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LOWER AND UPPER BOUNDS FOR THE LINEAR ARRANGEMENT

PROBLEM ON INTERVAL GRAPHS

Alain quilliot1, Djamal rebaine2,∗ and Hélène toussaint1

Abstract. We deal here with the Linear Arrangement Problem (LAP) on interval graphs, any interval
graph being given here together with its representation as the intersection graph of some collection
of intervals, and so with related precedence and inclusion relations. We first propose a lower bound
LB, which happens to be tight in the case of unit interval graphs. Next, we introduce the restriction
PCLAP of LAP which is obtained by requiring any feasible solution of LAP to be consistent with the
precedence relation, and prove that PCLAP can be solved in polynomial time. Finally, we show both
theoretically and experimentally that PCLAP solutions are a good approximation for LAP on interval
graphs.
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1. Introduction

Let G = (X, E) be a non oriented graph where X and E respectively denote the set of nodes and the set
of edges of G. The Linear Arrangement problem (LAP) consists in finding a one-to-one mapping φ from X to
{1, . . . , |X|} that minimizes the quantity: LAP(G, φ) = Σ(x,y)∈E |φ(y)− φ(x)|.

LAP and similar layout problems appear in different contexts, for example in Electrical Engineering and
Telecommunications [11, 20, 24], Biology [18], Human Sciences [21], Information Retrieval [2, 31] or Warehouse
Management [24]. In any case, one has to store or locate objects on a line in such a way two contiguous (adjacent)
objects remain the closest possible according to this storage strategy.

LAP was first shown to be NP -Hard for arbitrary graphs (see e.g. [7,11,12,15]) and next, for some restricted
classes of graphs such as interval graphs [9] and bipartite graphs [15]. Furthermore, non approximability re-
sults were presented in [18]. However, polynomial time algorithms were also developed for special graphs such
as trees [7], unit interval graphs [10, 32], paths, cycles, complete graphs, complete bipartite graphs and grid
graphs [13,18,19], outer-planar graphs [14], chord graphs [28], and restricted series-parallel graphs [1]. Surveys
are available in [11,18,21,27].

By the same way, general lower bounds may be found in [5,6,19], which involve linear programming formula-
tions. Different kinds of heuristics and exact algorithms (branch and bound and dynamic programming) may be
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found in [11, 21, 22, 25–27,29, 30], together with numerical experiments which make appear that, in the general
case, LAP is an extremely difficult problem. The goal of the present study is mainly to provide tools for the
handling of interval graphs.

The paper is organized as follows. Section 2 introduces notations and definitions, and also includes a refor-
mulation of LAP, which involves linear orderings of X and a notion of elementary break. In Section 3, we derive
from this reformulation a general lower bound LB(G) for any interval graph G = (X, E), which happens to
be tight for unit interval graphs and which never misses optimality by more than 2.7 % in the experiments
which we conduct on general interval graphs at the end of Section 3. In Section 4, we show how to compute,
in polynomial time, an optimal solution of the restriction CLAP of LAP which imposes any feasible solution of
LAP to be consistent with the precedence relation. This solution provides us with an upper bound PCGB* (G)
for LAP. In Section 5 we bound the gap between PCGB* (G) and LB(G) through both a theoretical result and
a numerical experiment.

2. Notations, definitions, and LAP reformulation

An undirected graph (with no loop) is denoted by G = (X,E), with node set X and edge set E. Any edge
with end-nodes x and y in X is denoted by (x, y). Since G is undirected, (x, y) and (y, x) are the same. We call
anti-edge of G any pair [x, y], x 6= y, such that (x, y) /∈ E, and we denote by Ec the set the anti-edges of G. If
A ⊆ X, then GA is the proper sub-graph induced by A into G. If x ∈ X, then N(x) denotes the neighbor set
N(x) = {y ∈ X such that (x, y) ∈ E} . In case we are simultaneously dealing with several graphs (in Sect. 5),
then we specify the related graph while using the notation N(G, x). Finally we denote by Z = A ∪Ex B any
partition of a set Z into 2 disjoint subsets A and B (eventually empty), and by ∧ and ∨, respectively the logical
operators AND and OR.

2.1. Interval graphs

Let us recall that, if S is some given set, and if F is some collection of subsets of S, then the intersection
graph induced by S and F is the undirected graph whose node set is F and whose adjacency relation is defined
by:

– f , f ’ ∈ F are adjacent in the related intersection graph if and only if f 6= f ’ and f ∩ f ’ 6= Nil, where Nil
denotes the empty subset of S, that means if and only if f and f ’ are intersecting.

An undirected graph (with no loop) G = (X, E) is an interval graph if it is possible to associate, with any node
x ∈ X, a closed interval I(x) = [o(x), d(x)] of the real line in such a way that x and y are adjacent in G if
and only if x 6= x’ and I(x) and I(y) are intersecting. This also means that if we identify X with the interval
collection I = {I(x) = [o(x), d(x)], x ∈ X} , then G is the intersection graph of this interval collection.
G is an unit interval graph if the intervals I(x) may be chosen with length equal to 1, for every x ∈ X. It is

known (see for instance [10]) that G is an unit interval graph if and only if those intervals I(x) may be chosen
in such a way that no interval is included into another one. Every time we talk here about unit interval graph,
we refer to this weaker characterization.

2.2. Interval representations

Let G = (X, E) be an interval graph. We call interval representation of G any interval collection I = {I(x) =
[o(x), d(x)], x ∈ X} such that x and y are adjacent in G if and only if x 6= x’ and I(x) and I(y) are intersecting.
In such a case, we identify X with the collection I = {I(x), x ∈ X} , and consider G as the intersection graph
of this interval collection. It is known that such an interval representation of the graph G may be chosen in
such a way that all end-points o(x), d(x), x ∈ X, are distinct. Assuming that G = (X, E) is the intersection
graph of an interval collection X and that this collection X satisfies this distinct end-point hypothesis, then we
can introduce additional relations between the nodes of G:
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Figure 1. An Interval graph and its interval representation.

Inclusion relation ⊂: x ⊂ y if o(x)>o(y) and d(y)>d(x),
Precedence relation � : x� y if d(x)<o(y),
Overlap relation Ov : x Ov y if o(x)<o(y)<d(x)<d(y).

So we assume, throughout the rest of this paper, that any interval graph G = (X, E) is defined as being the
intersection graph of an interval collection X, whose end-points are pair-wise distinct. If the relation ⊂ is empty,
then we talk about a unit interval graph. Figure 1 below shows such an interval graph G, together its related
precedence, inclusion and overlap relations.

