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CONVERGENCE OF A PROXIMAL ALGORITHM FOR SOLVING THE DUAL
OF A GENERALIZED FRACTIONAL PROGRAM *

MoSTAFA E1, HAFFARI'! AND AHMED RoUBI!

Abstract. We propose to use the proximal point algorithm to regularize a “dual” problem of general-
ized fractional programs (GFP). The proposed technique leads to a new dual algorithm that generates
a sequence which converges from below to the minimal value of the considered problem. At each step,
the proposed algorithm solves approximately an auxiliary problem with a unique dual solution whose
every cluster point gives a solution to the dual problem. In the exact minimization case, the sequence
of dual solutions converges to an optimal dual solution. For a class of functions, including the linear
case, the convergence of the dual values is at least linear.
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1. INTRODUCTION

In this paper, we will be interested to generalized fractional programs of the form

(P) A= inf max{fi (x)}

zex iel | gi(x)

where I = {1,...,m},m > 1, and X a non empty subset of R”. The functions f; and g; are defined on an open
subset K containing X, continuous and satisfy g; () > 0 for all z € X and i € I.

In the literature, several algorithms were considered for solving generalized fractional pro-
grams ([1-4,7-10,13,16,18,19,21]).

The Dinkelbach-type algorithms proposed in [9,10] generalize Dinkelbach algorithm [11] to the multi-ratios
case. In these algorithms, the problem is reduced to a sequence of auxiliary problems.

Later, it was proposed in [13] a method based on the proximal point algorithm to surmount the difficulties
that can occur when the feasible set is unbounded or when the fractional program does not have a unique
solution.

In the same way, but by using the concept of bundle methods (see [6,15] for example), the authors proposed
in [21] new algorithms that use the bundle methods for solving generalized fractional programs. In this approach,
the auxiliary problems appearing in Dinkelbach-type algorithms are replaced by quadratic programs.
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Dual algorithms for solving GFP were introduced in [2,3], and are based on duality approach.

The purpose of this paper is to use the proximal point algorithm to regularize a “dual” problem for generalized
fractional programs (GFP) proposed in [2]. At each step, the proposed algorithm solves approximately an
auxiliary problem with a unique pair of primal-dual solutions whose every cluster point gives a solution to
the primal and dual problems. The proposed technique leads to a new primal-dual algorithm that generates a
sequence which converges from below to the minimal value of the considered problem. For a class of problems,
including linear fractional programs, we establish that this algorithm converges at least linearly.

2. DINKELBACH-TYPE ALGORITHMS AND THE PROXIMAL REGULARIZATION METHODS

Before introducing and analyzing the dual approaches, we first recall the primal methods based on Dinkelbach
procedure ([11]) and their prox-regularized versions.
Dinkelbach-type algorithm introduced in [7,9,10] starts from an initial point xy € X and generates a sequence
{A\x} by solving the parametric auxiliary problems
. fi(z)
inf ma () — Apgi(x here A\ = max ———=- 2.1
zeX zeIX{fZ( ) kgi(0)} W bR gi(zk) (2.1)
The sequence {\;} is decreasing and converges at least linearly to the minimal value of (P).
To improve the speed of convergence, an other version of the last method was introduced in [10]. The speed
of convergence may be superlinear without significant additional computational efforts. This version is based
on the same principle but solves at each iteration the following auxiliary problem

. fi(z) = Argi(2) _ fi(zg)
Jnf max { W} where  Av =max o (2:2)

The idea of the proximal point algorithm (see for example [14]) was used in [13] to regularize the auxiliary
parametric programs generated by each one of the previous Dinkelbach-type methods. This technique is useful
when the parametric problems in Dinkelbach-type algorithms does not have unique solution or if the feasible
set is unbounded. In the prox-regularization algorithms proposed in [1,13,19] the generated subproblems have
unique solutions.

To describe the approach given in [13], we define for o > 0, and for all (\,z,z) € R x X x X the functions

(@, A) = inf max{ fi(y) — Agi(y) +allz - ylI*},

I+t )= Jak o

9i (2)
where || . || stands for the euclidean norm on R™.
For a given sequence {1} of nonnegative numbers such that Y7 \/7k < 00, the prox-regularization algo-
rithm computes at iteration k a point xx11 € X such that

Iglgf{fi(ﬂﬁkﬂ) — Megi(@ri1) } 4 ollzrgr — 2l|? < min{0, J(zx, Ak) + 71}

where
Ap = max fi(@c).
icl gz(l‘k)
The sequence {\;} decreasingly converges to the minimal value of (P).
As for the scaled version derived from the Dikelbach-type algorithm, a modified version of the previous
algorithm was also given in [13]. In this method one has to find 2341 € X such that

{fi(xk-&-l) — Migi(Try1)
gi(k)

max
el

} + ol wpgr — zpl|* < min{0, Jo, (zk, Ak) + M0}



CONVERGENCE OF A PROX-ALGORITHM FOR THE DUAL OF A GFP

where
A\ = max J107R).
el gz(l‘k)

With this minor modification, the resulting method appears to be more efficient than the previous one.

