 0 and βk = Δ(ck+1−ck)/ᾱ, that the sequence {‖y∗−yk‖}
converges. Since it has a subsequence converging to 0, the whole sequence converges to 0, and the sequence {yk}
converges to y∗.

Now, since {yk} ⊂ Γ converges to some y∗ ∈ Γ ∗, then for k large, yk ∈ B(Γ ∗, ρ) ∩ Γ . Let ỹk ∈ Γ ∗ be such
that

‖ỹk − yk‖ = dist(yk, Γ
∗).

The last equality and the assumption (H) imply that

−κ‖ỹk − yk‖2 ≥ φ(λ∗, yk).

Since φ(ck, yk) = 0, then using Lemma 5.1 and the last inequality we get

−κ‖ỹk − yk‖2 ≥ φ(λ∗, yk) ≥ Δ(ck − λ∗). (5.21)

Since ỹk ∈ Γ ∗, then φ(λ∗, ỹk) = 0 and Lemma 5.1 also gives

φ(ck, ỹk) ≥ δ(λ∗ − ck). (5.22)

On the other hand, the definition of yk+1 gives, for all y ∈ Σ

φ(ck, yk+1) − αk‖yk+1 − yk‖2 ≥ φ(ck, y) − αk‖y − yk‖2. (5.23)

Then, with y = ỹk in (5.23), and by considering (5.21), (5.22) and (5.19), we obtain

Δ(ck+1 − λ∗) +Δ(λ∗ − ck) ≥ δ(λ∗ − ck) +
αkΔ

κ
(ck − λ∗).

It follows that

ck+1 − λ∗ ≥
(
αk

κ
− δ

Δ
+ 1

)
(ck − λ∗).

Thus,
ck+1 − λ∗
ck − λ∗

≤ αk

κ
− δ

Δ
+ 1.

Therefore, if αk ≤ τ < κδ/Δ then

ck+1 − λ∗
ck − λ∗

< 1 − (
δ/Δ− τ/κ

)
< 1. �
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6. Numerical tests

In the following numerical examples, we implemented the algorithms on a personal computer equipped with
Matlab R2010A and we use Matlab subroutines linprog and quadprog.

We consider generalized linear fractional programs of the form

inf
x∈X

{
max

1≤i≤m

Aix+ ai

Bix+ bi

}

where
X = {x ∈ R

n | Cx ≤ ξ, x ≥ 0},
A�

i , B
�
i ∈ R

n and ai, bi ∈ R ; C an p×n matrix and ξ ∈ R
p. We notice by A and B (resp. a and b) the matrices

(resp. vectors) whose rows are the Ai’s and Bi’s respectively (resp. whose components are ai and bi respectively).
The data Ai, Bi, ai, bi, C and ξ are generated as follows:

• each element of the vector Ai is uniformly drawn from [−15, 45]. Similarly ai is uniformly drawn from
[−30, 0],

• each element of the vector Bi is uniformly drawn from [0, 10]. Similarly bi is drawn uniformly from [1, 5],
• the elements of the matrix C are uniformly distributed within [0, 10]. Similarly the elements of the vector ξ

are uniformly distributed within [0, 1].

The stopping criterion for Algorithm 4.1 is to reach the accuracy

y�k+1 [(A− ckB)xk+1 + a− ckb] ≤ 10−8,

where (xk+1, yk+1) is obtained from a solution of (Req(ck, yk, αk)) in Proposition 4.4.
Observe that if we set fi(x) = Aix+ ai and gi(x) = Bix+ bi for i = 1, . . . ,m, then

y� [(A− cB)x+ a− cb] = y�(f(x) − cg(x)).

It follows that if
y�k+1 [(A− ckB)xk+1 + a− ckb] ≤ 10−8,

then
y�k+1(f(xk+1) − ckg(xk+1)) ≤ 10−8.

This implies that
φ(ck, yk+1) ≤ 10−8.