2.3. Linear orderings

A linear ordering σ of a set X is an order relation σ (transitive, anti-symmetric) such that for any pair x, y
in X, x 6= y, we either have x σ y or y σ x. One may also view σ as a way to sequence the elements of X and
represent it as a list.

Given a linear ordering σ of a set X, and x, y, z in X, all distinct: we say that y and z are on the same side
with respect to x (according to σ) if we have either ((x σ y) ∧ (x σ z )) or ((y σ x ) ∧ (z σ x )). If, for instance
X is the set {A, B, C, D, E} and if σ is the sequence {B, E, C, D, A} then we see that:

– C and A are on the same side with respect to E;
– C and A are not on the same side with respect to D.

Given an interval collection X, whose intersection graph defines the interval graph G = (X, E), and some
linear ordering σ of X. We say that σ is precedence consistent if it is consistent to the precedence relation �,
meaning that, for any pair x, y such that x � y, then it must be the case that x σ y. Finally we denote by
x σ-can y (the canonical linear ordering between x and y) if o(x)� o(y) holds for every pair x, y ∈ X.

Example 2.1. If we refer to the graph G = (X, E) of Figure 1, then we see that: z σ-can y σ-can x σ-can t.

2.4. Reformulation of the linear arrangement problem

Let G = (X, E) be a graph, and let σ be a linear ordering of X. For any edge e = (x, y), z ∈ X – {x, y} ,
we set EB(e, z, σ) = 1 if x and y are on the same side with respect to z according to σ and 0 otherwise, and
call this quantity the elementary break of e by z according to σ.

We also set GB(G, σ) = Σe,z EB(e, z, σ) and call the quantity GB(G, σ) the Global Break of G according to σ.

Explanation. Figure 2 shows the elementary break and the Global Break values induced by some linear ordering
σ on a graph G = (X, E).
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Figure 2. Elementary breaks and Global Break of G according to σ.

Figure 3. Triangles, forks, anti-forks.

Let us denote by we denote by GB* (G) = Inf σ GB(G, σ) the optimal (minimal) Global Break value, and
let us denote by LAP* (G) = Inf φ LAP(G, φ) th optimal value for LAP. Then we may state the following
Reformulation Lemma, which will be the key for our approach for LAP:

Reformulation Lemma 0: LAP*(G) = GB*(G) + Card(E).

Proof. Given a linear ordering σ of X, together with the one-to-one mapping φ(σ) from X into {1, . . . .,
Card(X)} which naturally derives from σ. We see that:

LAP (G,φ(σ)) =Σe =(x,y)∈E jφ(σ)(y)−−φ(σ)(x)j

=Σe(1 +ΣzEB(e, z, σ))

= Card(E) +Σe,zEB(e, z, σ) = GB(G, σ) + Card(E).

Since the correspondence σ ->φ(σ) is one-to-one and since any mapping φ from X into {1, . . . , Card(X)}
may be written φ(σ) for some linear ordering σ, solving LAP means computing σ which minimizes GB(G, σ).
We conclude. �

2.5. Triangles, Forks, Anti-Forks, Strong Triangles and Forks

A triangle of G is a clique with 3 nodes. We denote by Tr(G) the number of triangles in G. A fork with root
x is any pair f = (x, [y, z]) made of a node x and an anti-edge [y, z] such that (x, y) ∈ E and (x, z) ∈ E. An
anti-fork with root z is any pair h = ((x, y), z) made of an edge (x, y) and a node z, such that [x, z] and [y, z]
∈ Ec (see Fig. 3).

Explanation. The above Figure 3 illustrates what are respectively a triangle, a fork and an anti-fork. We
notice that an anti-fork of G is nothing more than a fork in the complementary graph of G.

Let us suppose now that G = (X, E) is an interval graph. Then we say that:

– a fork f = (x, [y, z]) with root x is strong if there exists t ∈ {y, z} such that t ⊂ x (see Fig. 4).

Explanation. Figure 4 shows a collection of 3 intervals which define a strong fork.
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Figure 4. Strong fork f = (x, [y, z]).

Figure 5. Strong triangle.

– a triangle {x, y, z} is a strong triangle if at least one node in {x, y, z} is included into another one (for
instance z ⊂ x) as pictured by Figure 5.

Explanation. Figure 5 shows a collection of 3 intervals which define a strong triangle.
Those definitions allow us to state the following Lemma 2.2, which will be the basis, in Sections 3 and 4, for

the computation of lower bounds for the GB*(G) value.

Lemma 2.2. Let us consider some linear ordering σ of G, and let us set, for any x ∈ X: Fk(G, σ, x) =
Card({forks f = (x, [y, z]), such that y and z on the same side according to σ with respect to x} . Let also set:

– Fk(G, σ) = Σ xFk(G, σ, x);
– AFk(G, σ) = Card({anti-forks h = ((x, y), z), such that x and y not on the same side according to σ with

respect to z} ).

Then the following equality holds: GB(G, σ) = Tr(G) + Fk(G, σ)+ AFk(G, σ). (E1)

Proof. We know that GB(G, σ) = Σe,z EB(e, z, σ). So, in order get (E1), we consider an edge e = (x, y),
together with a node z, different from x and y, and notice that computing the number of non null EB((u, v),
w, σ) values such that {x, y, z} = {u, v, w} leads us to consider 3 cases:

– Case 1. x, y and z define a triangle.

Then EB(e, z, σ) = 1 if either x σ z σ y or y σ z σ x. In such a case no quantity EB((x, z), y, σ), EB((z, y),
x, σ) is equal to 1. We deduce that Σe=(x,y),z such that {x, y, z} is a triangle EB(e, z, σ) is equal to the number
Tr(G) of triangles of G.

– Case 2. z is adjacent to exactly one node t in {x, y} . We denote by t* the other node.

Then EB(e, z, σ) = 1 if either t σ z σ t* or t* σ z σ t. In such a case, EB((t, z), t*, σ) = 0. Conversely, if
EB((t, z), t*, σ) = 1 then we see that EB(e, z, σ) = 0. So the fork f = (t, [t*, z]) gives rise to a non null value
EB((t, t*), z, σ) + EB((t, z), t*, σ) (which is then equal to 1) if and only if t* and z are on the same side with
respect to t according to σ. We deduce:
Σe=(x,y),zadjacent to exactly 1 extremity of e EB(e, z, σ) = Fk(G, σ).