3. DUAL ALGORITHMS

987

The algorithms we have presented above are primal ones. In [2] Barros et al. proposed a partial dual formu-

lation of (P) and then developed algorithms based on this description.

Next we describe these methods. For this, let

f@) = (fi@). s fm(@) " and  g(z) = (g1 (2),...

e (| v (il

From the equality

where

E:{yeRm

the authors consider in [2] the following problem

R)  maxe(y)

where the function ¢ : X~ — R is given by

¢(y) = min { y-Trf(x) } '

yTg(x)

For all (A, y) € R x R™, define the function

|

P\ y) = ;neig{yT(f(w) - Ag(x))}.

The dual algorithm solves at each iteration a parametric problem of the form

A, y).
r;leagsb( .Y)

Below we summarize this algorithm.
Algorithm 3.1.

(1) Take yo € X, compute A\g = ¢(yo) and let k = 0.
(2) Determine

Yrt1 € argmax ¢(Ag,y).
yex

(3) If ¢(Mk,yk+1) = 0, then yr41 is an optimal solution of (R) and Ay is the optimal value, and stop.

(4) Compute A\p41 = ¢(yg+1), let k =k + 1 and go to 2.

L gm(2)) "
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The scaled version of Algorithm 3.1 follows the same strategy used to derive the procedure (3.1). Before pre-
senting this variant we introduce for 2, € X the vector-valued functions f*, g* given by

k fi(z) K gi()
() = and g; (x) := .
We can now define the optimization problem
k k
(R%) max ¢ (v)

k

where the function ¢® : X — R is given by

T rk
0 =1 ey

For all (\,y) € R x R™, define the function
oF (N y) = min {y" (f*(z) = Ag"(2))}-
The scaled version of Algorithm 3.1 is described by the following procedure.

Algorithm 3.2.

(1) Take yp € ¥ and 2° € X. Compute \g = c¥(yo) and let k = 0.
(2) Determine (zj41,yr+1) € X x X a solution of
T (kN oy
maxmin {y" (f*(z) - Mg" (@)}

(3) If ¢* (Mg, yrt1) = 0, then yiyq is an optimal solution of (R*) and A is the optimal value, and stop.
(4) Compute A\gi1 = 1 (ypi1), let k =k +1 and go to 2.

The convergence of these algorithms is established under some convexity assumptions (see the next section) and
the compactness of the constraints set X.

4. THE REGULARIZATION OF THE DUAL PROBLEM

In this section we propose to prox-regularize the “dual” problem (R) of (P) with the same procedure used
in [19] to regularize (P). Observe that (R) is a continuous fractional program and so the technique used in [19]
do not directly apply.

In all what follows we will assume that the feasible set X is nonempty and the functions f;,¢9; : K — R,
i € I, are continuous and satisfy one of the following assumptions:

(C1) For every ¢ € I, the function f; : K —— R is convex on X and nonnegative on X and the func-
tion g;: K — R is positive and concave on X.

(C2) For every i € I, the function f; : K — R is convex on X and the function g;: K — R is positive and
affine on X.

Hereafter, we consider the problem (P) with the notations of Section 3.
Let @ > 0. For A € R and y € X, we associate to the parametric problem (3.1), the regularized problem

(R(Ay,a))  max{d(A z) —allz — yll*}-

The method we propose replaces in Algorithm 3.1, the step (2) by solving the regularized auxiliary problem
(R(Ak, Yk, k). Next, we describe in detail our algorithm.



CONVERGENCE OF A PROX-ALGORITHM FOR THE DUAL OF A GFP 989

Algorithm 4.1. Let {ax} and {7} be two chosen or constructed sequences of nonnegative numbers such that

> k>0 V/ak < oo and s < 00.

(1) Choose a point yp € X, calculate cg = ¢(yo) and let k& = 0.
(2) Find yg4+1 € X such that

9(cis yrn) = arllyir = yill® = max{g(er, y) — anlly = yill*} = me.
(3) Calculate cxy1 = ¢(yr+1), set k =k + 1 and go to 2.

Remark 4.2.

(1) In order to make sense to our algorithm, we will assume in all what follows that the following problems

T X
-k

and  ¢(\,y) = inf {y" (f(x) — Ag())}

have solutions for all A € R and y € X.
(2) Notice that if the hypothesis (C1) is satisfied, then the positivity assumption implies that c¢(y) > 0 for all
y e X

Notice that the important step in Algorithm 4.1 is to solve the minimax problem
(Rlewsyis ) maxx {ler, y) = anlly — vl *}-

Before analyzing the convergence and the rate of convergence of the algorithm, we will give an equivalent simpler
formulation for (R(\,y, «)).
Let

YAy, @) = max {$(A, 2) - allz - y||*}.

First of all, recall that
¢(A, 2) = min {27 (f(z) - Ag(2)) },

zeX

and remark that
2T (f(2) = Ag(2)) — allz —ylI> = 2" (f(z) — Ag(@) + 2ay) — ol 2] — o).