We use the previous stopping criterion since (5.13) and (5.14) imply that φ(c∗, y) ≤ 0 for all y ∈ Σ which
implies, from Lemma 5.10, that c∗ = λ∗, wher c∗ = limk→∞ ck.

For algorithm [2], we use the stopping criterion φ(λk, yk+1) ≤ 10−8 where yk+1 is as defined in step (2) of
Algorithm 3.1.

During these numerical tests, the two Algorithms will be tested for different sizes (n = 20, m = 10, p = 5),
(n = 50, m = 30, p = 20), (n = 100, m = 50, p = 30), where n is the number of variables, m is the number of
ratios and p is the number of constraints (without the positivity constraints).

In these tests, we analyze the behavior of Algorithm 4.1 with respect to the regularizing parameter α on sets
of five problems, and in the same time, we test the efficiency of the two algorithms. The results are reported in
the Tables 1−3.
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Table 1. The number of iterations and times with n = 20, m = 10, p = 5.

Problems
α

10 1 10−1 10−2 10−3 Alg [2]

1
It 176 178 178 178 178 178

T(s) 10.32 10.62 10.54 10.44 10.47 4.16

2
It 278 66 35 32 31 31

T(s) 16.54 3.90 2.10 1.91 1.89 0.66

3
It 127 127 127 127 127 127

T(s) 7.68 7.65 7.59 7.63 7.59 3.11

4
It 68 58 62 62 62 62

T(s) 4.05 3.44 3.66 3.65 3.66 1.40

5
It 202 79 69 74 75 75

T(s) 12.03 4.68 4.03 4.28 4.38 1.69

Table 2. The number of iterations and times with n = 50, m = 30, p = 20.

Problems
α

10 1 10−1 10−2 10−3 Alg [2]

1
It 111 116 117 117 118 118

T(s) 42.13 43.41 43.92 44.71 43.86 5.53

2
It 123 101 101 102 102 102

T(s) 46.78 37.75 39.11 39.21 38.43 4.65

3
It 90 91 91 91 91 91

T(s) 33.26 34.51 33.67 33.24 33.21 4.56

4
It 53 46 46 47 47 47

T(s) 19.69 17.37 17.50 17.70 17.99 2.12

5
It 76 76 76 76 76 76

T(s) 27.52 28.60 27.81 27.46 28.00 3.49

Table 3. The number of iterations and times with n = 100, m = 50, p = 30.

Problems
α

10 1 10−1 10−2 10−3 Alg [2]

1
It 54 53 54 57 56 57

T(s) 83.11 81.72 83.05 87.37 85.85 3.91

2
It 39 17 17 17 17 17

T(s) 59.89 25.74 26.32 27.23 27.62 1.31

3
It 56 22 21 20 20 20

T(s) 85.73 33.55 32.38 31.15 31.07 1.49

4
It 39 11 10 9 9 9

T(s) 60.48 17.08 15.61 13.92 13.90 0.83

5
It 27 14 13 13 13 13

T(s) 42.44 22.06 19.89 19.93 20.32 1.00
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7. Conclusion and perspectives

As we can observe from these results, the number of iterations decreases when the regularization parameter
α becomes small.

On the other hand, the first algorithm requires more time than algorithm [2], in favor of auxiliary problems
with unique dual solutions. This is expected because our algorithm treats simultaneously primal and dual
variables. But at least for these sets of test problems, both algorithms solve the problems with the same number
of iterations when the regularization parameter is small.

Our future research, following this work, is to improve the performance of this algorithm. For example, in
step (1) of Algorithm 4.1 a fractional problem has to be solved, we would like to escape this step by using the
fact that the parametric problem solves a dual-primal problem which generates a primal and dual sequences.
On the other hand, the information that the algorithm generates a sequence of primal solutions {xk} is not
used at all.
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[14] O. Güler, On the Convergence of the Proximal Point Algorithm for Convex Minimization. SIAM J. Control Optim. 29 (1991)
403–419.
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