– Case 3. z is adjacent neither to x nor y, which means that h = ([x, y], z) is an anti-fork with root z. Then
the only situation in which the elementary break EB(e, z, σ) can be different from 0 corresponds to the case
when z is located between x and y according to σ (x and y are not on the same side with respect to z), that
means when h is taken into account in AFk(G, σ). Therefore, we have:
Σe=(x,y),zsuch that (x,z)/∈Eand(y,z)/∈E EB(e, z, σ) = AFk(G, σ).

According this, we have: Σe,z EB(e, z, σ) = Σe=(x,y),z such that{x,y,z} is a triangle EB(e, z, σ)
+Σe=(x,y),z adjacent to exactly 1 extremity of e EB(e, z, σ) +Σe=(x,y),z adjacent to no extremity of e EB(e, z, σ).

This proves (E1). �
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Figure 6. Illustration of the values m(x) and MC(x).

3. A Lower Bound LB for LAP in the case of INTERVAL graphs

Given an interval graph G = (X, E). Computing a linear ordering σ of X means deciding, for every node x,
which nodes of the neighbor set N(x) are going to be located before or after x according to σ. More precisely,
Lemma 0 tells us that if {x, y, z} defines a triangle, then, whatever be the way x, y and z are ordered according
to σ, {x, y, z} gives rise to exactly one not null elementary break value EB((u, v), w, σ) value such that {x,
y, z} = {u, v, w} . But, if (x, [y, z]) is a fork with root x, then it gives rise to a non null elementary break
value EB((x, u), v, σ) such that {u, v} = {y, z} if and only if y and z are on the same side with respect to
x according to σ. Intuitively, that means that, in case f = (x, [y, z]) is a fork with root x, a good ordering σ
should be, as often as possible, such that y and z are not on the same side with respect to x according to σ.

This remark leads us to denote, for any pair A, B of disjoint subsets of X, by ρ(A, B) the number of anti-edges
[x, y], with one extremity in A and the other in B, that means the cut-size over the anti-edge set induced by
partition A, B of node set X:

– ρ(A, B) = Card({[y, z] ∈ Ec such that y ∈ A, z ∈ B} ).

In case A or B is empty, then ρ(A, B) is clearly null. Then, for any node x ∈ X, we set:

– m(x) = Card ({[y, z] ∈ Ec such that y, z ∈ N(x)} ;
– MC (x) = Largest value ρ(A, B) taken for all partitions A ∪Ex B of N(x).

Remark 3.1. Since notation Z = A ∪Ex B may be used in the case when A or B (or both) are empty, we
see that if x is a pendant node, then MC (x) = 0. On another side, we notice that MC (x) is the optimal value
of the Unit Cost Max-Cut (see e.g. [4, 8, 17]) instance defined on the complementary graph of the induced
sub-graph GN (x).

Example 3.2. Let us suppose that G is the intersection graph defined by the collection of intervals as described
in Figure 6 below. We see that:

• m(a) = 4; MC (a) = 4 because of the partition A = {b, c} , B = {d, e} of N(a)
• m(b) = m(c) = m(d) = m(e) = 0; Tr(G ) = 2

Explanation. As just told above, we are going to carry on a local approach in order to build ad hoc linear
ordering σ of the interval collection X and evaluating them: for every x in X, we are going to distribute the
nodes of N(x) before and after x according to σ, while trying both to ensure the consistency of those local
distribution processes and to avoid elementary breaks on the edges of the sub-graph induced by {x} ∪N(x).
What Theorem 3.4 and Lemma 3.3 are going to show now is that locally minimizing, for a given x, the number
of elementary breaks induced by this distribution process, is equivalent to solve the Unit Cost Max-Cut problem
on the complementary graph of the induced sub-graph GN(x): as a matter of fact, the number of elementary
breaks locally induced by distributing N(x) into two subsets A (those y such that y σ x) and B (those y such
that x σ y) will be checked to be equal to the number of anti-edges [y, z] which are entirely located in A or
in B, that means to the difference m(x) − ρ(A, B). So, the difference m(x) − MC (x) will provide us with the
smallest number of elementary breaks that such a local distribution process may induce when performed on a
given node x.
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3.1. The Lower Bound Statement

This allows us to define the following quantity LB (G) = Tr(G) +Σx(m(x)−MCx)). We claim that LB(G)
provides us with a lower bound for the GB*(G) value. Let us first notice that above definitions about ρ(A, B),
m(x) and MC (x) allow us to state the following Lemma 3.3:

Lemma 3.3. For any x ∈ X, we have m(x)− ρ(A,B) = Fk(G, σ, x), where Fk(G, σ, x) is defined according to
the statement of Lemma 2.2.

Proof. It is a direct application of the definitions. �

Then we may state the main result of this section:

Theorem 3.4. GB*(G) > LB(G).

Proof. Once again, we consider some linear ordering σ of G. Then, for any x ∈ X, we derive from σ a partition
A(x,σ) ∪Ex B(x, σ) of N(x), by setting:
A(x, σ) = { y ∈ N(x), such that y σ x} ; B(x, σ) = { y ∈ N(x), such that x σ y} .

Since ρ(A(x, σ), B(x, σ)) 6 MC (x), we use Lemma 3.3 in order to deduce that, for any x ∈ X:
m(x) – MC (x) 6 Fk(G, σ, x).

By summing on x we get (see the definition of Fk(G, σ) in the statement of Lem. 2.2):
Fk (G, σ) = ΣxFk(G, σ, x) > Σxm(x)−MC(x).

Since Lemma 2.2 states that GB (G, σ) = Tr(G) + Fk(G, σ) +AFk(G, σ), we conclude. �

Remark 3.5. The above result holds for any undirected graph. Still, if we remove the Interval Graph hypothesis
and consider trees instead, then the ratio between GB* (G) and LB(G) can be arbitrarily large. This is due to
the fact that LB(G) does not involve any bound (but the trivial bound 0) on the term AFk(G, σ): but if G is
for instance a tree, then we see that AFk(G, σ) strongly contributes to the GB(G, σ) value. Conversely, in the
case of interval graphs, this value AFk(G, σ) will not play any significant role and will disappear if we impose
the ordering σ to be precedence consistent. So, experiments given at the end of this section will make appear
a value of the ratio (GB* (G) – LB(G))/LB(G) close to 1% in the average, and Section 5 will prove that the
error value GB* (G) − LB(G) cannot exceed the number of strong triangles.

3.2. Evaluating the Lower Bound LB(G)

In order to check the quality of LB(G) as a lower bound for GB* (G), we may first address the case when
G = (X, E) is an unit interval and notice that:

Proposition 3.6. In case G = (X, E) is an unit interval graph, then GB*(G) = LB(G).