Now, let
LY\ (2,2) = 2T (f(2) — Ag(2) + 2ay) — af =%

Then, it follows from these notations that

YAy, @) = maxmin L, (, 2) — afly|*. (4.1)

Let
v \(x) = f(z) — Ag(x) + 2ay.

Then we have
LY \(w,2) = —al|z])> + 2 T8 (). (4.2)
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Proposition 4.3. Let A € R, a« > 0 and y € R™. Assume that either (C1) is fulfilled and X > 0 or (C2) is
satisfied. Then we have

vOpa) = i {allz)?+ - aly? | 2 ,@) - pe - 20z <0},
. ;
HER, z€R™
where e denotes the m-vector whose components are all equal to 1.

Proof. Let A€ R, a >0,y € R"™ and z € X ; and consider the minimization problem

min afjul|* — u Y | ()
elu=1,

u > 0.

Observe that by assumptions, the functions f; — A\g; are convex and so is the function uTy'/i” \(.) for all w e X.
Now, the Lagrangian associated to this problem is defined on R™ x R x R™ by

L4 (w1, v) = al|ul]? — " (@) + pleTu—1) v,

and its dual problem is
sup infyerm LY, 5 (u, 1, v)
pER,
v >0.

Let z be a critical point of £, , (., x,v). Then
VHEZ,A(z, pu,v) =0

which implies that
2002 =W \(x) +pe —v =0

and 1
z= %(W(i’)\(x) — pe + ).
Then
inf L4, (u1,v) = a2l = 2T\ (@) + pleTz = 1) — vz
ueRm @ :
Thus
: Yy _ 2 TwyYy T, T _ i Yy o
sup inf L7 \(u,p,v) = sup allz||* =z \(x) Fple' z—1)—v z| 2= — (¥ \(x) —pe+v)),.
pER,p>QuER™ T 2ER™ UER, v>0 ’ 20 ’
(4.3)
Replacing ¥Y | (z) by 2az + pe — v we get
all2|? = 2TEY () + pleTs — 1) = 072 = —all2|* — p
So,
1
sup 3 ozl — 2T\ (o) ez~ 1)~ 02| 2 = o (o) — et u>>}
z m ’ a ’
/AEH%],RV>O
= sup {—alz)®—p| ¥, (x) — pe —2az+ v =0}. (4.4)

zER™
peER, v>0
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By (4.3) and (4.4), we get

sup inf LY \(u,p,v) = sup {—a||z\|2—/¢\W(Z’A(:E)—,ue—Qaz—i—l/:O}
pER,p>0 UER 2€R™
pnER, v>0
= - P p | WY (z) — pe — 20z <0} (4.5)
sup  { —allz]]* —p | (@) —pe —2az < .
z€R™ ueR
=— inf allz)|? 4+ p | OY (x) — pe —2az <0}, 4.6
dnt _{allsl® 4 1| 22 \(2) ~ pe — 202 < 0} (46)

Using ([17], Cor. 28.2.2 and Thm. 28.4), we get

sup inf L, (upr,v) = min fallul? —uT¥,\(2)}

NeRueR"L =
v>0 u>0
: 2 T
= min {allull* —u &Dg/\(x)} (4.7)
Then using (4.6) and (4.7), we obtain
. T .
min {allul® —u"wY ()} = - ZERI’P,fueR {allz]* +p | w2 () — pe — 20z <0},
Therefore,
2, T - 2
rgleag{ —allull* +u' ¥l \(2)} = zERl"ILI,f,uER {allzll? + p | WY \(2) — pe — 20z < 0}. (4.8)

Since the function z — —a||u||2+uTWé’7>\(x) is convex for all u € X, and the function u — —a\|u\|2—|—u—r@§)\(x)
is concave for all z € X ; and the sets X and X are convex and X' is compact, then Sion’s theorem ([20], Thm. 3.4
and Cor. 3.3) implies that

: o 2 Ty — : o 2 Ty
arcrg?gleag{ allull® + u &D%/\(w)} rgleagarcrélﬁ{ allul]* +u &D%/\(w)}.

Tt follows from (4.1), (4.2) and (4.8) that
2 . 2 T
= — v
(N vy, a) + oyl grgél)r(lrgleag{ allull® + u OM(ar;)}

= mi inf 2 144 —pe —2az <
iy A P2500) e =200 20}

. 2
xlg)f( {allzll? + p | & \(2) — pe — 22 < 0}

z€R™, ueR
Therefore
YOpa)= i allzl? + - alyl? | #2,() — pe 202 <0}, (19)
zER™, ueR

Now we present an equivalent ordinary convex problem to (R(A,y, a)).
Proposition 4.4. Let A € R, o > 0 and y € R™. Assume that either C1 is fulfilled and X\ > 0 or C2 is satisfied.
Let (Z,,2) € X x R x R™ be an optimal solution of the problem

(R0, ) inf  {allz) + p | 22 ,(2) - pe - 202 <0},
xe ’
HER, z€R™

Then Z is the solution of (R(\,y,«)).
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Proof. Let £, (x, 1, 2,u) denotes the Lagrangian associated to (R°4(),y, @)). Then

LY (o, 7 u) = af 2 + T (@0 (@) — pe — 22).