Proof. It is only a matter of checking that GB(G, σ-can) = Tr(G)6 LB(G) 6 GB(G, σ-can), which will
imply that σ-can achieves the lower bound LB(G) and so that GB*(G) = LB(G). Let f = (x, [y, z]) be a fork
of G. We may suppose y � z and deduce from the fact that G is an unit interval graph that y σ-can x σ-can
z. It comes that the quantity Fk(G, σ-can) of Lemma 2.2 is equal to 0. By the same way, let h = ((x, y), z)
be an anti-fork of G: then x and y are on the same side with respect to z according to σ-can (we do not use
here the fact that G is a unit interval graph). It comes that AFk(G, σ-can) = 0. Then Lemma 2.2 allows us to
conclude. �

This proposition yields the following corollary, which confirms the optimality of σ-can in the case of unit
interval graphs as stated in [10].

Corollary 3.7. If G = (X, E) is an unit interval graph, then the canonical linear ordering σ-can is an optimal
solution of LAP.
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Also, we may compare GB* (G) and LB(G) in the case of interval graphs through numerical experiments.
We compute the values MC (x) which are involved into the LB(G) lower bound while applying the CPLEX 12
library to the following ILP model:

ILP Model P-MC (x):
{Set ∆(x) = {[y, z] ∈ Ec such that both y and z are in N(x)};
Compute {0, 1} − valued vectors U = (Uy, y ∈ N(x)) and T = (Ty,z, [y, z] ∈ ∆(x))
Subject to:

• For any [y, z] ∈ ∆(x), Ty,z 6 Uy;
• For any [y, z] ∈ ∆(x), Ty,z 6 1−−Uz;

And which maximizes Σ(y,z)∈∆(x)Ty,z} .

Explanation. Any vector U provides us in a natural way with a partition (A = {y such that Uy = 1} , B =
N(x)−A) of N(x) and value Ty,z tells us if we simultaneously have y ∈ A and z ∈ B.

We compute GB* (G) while applying the CPLEX 12 library to the following ILP model:

ILP Model P-LAP(G):
{Compute the {0, 1} -valued vectors W = (Wx,y, x, y ∈ X,x 6= y), T = (Tf , f = (x, [y, z]) fork of G), T∗ =
(T∗h, h = ((x, y), z)anti− forkofG), which satisfy the constraints:

(1) For any x, y ∈ X, x 6= y, Wx,y +Wy,x = 1 ;
(2) For any x, y, z ∈ X, all distinct, Wx,z 6Wx,y +Wy,z;
(3) For any fork f = (x, [y, z]), Tf +Wx,y +Wx,z > 1 and Tf +Wy,x +Wz,x > 1;
(4) For any fork f = (x, [y, z]), Tf >Wx,y +Wx,z - 1;
(5) For any anti-fork h = ((x, y), z), T*h +Wx,z +Wy,z > 1 and T*h +Wz,x +Wz,y > 1 ;
(6) For any anti-fork h = ((x, y), z), T*h >Wz,x −Wz,y - 1;

and which minimizes: Σf fork of GTf +Σh anti-fork of G T*h} .

Explanation. This model follows Lemma 2.2 and the equality GB(G, σ) = Tr(G)+ Fk(G, σ) + AFk(G, σ).
For any x, y in X, Wx,y tells us whether x σ y or y σ x : constraint (1) tells that either x σ y or y σ x must
hold in an exclusive way, and (2) expresses the transitivity of σ. For any fork f = (x, [y, z]), Tf = 1 means that
y and z are on the same side with respect to x according to σ : constraint (3) tells us that if Tf = 0, then Wx,y

and Wx,z are not allowed to take the same value and constraint (4) tells us that if Tf = 1 then they are not
allowed to take different values. By the same way, for any anti-fork h = ((x, y), z), T*h = 1 means that x and y
are on the same side with respect to z according to σ: Then constraints (5) and (6) work as constraints (3) and
(4). It comes that GB* (G) is equal to the sum of Tr(G) and the optimal value of the Program P-LAP(G).

We generate instance groups with parameters Card (X) = 20, 50, 80, 100. Such sizes may look small, but
they allow us to get exact GB* (G) values through application of the CPLEX 12 library to the above LAP
ILP model. Each instance group consists of 10 randomly generated instances, with a same number Card(X) of
nodes and a same mean interval length L, every instance being defined as a collection X of end-point-distinct
intervals of the real line obtained through the following procedure Generate :

Generate(L: Mean Interval Length)
Fix the number Card(X) of intervals;
For x = 1, . . .Card(X) do

Randomly Generate, through uniform distribution random sorting in the interval [0,1], the midst point
Π(x) of the interval x of X;
Randomly Generate, through uniform distribution random sorting in the interval [0,2L], the length L(x)
of the interval x of X;
Do in such a way that all the end-points of the resulting intervals be distinct.
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Table 1. Comparing LB(G) and GB* (G).

Instance X Aver. Card(E) Aver. H GAP-LB (%)

Aver. Min Max CPU-LB (s) CPU-LAP (s)
GR1 20 41.4 24.7 0 0 0 <0.1 0.2
GR2 50 283.8 104.9 0.04 0 0.2 <0.1 69.4
GR3 50 406.0 158.5 0.3 0 1.4 4.2 883.3
GR4 50 606.1 305.3 0.02 0 0.1 10.1 884.8
GR5 50 634.1 305.6 0.04 0 0.2 5.8 670.4
GR6 80 31.3 10.8 0 0 0 0.02 66.4
GR7 80 152.0 108.6 0 0 0 1.6 37.4
GR8 80 300.1 105.5 0.4 0 2.7 0.1 247.9
GR9 80 566.9 205.6 0.01 0 0.09 6.9 1360.9
GR10 100 235.3 75.8 0.2 0 0.7 0.1 178.0
GR11 100 298.3 100.5 0.3 0 2.0 0.1 257.9
GR12 100 305.2 186.7 0.09 0 0.5 6.9 998.5
GR13 100 665.5 302.0 0.4 0 2.7 7.0 1605.4
GR14 100 469.6 164.9 0.2 0 1 0.2 3783.0
GR15 100 702.9 249.0 0.08 0 0.5 0.6 7564.0

Though the number Card(E) of edges of the resulting interval graph G = (X, E) is not a parameter of this
procedure, we indirectly control it through the parameter L, since the expected value of Card(E) increases with
the value of L. This allows us to characterize an instance by its related Card(E) value and by the number H of
arcs in the oriented graph induced on X by the inclusion order: since unit interval graphs, which make LAP
easy to handle, are those interval graphs for which the induced inclusion order ⊂ is empty, we may consider that
H provides us with a kind of distance from graph G to the class of unit interval graph and so a kind of difficulty
index. For every group, we compute the average, min and max gap GAP-LB = (GB* (G) – LB(G))/GB* (G),
as well as related average running times CPU-LAP and CPU-LB. Related results come in the following Table 1.

Comment: Table 1 makes appear that LB(G) coincides very often with optimal value GB* (G). It is important
to notice that, while the max value of GAP-LB may vary in a significant way depending on the instance group
(from 0% to 2.7% in the above table), these variations cannot be related here to an increase of the size of the
instances (values Card(X), Card(E) and H.) Since it would probably be possible to improve P-LAP(G) and
P-MC (x) ILP formulations, CPU times values have to be taken here as mere additional information: CPU-LB
happens here to be small in comparison CPU -LAP ; still, it tends to increase fast with the size of G. As a matter
of fact, implementing a branch and bound algorithm for LAP which involves the LB(G) lower bound would
require designing an efficient ad hoc algorithm for the computation of every quantity MC (x). This last point
remains an open question.

3.3. Discussing the complexity of the LB(G) computation

As far as we know, the complexity of the Unit Cost Max-Cut problem defined on the complementary graph of
an interval graph is still unknown, even if this graph is a unit interval graph. That means that we are not able
to tell whether computing the MC (x) quantities can be done in polynomial time or not, and this makes one ask
himself whether computing MC (x) quantities is really simpler than solving LAP. It is not easy to answer such a
question, though above experiments make appear that, because ILP models related to MC (x) are simpler and
smaller than LAP ILP models, CPU times required for the computation of LB are small in comparison to CPU
times required to full resolution of our LAP model.

In order to provide us with a deeper insight, let us first consider the case of unit interval graphs. If G = (X,
E) is a unit interval graph, and if x ∈ X, then it happens that any interval y in N(x) intersects either o(x)
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or d(x). A consequence is that the complementary graph of the sub-graph of G induced by N(x) is a bipartite
graph, which makes the related Unit Cost Max-Cut problem become trivial.

If G = (X, E) is a general interval graph, then we are going to check here that solving Unit Cost Max-Cut
on the complementary graph of G may be done through a dynamic programming algorithm, which, in case
we restrict ourselves to graphs with bounded maximal cliques, becomes time-polynomial. In order to do it, we
suppose that the elements of X are labeled X = {x1, . . . , xn} in such a way that o(xi) <o(xi+1). Then we
build an oriented time/state oriented acyclic graph H = (Z, T ) in such a way that any partition X = A∪ExB,
which may be viewed as a succession of decisions: assign x i to A or to B, also appears as a path in H from
some initial node to some final node. We do it by setting:

– Si = {j <i such that o(xi) <d(xj)} ∪ {j} = { j 6 i such that xi = xj or (xi, xj) ∈ E} ;
– Ui = Set of all Si indexed {0, 1} -valued vectors; we denote by 0 the null vector;
– Vi = Set of all 3-uple (p, q, u), where u ∈ Ui, and p, q are non negative integral numbers such that p+ q+

Card(Si) = i.

Then digraph H comes as follows:

– Its node set Z is the set of all pairs (i = 1,. . .n, v ∈ Vi), augmented with a special node End ;
– Its arc set T is defined as the set all pairs:

– ((n, v), End): the length of such an arc is equal to 0;
– ((i, (p, q, u)), (i+ 1, (p*, q*, u*))), such that:
• for any j ∈ Si ∩ Si+1, we have uj = u*j ;
• p* = p + Card({j ∈ Si − Si+1 such that uj = 0} ); q* = i+ 1− p* − Card(Si+1).

In case ui+1∗ = 1, then the length of such an arc is equal to p* else it is equal to q*.
We may state:

Proposition 3.8. Solving Unit Cost Max-Cut on the complementary graph of G is equivalent to computing a
largest path from the node (1,(0, 0, 0)) to the node End in the digraph H.

Proof. It comes in a straightforward way from the construction of H. Node set Z represents the point of view
of a decider which scans the set X = {x1, . . . , xn} and decides, at every step i, to assign xi+1 a value 0 (means
xi+1 is put into A) or 1 (xi+1 is put into B). The state in which this decider finds himself before taking this
decision is summarized by a 3-uple (p, q, u) ∈ Vi, whose meaning is:

– p intervals xj such that xj � xk for any k > i have been assigned the value 0;
– qamong those intervals have been assigned the value 1;
– Assignment vector u provides us, for every j 6 i such that xj may eventually be adjacent or equal to some
xk, k > i, with the value which have been assigned to interval xj .

Node (1, (0, 0, 0)) represents the initial state (step 1): x1 is arbitrarily assigned the value 0.
Then arcs and their respective lengths express the transitions which take place when some value 0 or 1 is

assigned to xi+1, together with the resulting increase of the value ρ (A, B). According to this standard dynamic
programming scheme, one sees that any partition X = A ∪Ex B may be understood as a path Γ from initial
node (1, (0, 0, 0)) to final node End in this acyclic oriented graph H, with value ρ (A, B) equal to the length
of Γ . We conclude. �

Proposition 3.9. Let K be a given integral number. If we restrict ourselves to interval graphs G = (X, E)
which do not admit cliques with more than K nodes, then Unit Cost Max-Cut can be solved in polynomial time
on the complementary graph of G.

Proof. It is only a matter of noticing that, since, for any i in the above algorithmic scheme, Si defines a clique
for the graph G, then the size of Ui never exceeds K. This implies that the number of nodes of the digraph H
does not exceed n. (2K + 2) and allows us to conclude. �



LOWER AND UPPER BOUNDS FOR THE LINEAR ARRANGEMENT PROBLEM ON INTERVAL GRAPHS 1133

Figure 7. Non �-consistency of an optimal LAP solution.

4. An upper bound: The PCLAP restriction of LAP

In this Section 4, we are going to prove that, if we impose the linear ordering σ to be precedence consistent,
then the resulting restriction of LAP may be solved in polynomial time. Since the canonical ordering σ-can is
precedence consistent, this will provide us with a an upper bound for LAP which will improve the upper bound
related to σ-can.

The canonical linear ordering σ-can is not optimal in the case of general interval graphs. As a matter of
fact, optimal solution may even not be precedence consistent as illustrated by Figure 7 below, which shows an
interval collection X whose related interval graph G = (X, E) is such that optimal GB*(G) value has to be
obtained through a non precedence consistent linear ordering σ: Ordering X in an optimal way requires here
either locating y and z before x and t1. . . t4, or the converse, and yields an optimal GB*(G) value equal to 11;
conversely, any precedence consistent ordering σ first considers node y, next all the nodes which are contained
into the clique {x, t1. . . t4} , and finally node z, and yields a Global Break value GB(G, σ) equal to 14.