[e3

We start first by finding the dual of (R°4(\,y, «)). So, for all u > 0 we have

inf 22z = i {alls]? 4 uT (2, (@) - pe - 202)}
HER, z€eR™ HER, z€eR™

- in& {a||z\|2—2auTz+u(1 —uTe)—l—uT&T/g/\(x)}.
c :
ueﬂg,zeRm

Observe that for all u € R™, the function
zr—allz|? = 20u 2+ p(l —u'e) + u WY | (z)

achieves its infimum at the unique point z = u for all (z, u) € X x R. It follows that

inf L~ aflull? (1~ uTe) 40T, ()}

inf LY. (z,u,z,u
O"A( % ) zeX, neR

3 2 T . T
_ ;rélg{—aHuH +u' W (2)} if u'e=1
—00 if ule# 1.

Notice that from the assumption on ¢(A,y) in Remark 4.2 we have (A, y, ) > —o0o, and that from (4.9) we
have 9(R°I(\, y, ) = P(\, ¥, @) + ally||?, where 9(R°4(A, y, «)) denotes the infimal value of (R®4(\, y, ). So,

sup inf LY (x,p,z,u) = sup inf { —aful?+u"¥ (2)}. (4.10)
u>0 zeX m ’ eTu=1 zeX ’
HER, zeR u>0

Remember that,
— i 2 T 2
YAy, @) = minmax { — allul® +u V], (z) - allyl*}

— : o 2 Ty B 9
_rlfleagiré%{ aflul? +uTW (@) — ally]?}.

So, by virtue of (4.10) we have

P(\,y, ) = sup xlg)f( LY\, z,u) — olly|)?
UZONER, zeR™

— : o 2 Ty B 9
_rlfleagiré%{ aflul? +u"W (@) — ally]?}.

It follows that if @ is an optimal solution of the problem

sup inf LY (x,pz,u) (4.11)
u>0 zeX ’
~ uER, zeR™

then @ is an optimal solution of (R(\,y,«)) ; and vice versa, if 4 is an optimal solution of (R(A,y,@)), then @
is an optimal solution of (4.11).
On the other hand, by using the convexity assumptions and ([17], Thms. 28.2 and 28.4) we get

sup wlg( LY (@, p,2,u) = xlg( {a||z\|2+ﬂ | v () —ue—QozzSO},
u20 eR, seR™ LER, ZER™
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and if u is an optimal solution of (R(\,y,«)) and (Z, i, Z) is an optimal solution of (R°I(\,y, @)), then

. ; y o y =

sgp xlélg( L@, z,u) = wln& L3\, p, 2, 0)
0 , ,

u= HER, zeR™ HER, zeR™

Since the function
zr—alz||? =20 2+ p(l —a'e) + ﬂTWé’A(x)

achieves its infimum at the unique point z = @ for all (z, ) € X x R, then it follows that

S R T N
HER, z€R™
= ze;(r,lieRgg’A(x’ Hy ﬂv ﬂ)
= gg,)\(i‘vﬂazv ’lj)
and zZ = u.
Finally, @ = Z is the solution of (R(\,y, @)). O

5. CONVERGENCE AND RATE OF CONVERGENCE OF ALGORITHM 4.1

To prove the convergence and give the rate of convergence of our algorithm, we begin by showing some
intermediate results.
Later, we will use the following notations:

§ = inf ming; dA=s ().
nf ming,(z) an sup max g; ()

We assume that § > 0 and A < co.
5.1. Convergence of Algorithm 4.1
Lemma 5.1. Lety € X and A < . Then

(2) o(p,y) = d(\,y) — (k= A)A.

Proof. For all y € X and A < p we have

(1)
o\ y) = min{y " (f(2) = Ag(x))}
= min{y" (f(z) — pg(@) + (p = Ng())}
Thus,

P\, y) > grcrg)r(l{yT(f(x) —pg(@)} + (= A) grcrg)rg{yTg(w)}
= ¢(u,y) + (m—N) grcrg)rg{yTg(w)}
> o, y) + (1 — A)d.
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(2)
o(p,y) = min{y” (f(2) - pg(x))}
= min{y " (f(=) = Ag(z) = (= Ng(@))}.
Therefore,

d(py) = min{y" (f(w) = Ag(x))} — (1 = N) max{y " g(x)}
=6\ y) = (p = N\max{yg()}
Z oA y) = (n =M)A. 0
Lemma 5.2. Let A\, denotes the infimal value of (P). Then we have

(1) forally € X, ¢(c(y),y) =0,
(2) if the problem (P) has an optimal solution, then ¢(Ai,y.) = 0 and c(y.) = A« for all y. €

argmax, e x> (s, y).
Proof.
(1) For all y € X' let x, € X be such that

then §(c(y),y) < 0.
On the other hand, from the definition of ¢(y) we have

for all x € X,

Q
—~
<«
~—

A

Tg()

Ty gl

which implies that y " (f(z) — c(y)g(x)) > 0 for all z € X. So, ¢(c(y),y) > 0. Finally ¢(c(y),y) = 0.
(2) Let y. € argmax, ¢y, ¢(As,y). Then

6, ye) = maxminy T (f(2) = Ag(a)

yeX zeX
— m} T _
= minmaxy' (f(z) - Ag())
— gélg lrgniaéﬁ {fz(x) - )\*gi(x)}.

It is then easy to see that ¢(A.,y.) =0 when (P) has an optimal solution. Now, let 2* € X be such that
O(Ae,y2) = miny. (f(2) = Aug(x))
= yT (") = Aagla™)). (5.1)
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Then y (f(z*) — A\g(z*)) = 0 which implies that

ac*)

Ax =
JTg(x*) ~

> c(y®).

y. f(@*)
ylg(z*)
On the other hand, since ¢(\«, y«) = 0 then from (5.1) we get

y, (f(2) >0 forallze X.
Therefore T
yfrf(w) >\ forallz e X.
ylg(z)

This means that ¢(y.) > A.. The equality follows from (5.2).
Remark 5.3. Let x, € X be such that
.
oy fl=)
c(y) := min
) zeXx ylg(z)

Tf(fy
Tg(z

Then even if ¢(y) = A«, x, is not necessarily a solution of (P

).
y)
)-
Example 5.4. Let n =1, m =2, fi(z) =1, g1(z) = z, fa(z) =
The problem (P) is to solve
1
min max {—,x} .
zeX x

Then the minimal value is A\, = 1 and achieved at x = 1.
On the other hand, for y = (y1,2)" € ¥ we have

. Y1+ ysx
¢(y) = min ————.
z€X Y1 + Y2

For y1 = y2 = 1/2, we have ¢(y) = 1 = A, and

. Y1+ yo2x
c(y) = min ——=—
z€X Y1 + Y2

min d+a)/2
zex (1+x)/2
=1

g2(x) =1and X =

995

(5.2)

This is shown by the next example.

1,2].

(5.3)

and the minimum is attained at all z € X. This shows that a minimum of (5.3) is not necessarily a solution of

(P) even when y is a solution of the dual.
Furthermore,

¢(Ae,y) = min{y: (1 —z) + gz — 1)}
= min {(1 - 2)/2+ (z - 1)/2}
=0

where the minimum is reached at every x € X. This also shows that a solution of the last problem is not

necessarily a solution of (P) even when y is a solution of the dual.
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Lemma 5.5. Let g1 be the optimal solution of (R(ck,yk,ar)). Then, for all y € X we have
ek, Yrr1) — dler,y) = =200 (Frr1 — Yks Y — Yrr1)
= —ally — wkll® + arlly = Gea I” + anllye — e l®-
Proof. Apply for example ([12], Prop. 2.2, p. 37) to the function —¢(cg,.). O

Lemma 5.6. Let {ur}, {0k} be sequences of nonnegative reals such that

oo oo
Z,U/j < 00, Zﬁj < 00,
j=1 j=1

and let {uy} be a sequence of reals such that
g1 < (14 pr)ug + B
Then, the sequence {uy} converges to some v € RU {—o0}.
Proof. See [19]. O

Lemma 5.7. Assume that ), .,nx < 0o. Then, the sequence {cy} generated by Algorithm 4.1 converges to
some ¢y € R. -

Proof. From the definition of y41 in Algorithm 4.1, we have

V(chs Y, k) — Mk < B(chy Yrr1) — arllyrrs — vll® < d(chs Yrr1)-

From the definition of ¢(ck, yr+1), we get

Plers yhs1) < yis (F(2) —crglz)) Vo e X.

On the other hand, since ¢x+1 = ¢(yk+1), there exists some 7y, € X such that

P y/%-lf(?k)’
Yir19(Zk)
which implies that
(cr, Y k) — M < D(cks Yrr1) < Ypy19(Er)(Crer — cr).
From the definition of ¥ (ck, y, ), we deduce that ¥ (ck, yr, ar) > ¢(ck, yx) = 0, where the last equality follows
from Lemma 5.2. Thus,

—1k < Dy Yrr1) < Y1 9(@r) (1 — ci)- (5.4)
It follows that
Y1 9(ER) (A = cri1) < Yl 9(@8) (A — cx) + 7k (5.5)
Inequality (5.5) implies that
)\*_Ck+1g/\*_ck+—|—"77kA§/\*_Ck+n—k' (5.6)
yk+1g(-73k) g

It is easy to see that since

o0 = el = iy {

zeX

yi f(@) }
yn 9(x)
then ¢ < A4, so that A\, — ¢ > 0.