Still, the above negative example is not fully representative of what happens if we impose the ordering σ
to be precedence consistent. As a matter of fact, one may check that in many cases, it is possible to find an
ordering σ of the node set X which is precedence consistent and whose GB value is either optimal or close to
optimality. At the same time, one may ask whether imposing σ to be precedence consistent is not going to make
LAP easier to solve. In order to stress the fact that we focus here on precedence consistent linear orderings
and to avoid confusion with the general case, we denote by PCGB(G, σ) the Global Break value induced by
some precedence consistent linear ordering σ, and this leads us to define the following LAP restriction PCLAP:
Precedence Consistent Linear Ordering Problem:

PCLAP: Compute a precedence consistent linear ordering σ of X which minimizes PCGB(G, σ).
We denote by PCGB* (G) = Infσ∈PC(X) PCGB(G, σ) the optimal (minimal) Global Break value, taken on

the set PC (X) of all precedence consistent linear orderings σ.
The purpose of this section is to study PCLAP and show (Thm. 4.10) that PCLAP can be solved in an exact

way in polynomial time. Before entering into the technical details, let us start by providing
the intuition behind this result and what is going to be process which will lead to main Theorem 4.10.

PCGB* (G) polynomial time computation (Thm. 4.10): sketch of the proof. In order to show that
PCGB* (G) can be computed in polynomial time, we are first going to revisit Theorem 1 in the case of precedence
consistent linear orderings (Lem. 4.1), and check that, in this case, a precedence consistent version of Unit Cost
Max-Cut can be solved in polynomial time (Lem. 4.2). Next (Lem. 4.4), we shall explain the way an ad hoc
local resolution of Unit Cost Max-Cut will tell us, for every node x of our interval graph G = (X, E), how to
distribute the nodes y ∈ N(x) such that Not (x ⊂ y) before and after x, in order to compute in polynomial time
a binary relation σ-bal which will be proved to define a precedence consistent linear ordering of X (Lems. 4.7
and 4.9). Finally, we shall use the fact that this distribution process locally implements an optimal solution of
the precedence consistent version of Unit Cost Max-Cut in order to show, through a counting argument, that
σ-bal achieves the lower bound of Lemma 4.1 and so is an optimal solution of PCLAP.
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4.1. A lower bound for PCLAP: revisiting Theorem 2.6

Let us define the non-dominant neighbor set ND(x) of a node x as the following subset of the neighbour set
N(x): ND(x) = {y ∈ N(x) such that Not (x ⊂ y)} .

Then we say, for every x ∈ X, that a partition Z = A ∪Ex B of ND(x) is precedence consistent if, for any y,
z ∈ ND(x) such that: y ∈ A and z � y, then we also have z ∈ A. We denote by MCC (x) the largest possible
value ρ(A, B), taken for all possible precedence consistent partition Z = A ∪Ex B of ND(x). This allows us to
state:

Lemma 4.1. PCGB*(G) > Tr(G) +Σ x(m(x) – MCC(x)).

Proof. We may first notice that the value m(x), which has been defined in the previous section as the number
of anti-edges in the sub-graph of G induced by N(x), is also equal to the number of anti-edges in the sub-graph
of G induced by ND(x), due to the fact that no y such that x ⊂ y is extremity of an anti-edge [y, z] ∈ Ec, such
that z ∈ N (x).

Let us consider now some precedence consistent linear ordering σ, together with an edge e = (x, y) ∈ E and
a node z, such that EB(e, z, σ) = 1: ((x, y), z) cannot be an anti-fork with root z, since precedence consistency
of σ would impose x and y to be on the same side with respect to z. So we get, by following the proof of
Lemma 2.2, that PCGB(G, σ) = Tr(G)+ Fk(G, σ).

Moreover, for any x ∈ X, we may derive from σ a precedence consistent partition Z = A ∪Ex B of ND(x):
A = A(x,σ) = {y ∈ ND(x), such that y σ x} ; B = B(x, σ) = {y ∈ ND(x), such that x σ y} .

Let us now recall that Fk(G, σ, x) was defined in 2.5 as the quantity Card({[y, z] ∈ Ec such that y, z ∈
ND(x) are on the same side with respect to x according to σ} ) and that Fk(G, σ) = Σx Fk(G, σ, x).

It comes that, for any node x: Fk(G, σ, x) = m(x) - ρ(A(x, σ), B(x, σ)).
Since ρ(A(x, σ), B(x, σ)) 6 MCC (x), we get by summation that PCGB(G, σ) = Tr(G)+ Fk(G, σ) =

Tr(G) +Σx Fk(G, σ, x) = Tr(G) +Σx (m(x) - ρ(A(x, σ), B(x, σ))) > Tr(G) +Σx (m(x) - MCC (x)).
We conclude. �

4.2. Computing the Values MCC(x): dealing with Unit Cost Max-Cut in the case
of precedence consistent partitions

As previously mentioned, the complexity of the Unit Cost Max-Cut problem defined on the complementary
graph of an interval graph is still unknown. But, conversely, we claim that MCC (x) quantities may be obtained
through straightforward application of a simple formula. In order to state this in a formal way, let us consider
some node x of the graph G = (X, E) and set, for every node z in ND(x):

• dL(x, z) = Card({t ∈ ND(x) such that t� z } ;
• dR(x, z) = Card({t ∈ ND(x) such that z � t } .

Explanation: In the above definition, ‘L’ holds for Left and ‘R’ for Right. The quantity dL(x, z) + dR(x, z)
provides us with the number of anti-edges of ND(x) which involve node z. If z is located on the side A of a
precedence consistent partition ND(x) = A ∪Ex B, then we see that the anti-edges related to dL(x, z) are not
going to be involved into ρ(A, B) and that if it is located on side B, then the anti-edges related to dL(x, z)
are not going to be involved into ρ(A, B). So, intuitively, comparing dL(x, z) and dR(x, z) values provides us
with information about the way we should distribute nodes z between A and Bin order to achieve the MCC (x)
value.

As a matter of fact, we may turn this intuition into the following Lemma 4.2:

Lemma 4.2. MCC(x) = m(x)−Σz∈ND(x)Inf(d
L

(x, z), d
R

(x, z)).

Proof. The idea of the proof is to first prove, through a simple counting argument, that for any precedence
consistent partition A∪ExB of ND(x), its cut-size value ρ(A, B) does not exceed the quantity m(x)−Σz∈ND(x)
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Inf(dL(x, z), dR(x, z)), and next to make appear a precedence consistent partition A* ∪ExB* of ND(x) which
achieves this upper bound.