Using Lemma 5.6 with ug, = Ax — ¢ > 0, px = 0, B = /9, we conclude that {\. — ¢} converges in R. This
implies that {c;} converges to some ¢, € R. O
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Lemma 5.8. For all k € N, let gp41 be the optimal solution of (R(ck,yk,ar)). Then

_ Mk
lYk+1 — Grrall < 4/ —
\V ag

Proof. From Lemma 5.5 we have for all y € X,
¢(cr, Ihr1) = dlery) + an[ = ly =yl ® + 1y = Geea [I” + g1 — will?]- (5.7)
From the definition of yx11, we have for all y € X
O(er yrr1) = arllyrer = uill* = olew,y) — arlly = yill* = i
For y = yi+1 in the last inequality, we obtain
d(ers yri1) = arllyrrr — yell® + anllGern — yrll? +me > oler, Grr)- (5.8)
Considering this inequality and (5.7) with y = yx4+1, we arrive to
M > ok llyesr — e |l a

Lemma 5.9. Let gy, be the optimal solution of (R(ck—1,Yk—1,0k-1)). Then for all k € N* and for all y € X,
we have

Nk—1 _ Nk—1 Mk—1
Iy = el < (120 B2y g 2 2T 2,
ap_1 a1 a1

Proof. We have

I?

ly = yll® = lly — Gell® + 11Tk — vsll* + 2y — Gk, U — yi)-

The Schwartz inequality implies

ly = well® < lly — Gell® + 19k — vell* + 2lly — Gell 15 — yill-

Using Lemma 5.8, we get

_ Nk—1 . Nk—1
ly = yell* < lly — gxll® + +2lly = el :
p—1 Qp—1
Remarking that ||y — gx|| < 1+ ||y — 7%, we get
k—1 _ k—1 k—1
Iy = el < (120 B2y g 2 2T 2, 0
Qf— Qg—1  Qg—1

Lemma 5.10. If A < A, is such that ¢(\,y) <0 for ally € X, then A = A,.

Proof. For all y € X, if ¢(\,y) < 0 then from the assumption in Remark 4.2, there exists x € X such that
d(N\y) =y (f(z) — Ag(x)) < 0. Obviously, the last inequality is equivalent to
T
ny(w) <
y'g(x)
Thus ¢(y) < A for all y € X. It follows that
maxc(y) < A (5.9)

yex
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y' f(x)
yTg(x)

is quasiconcave and continuous on X for every x € X.

Using the convexity assumptions on f; and g;, the function z —— is quasiconvex and continuous on X

y' f(2)

y g(x)

for every y € X and the function y —

Combining the last results with the convexity of X and X and the compactness of X, and using Sion’s

theorem, we get

-y f(x) y'f(z)
max min = min max .
yer zeX y'g(x) wzex yeX ylg(x)

On the other hand, we have

T )
min max 2 /(@) = min max fil@) = A (5.10)
PR TR To(e) YR i)
But -
max min y f@) = max c(y).

yeX zeX y g( ) yex

So, this equality together with (5.9) and (5.10) give A. < A. The equality A, = X follows from the assump-
tion A < .. O

Theorem 5.11. Suppose that ), -, 1/cy = +00, that Y, /Mk/ow < +00 and that Y, mx < oo. Then the
sequence {ci} converges to \.. N N

Proof. From (5.7) and (5.8), we obtain for all y € X,

dcr, yrr1) — der, y) + awlly — yll* +nx > clly — G |- (5.11)

Using Lemma 5.9 in this inequality, we obtain for all y € X,

_ k— _ k— k
ly = Gesal < (1+2,/’7 1)|y—yk||2+2w/—” Ly ol T
Q1 Q1 1 A

+aik(¢<ck,ym> ~ bleny)) (5.12)

Since d < y'g(x) < Aforally € ¥ and € X, and the sequence {c;,} converges, by Lemma 5.7, inequalities (5.4)
give,
lim ¢(ck, yrs+1) = 0. (5.13)
k——o00

We assert that
klim Ok, Yrt1) — Plek,y) >0 forall y € X. (5.14)

Indeed, assume the contrary. Then there exists g € X, ¢ > 0 and ky € N such that

Oy ypt1) — O(ck, ) < —€ for all k > k.

So, for all k > kg, inequality (5.12) with y = § gives

) — g2 el Tt TR (5.15)

16— G ll? < (1 2
g1 fp—1 Qg Qg

A1

15 — s 1 < (1 12, [ B ) 19— gi)? + 2, [t 4 Ly T (5.16)
A1 a1 a1 ap

Then
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Using the assumptions of the theorem, we have

< 400 and Z ( Tt 4+ — -t nk) < 400,
= \/ Q-1 S\ Vot e

and from (5.16), Lemma 5.6 entails that {||§ — yx||} converges. Consequently,

Nk—1
Z IIy grll? < +oc.

k>1
Summing in (5.15) over k = kg, ...,n, we get
L Mk—1
1§ = Fnsall® = 11§ — Groll* < 2 Z — 19— onl?

+Z<\/Z Zk— ) zk:aik (5.17)

Evidently, the inequality (5.17) can not hold because of the assumption ), ., 1/a, = 4+00. We then conclude
that (5.14) holds and we have -
(e y) <0 for ally € X.

Since ¢, < Ay, Lemma 5.10 implies that ¢, = A.. O

Proposition 5.12. The sequence {yy} is bounded and, if the assumptions of Theorem 5.11 are fulfilled then
every accumulation point is a solution of (R).

Proof. For all k € N, ¢, is defined by

-

x = min y’fl_f(w)
2eX yy g(x)

This means that .

yi f(2)

vl 9(@)

The sequence {y;,} is bounded since {y} C X. Let § € X' be an accumulation point of {y;}. From Theorem 5.11

the sequence {ci} converges to A, and we have

J7 ()
M S ()

e < for all x € X.

for all z € X.