So let us first consider some precedence consistent partition A ∪Ex B of ND(x). It defines an oriented graph
structure (ND(x), KA,B) on the node set ND(x), whose arc set KA,B is defined as follows: (y, z) ∈ KA,B if,
and only if, (y ∈ A, z ∈ A, y � z) or (y ∈ B, z ∈ B, y � z). Since A∪ExBis precedence consistent, the number
of arcs in this digraph with extremity equal to some given node z ∈ A is equal to dL(x, z). It comes that the
number of arcs of KA,B with both extremities in A, which is also equal to the number of anti-edges of ND(x)
with both extremities in A, is equal to Σz∈Ad

L(x, z). By the same way, the number of anti-edges of ND(x)
with both extremities in B is equal to Σz∈Bd

R(x, z). We get that Card(KA,B) = Σz∈Ad
L(x, z) + Σz∈Bd

R(x,
z) > Σz∈ND(x) Inf(dL(x, z), dR(x, z)) and that:

ρ(A,B) = m(x) - Card(KA,B) 6 m(x)−Σz∈ND(x) Inf(dL(x, z), dR(x, z)).

We deduce MCC (x) 6 m(x) - Card(KA,B) 6 m(x)−Σ z∈ND(x) Inf(dL(x, z), dR(x, z)).
In order to achieve our proof, let us consider now the following partition A* ∪ExB* of ND(x):

A* = {z such that dL(x, z) 6 dR(x, z)} ; B* = {z such that dL(x, z) >dR(x, z)} .

This partition is precedence consistent : if for instance z ∈ A* (we proceed the same way if z ∈ B*) and t� z
then we also have dL(x, t) 6 dL(x, z) 6 dR(x, z) 6 dR(x, t), and so t ∈ A*.

Since, for any z in A*, t in B*, dL(x, z) = Inf(dL(x, z), dR(x, z)) and dR(x, t) = Inf(dL(x, t), dR(x, t))
hold, the above computation yields ρ(A*, B*) = m(x) − Card(KA∗,B∗) = m(x)−Σz∈ND(x) Inf(dL(x, z), dR(x,
z)). We get that A* ∪ExB* achieves the MCC (x) upper bound m(x) − Σz∈ND(x) Inf(dL(x, z), dR(x, z)) and
conclude. �

Corollary 4.3. Let F(x) be the anti-edge set {[y, z] ∈ Ec such that y, z ∈ ND(x)} , and let F0(x) be the subset
of F(x) defined by F0(x) = {[y, z] ∈ F(x), such that y ∈ A0(x) and z ∈ B0(x)} . Then m(x) - MCC(x) is at
most equal to Card(F(x) - F0(x))/2.

Proof. Since m(x)−MCC(x) = Σy∈ND(x) Inf(dL(x, y), dR(x, y)), we must prove that:

2.(Σy∈ND(x)Inf(dL(x, y), dR(x, y)) 6 Card(F (x)− F0(x)).

We proceed by induction on Card(ND(x) − (A0(x)∪B0(x))), and, in case this cardinality remains fixed, on
the number of edges in the sub-graph of G induced by ND(x)).

We first set A = {y ∈ ND(x) − (A0(x) ∪ B0(x)) such that dL(x, y) <dR(x, y)} , B = {y ∈ ND(x) −
(A0(x)∪B0(x)) such that dL(x, y)>dR(x, y)} and C = {y ∈ ND(x)− (A0(x) ∪B0(x)) such that dL(x, y) = dR(x,
y)} . We notice that C is a clique of G.

Then we see that if y ∈ C, then withdrawing y from ND(x) does not modify the values Inf(dL(x, z), dR(x,
z)) for the other elements z of ND(x), and makes Card(F (x) − F0(x)) by 2.dL(x, y) = 2dR(x, y) decrease. It
comes that we may suppose C to be empty.

If y = [o(y), d(y)] ∈ A is such that there exists z ∈ ND(x) such that o(y)<d(z)<d(y), then we denote by z(y)
the argument for the smallest related d(z) value and make o(y) increase until becoming larger than d(z(y)).
By doing this, we make Inf(dL(x, y), dR(x, y)) increase by 1, as well as Card(F (x) − F0(x)). Since z(y) must
be either in A or in A0(x), Inf(dL(x, z(y)), dR(x, z(y))) remains unchanged, as well as all the other values
Inf(dL(x, z), dR(x, z)), z ∈ ND(x) − {y} . Then applying the induction hypothesis to the resulting interval
collection allows us to conclude. Of course, we may proceed the same way with any element of B, while making
the d(y) values decrease. It comes that we may suppose that the restriction of � to A∪ B is a linear ordering
such that for any y ∈ A, z ∈ B, we have y � z. As a matter of fact, we may set:

• A = {a1,. . . , ap} with a1 � . . .� ap;
• B = {b1,. . . , bq} with ap � bq � . . .� b1.
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Then, if y ∈ A0(x) does not intersect bq and if ai ∈ A exists which intersects y, then we choose i maximal with
this property and make d(y) decrease until it becomes smaller than o(ai). By doing this, we make increase by
1 both Card(F (x) − F0(x)) and Σz∈ND(G,x) Inf(dL(x, z), dR(x, z)), which allows us to apply the induction
hypothesis and conclude. Of course, we proceed the same way with B0(x), and so we may suppose that:

• For any y ∈ A0(x) we have either y � a1 or y intersects bq;
• For any y ∈ B0(x) we have either y � b1 or y intersects ap.

Let us set r = Card({y ∈ A0(x) such that y � a1} and t = Card({y ∈ B0(x) such that y >>b1} . Then we see
that:

• q + t> r + p− 1andq + t− 1<r + p which also means q + t = r + p;
• 2.Σz∈ND(G,x)Inf(dL(x, z), dR(x, z)) = p.(p-1) +q.(q-1) + 2.r.p+ 2.t.q;
• Card(F (x)− F0(x)) > (p.(p-1) +q.(q-1) + 2.r.p+ 2.t.q)/2 +p.q + p.t+ r.q.