It follows that - -
A < min ?{ x < max min y_f(z) = A
veX §lg(z) ~ yerzex yTg(x)

Finally

g @) oy f(2)
min = max min
zeX §Tg(x) yerzex y'g(xz)

= max c(y),

and ¢ is a solution of (R). O
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5.2. Rate of convergence of Algorithm 4.1

Hereafter, we focus on the study of the rate of convergence of Algorithm 4.1. For this, let

I'=% and I'"=argmaxo(A.,y).
yex

Next, we will denote by (H) the following assumption:

(H) 3p> 03k > 0such that — ¢(\,,y) > wdist(y, [*)* forally € B(I'*, p)N T

where

B(r*,p)= |J B@.p), B@.p)={yeR™||y—gl <p}
yel™

and
dist(y, I'*) = inf [|g — vy
ist(y, ™) nf, 7 — vl

Proposition 5.13. Assume that f — \.g is a linear map, and X is a polyhedral set. Then assumption (H) is
satisfied.

Proof. Let
D= (=f+ A\g)(X).

The support function of D is defined, for all y € R™ by
§(y | D) = sg)({yT(—f(w) +Ag(2))}

Theorem 19.3 in [17] implies that D is a polyhedral set. Corollary 19.2.1 in [17] then implies that 6*(y | D) is
polyhedral. Following ([5], Thm. 3.5 and Cor. 3.6), we deduce that

Jk > 0 such that — kdist(y, I'") > ¢(A\s,y) forally € I

since for all y. € I'™*, ¢(Ax,yx) = 0. Then, for 0 < p < 1 and y € B(I'*, p) N I", we have dist(y, I'*) < 1 and thus
dist(y, I'*) > dist(y, I'*)2. Tt follows that

—rdist(y, ") > ¢(\,y) forally € B(I'*,p)NT. O

Theorem 5.14. In addition to the hypothesis of Theorem 5.11, assume that the assumption (H) is fulfilled.
Assume on the other hand that Algorithm 4.1 is performed in its exact form with a, > & > 0 for all k € N. Then
the sequence {yi} converges to some solution of (R) and for ay, sufficiently small, the sequence {cy} converges
linearly to \..

Proof. In the case of exact minimization, we have yi+1 = Jr+1. Let y. be an accumulation point of {yx}. Then
from Proposition 5.12; y, is an optimal solution of (R). With y = y. and 1, = 0 in (5.12) we obtain

1
llys — yk+1\|2 <y« — yk“2 + a_k(¢(ck»yk+l) - ¢(Ck,y*))~ (5.18)

By considering (5.4) with n, = 0, we see that cx41 — ¢ > 0 for all k € N, and we obtain from Lemma 5.1 and
the fact that ¢(ckr1,yr+1) = 0 the inequality

Ok, Y1) < Acrs1 — ck)- (5.19)
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Since from Lemma 5.2 we have ¢(\.,y.) = 0, then Lemma 5.1 also gives
O(Cly Ys) = 0(As — i) (5.20)

Taking into account the fact that by (5.20), ¢(ck, y«) > 0, inequality (5.18) with (5.19) then gives

A
e — vl < [lye — vell® + E(CkJrl — k).

It follows from Lemma 5.6 with uy = ||y« —yk||?, ux = 0 and B = A(ck41 —ck)/@, that the sequence {||y. —yx|
converges. Since it has a subsequence converging to 0, the whole sequence converges to 0, and the sequence {yy, }
converges to Y.

Now, since {yx} C I' converges to some y, € I'*, then for k large, yr € B(I'*,p) N I". Let g, € I'* be such
that

|9k — yi|| = dist(yk, ™).
The last equality and the assumption (H) imply that
— |Gk = yrll* > (e, yr)-
Since ¢(ck,yxr) = 0, then using Lemma 5.1 and the last inequality we get
—5llFk — ykll> > ¢, yr) > Alck — As). (5.21)
Since gj € I'*, then ¢(\s, ¥r) = 0 and Lemma 5.1 also gives
o(ck, Ur) = 0(Ae — k). (5.22)
On the other hand, the definition of yj41 gives, for all y € X
$er, 1) — arllyrar — yull* = Glen, y) — arlly — yull*. (5.23)

Then, with y = g, in (5.23), and by considering (5.21), (5.22) and (5.19), we obtain

A
Alcrsr — M)+ A — ) > 60 — ) + 22 (ep — M),
It follows that
AL 1
> (oS 1) (e — M)
Clk41 /\_<I€ A+)(Ck )‘)
Thus,
Ck+1 — )\* AL 1)
P2,
Ck— X K A +
Therefore, if o < 7 < kd/A then
Cht1 — A
<1-(6/A-7/r) <1 O
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6. NUMERICAL TESTS

In the following numerical examples, we implemented the algorithms on a personal computer equipped with
Matlab R2010A and we use Matlab subroutines linprog and quadprog.
We consider generalized linear fractional programs of the form

. { Az + a; }
inf { max ———

zeX | 1<i<m B;x + b;

where
X={zeR"|Cx<E x>0},

Al B € R" and a;,b; € R ; C an p x n matrix and £ € RP. We notice by A and B (resp. a and b) the matrices
(resp. vectors) whose rows are the A4;’s and B;’s respectively (resp. whose components are a; and b; respectively).
The data A;, By, a;, b;, C and £ are generated as follows:

e cach element of the vector A; is uniformly drawn from [—15,45]. Similarly a; is uniformly drawn from
[—30, 0],

e cach element of the vector B; is uniformly drawn from [0, 10]. Similarly b; is drawn uniformly from [1, 5],

e the elements of the matrix C' are uniformly distributed within [0, 10]. Similarly the elements of the vector &
are uniformly distributed within [0, 1].

The stopping criterion for Algorithm 4.1 is to reach the accuracy
Yni1 [(A = cxB)wpsr +a — cxb] < 1075,

where (211, yk+1) is obtained from a solution of (R®?(ck, yx, @ )) in Proposition 4.4.
Observe that if we set f;(z) = A;x + a; and g;(x) = B;x + b; for i = 1,...,m, then

y' (A= cB)z+a—cbl =y (f(x) - cg(z)).

It follows that if
Yni1 [(A = cxB)wpsr +a — cxb] < 1075,

then
Yoo (F(@rt1) — ceg(@igr)) < 1075,
This implies that
P(ch, Yrr1) < 1075,

We use the previous stopping criterion since (5.13) and (5.14) imply that ¢(c.,y) < 0 for all y € X which
implies, from Lemma 5.10, that ¢, = A, wher ¢, = limy_. o k.

For algorithm [2], we use the stopping criterion ¢(Ag,yx11) < 107% where yj41 is as defined in step (2) of
Algorithm 3.1.

During these numerical tests, the two Algorithms will be tested for different sizes (n = 20, m = 10, p = 5),
(n =50, m = 30, p=20), (n =100, m = 50, p = 30), where n is the number of variables, m is the number of
ratios and p is the number of constraints (without the positivity constraints).

In these tests, we analyze the behavior of Algorithm 4.1 with respect to the regularizing parameter « on sets
of five problems, and in the same time, we test the efficiency of the two algorithms. The results are reported in
the Tables 1—3.
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TABLE 1. The number of iterations and times with n = 20, m = 10, p = 5.

«
Problems 10 1 10" 102 10° | Alg 2]
: It 176 178 178 178 178 | 178
T(s) 1032 1062 1054 1044 1047 | 4.16
) It 278 66 35 32 31 31
T(s) 1654 390 210 191 189 | 0.66
X It 127 127 127 127 127 | 127
T(s) 7.68 7.65 759 7.63 759 | 3.1l
| It 65 58 62 62 62 62
T(s) 405 344 366  3.65 366 | 140
. It 202 79 690 74 75 75
T(s) 1203 468 403 428 438 | 1.69

TABLE 2. The number of iterations and times with n = 50, m = 30, p = 20.

«
Problems 10 1 10" 102 10° | Alg 2]
: It 11 116 17 117 118 | 118
T(s) 42.13 4341 43.92 4471 4386 | 553
) It 123 101 101 102 102 | 102
T(s) 46.78 37.75 39.11 3921 3843 | 4.65
X It 90 91 91 91 ol 91
T(s) 3326 3451 33.67 3324 3321 | 456
| It 53 46 46 47 47 A7
T(s) 19.60 17.37 1750 17.70 17.99 | 2.12
. It 76 76 76 76 76 76
T(s) 2752 2860 2781 27.46 2800 | 3.49

TABLE 3. The number of iterations and times with n

=100, m = 50, p = 30.

«
Problems 10 1 10! 102 10° | Alg 2]
: It 54 53 54 57 56 57
T(s) 8311 8172 83.05 87.37 8585 | 3.1
) It 39 17 17 17 17 17
T(s) 5989 2574 2632 27.23 27.62 | 131
; It 56 22 21 20 20 20
T(s) 8573 3355 3238 3L15 3107 | 149
. It 39 11 10 9 9 9
T(s) 6048 17.08 1561 13.92 13.90 | 0.83
. It 27 14 13 13 13 13
T(s) 4244 2206 19.89 19.93 2032 | 1.00

1003
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7. CONCLUSION AND PERSPECTIVES

As we can observe from these results, the number of iterations decreases when the regularization parameter
a becomes small.

On the other hand, the first algorithm requires more time than algorithm [2], in favor of auxiliary problems
with unique dual solutions. This is expected because our algorithm treats simultaneously primal and dual
variables. But at least for these sets of test problems, both algorithms solve the problems with the same number
of iterations when the regularization parameter is small.

Our future research, following this work, is to improve the performance of this algorithm. For example, in
step (1) of Algorithm 4.1 a fractional problem has to be solved, we would like to escape this step by using the
fact that the parametric problem solves a dual-primal problem which generates a primal and dual sequences.
On the other hand, the information that the algorithm generates a sequence of primal solutions {xj} is not
used at all.
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