At this point, it only the matter of a routine computation to check that the relation q + t = r + p implies that
p.q + p.t+ r.q > (p.(p-1) +q.(q-1) + 2.r.p+ 2.t.q)/2 and the result. �

4.3. Solving PCLAP in an exact way

In this section, we prove that the lower bound of above Lemma 4.1 is equal to PCGB* (G). The main idea
is to build an optimal PCLAP solution σ by first computing, for any node x, a precedence consistent partition
A ∪Ex B of ND(x) which maximizes ρ(A, B), and by next setting y σ x for any node y in A (locating ybefore
x) and x σ z for any node z in B (locating z after x). But then we face the risk that this way of defining σ
induces a binary relation which is not a linear ordering. In order to deal with this issue, we first strengthen the
notion of precedence consistent partition, and impose the precedence consistent partition A∪Ex B of ND(G, x)
to be what we call a strong precedence consistent partition, that means to be such that:

• ρ(A, B) = MCC (x);
• A contains A0(x) = {y ∈ X such y Ov x} ;
• B contains B0(x) = {y ∈ X such x Ov y} ;
• A is maximal, for the inclusion order, provided the 3 above requirements are satisfied.

Computing such a strong precedence consistent partition may be done according to following Lemma 3.4:

Lemma 4.4. We get a strong �-consistent partition A*(x) ∪Ex B*(x) of ND(x) by setting:

• A*(x) = {z ∈ ND(x) −B0(x) such that dL(x, z) 6 dR(x, z)} ;
• B*(x) = {z ∈ ND(x) such that dL(x, z) >dR(x, z)} ∪ B0(x).

This strong �-consistent partition is unique.

Proof. A*(x) and B*(x) above clearly define a precedence consistent partition such that A0(x) ⊆ A*(x) and
B0(x) ⊆ B*(x). By following the same argument as in Lemma 3.2 and taking into account that, for any y ∈ A0(x)
(B0(x)) we have dL(x, z) = 0 (dR(x, z) = 0), we see that:

Card(KA∗(x),B∗(x)) = Σz∈ND(x) Inf(dL(x, z), dR(x, z)),

where (KA∗(x),B∗(x)) is the arc set defined on ND(x) by: (y, z) ∈ KA∗(x),B∗(x) if and only if:

(y ∈ A*(x), z ∈ A*(x), y � z) or (y ∈ B*(x), z ∈ B*(x), y � z).

It comes that: ρ(A*(x), B*(x)) = m(x)−Σz∈ND(x) Inf(dL(x, z), dR(x, z)) = MCC(x).
Conversely, if (A, B) is any precedence consistent partition, the relation
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Figure 8. Distribution of the nodes of X − x0 with respect to x0 according to σ-bal.

Card (KA,B) = Σz∈Ad
L(x, z) +Σz∈Bd

R(x, z)

which was involved in the proof of Lemma 3.2, also implies that ρ(A, B) = MCC (x) holds if and only if all
nodes z such that dL(x, z) <dR(x, z) are in A and all nodes z such that dL(x, z) >dR(x, z) are in B. Then any
precedence consistent partition A ∪Ex B of ND(x) such that ρ(A, B) = MCC (x), A0(x) ⊆ A and B0(x) ⊆ B,
is also such that A ⊆ A*(x).We conclude. �

Algorithmic definition of the well-balanced σ-bal linear ordering.
We assume here that we have been pre-processing the interval collection X in order to get:

• a {0,1} -valued array AR, with indexation on X.X, such that AR[x, y] means ((x Ov y)∨ (x� y));
• a vector R(as Right), which provides us, for any x ∈ X, with the number of nodes y such that x� y;
• a vector L (as Left), which provides, for any x ∈ X, with the number of nodes y such that y � x;
• an array LIST⊂, which provides us, for any x ∈ X, with the list of nodes y such that y ⊂ x.

We denote by H the number of arcs of the oriented graph induced on set X by the ⊂ ordering. This number
H, which we already used in Section 4.2 as a kind of measure of the distance which may exist between graph G
and the unit interval graph class, is going to be involved into the computation of the complexity of the PCLAP
Algorithm below (Lem. 4.5). Notice that this number is not really involved in the algorithm itself.

Then we may provide an algorithmic definition of what we call the well-balanced binary relation associated
with the interval collection X, and which we denote by σ-bal. This well-balanced binary relation σ-bal is defined
as a complete extension of the � and Ov orderings. That means that we consider that, for any pair x, y such
that x� y or x Ov y, we a priori have (preprocess) x σ-bal y (and consequently Not x σ-bal y). Then the way
we decide to order nodes x, y of the interval graph G = (X, E) in case x ⊂ y or y ⊂ x derives from application
of the following PCLAP algorithm:

PCLAP Algorithm
Input: AR, R, L, LIST⊂
Output: the relation x σ-bal y which extends AR when x ⊂ y or y ⊂ x.
For x ∈ X do

For y ∈ LIST⊂[x] do
If R[y] − R[x] 6 L[y] − L[x] then set y σ-bal x else set x σ-bal y ;

Figure 8 below shows an interval collection X, an interval x0, and the way the nodes of X − x0 are distributed
before and after x0 according to the σ-bal relation.

• Preprocess:

y1 � x0 � y2 => y1 σ-bal x0 σ-bal y2 ; y3 Ov x0 Ov y4 =>y3 σ-bal x0 σ-bal y4;
+ (action of the PCLAP Algorithm) :
dL(x0, y5) = 0 and dR(x0, y5) = 5 =>y5 σ-bal x0 ; dL(x0, y6) = 1 and dR(x0, y6) = 4 =>y6 σ-bal x0;
dL(x0, y7) = 2 and dR(x0, y7) = 3 =>y7 σ-bal x0 ; dL(x0, y8) = 3 and dR(x0, y8) = 3 =>y8 σ-bal x0;
dL(x0, y9) = 5 and dR(x0, y9) = 1 =>x0 σ-bal y9 ; dL(x0, y10) = 5 and dR(x0, y10) = 0 =>x0 σ-bal y
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Lemma 4.5 (PCLAP Algorithm’s Complexity). The complexity of the PCLAP algorithm is O(H).

Proof. The double loop of PCLAP is indexed on the number of relations y ⊂ x, x, y ∈ X, and any iteration
inside this loop requires only a comparison and an assignment. �

Remark 4.6. The above PCLAP algorithm only computes σ-bal for pairs x, y such that we have either x ⊂ y
or y ⊂ x. In case x � y or x Ov y, it is an a priori decision which set x σ-bal y. But this point is not taken
into account in the evaluation of the complexity of CLAP, since it is considered as part of the preprocess which
yields the input of PCLAP (the AR array).

At this point, we know that σ-bal is a complete extension of the � and Ov partial orderings, but we still
do not know whether it is a linear ordering and less whether it is an optimal PCLAP solution or not. In order
to check that σ-bal is a linear ordering, we first state the following Lemma 3.7, which could have been used as
well as a definition of the σ-bal relation, and which is only a kind of translation of the algorithmic definition
induced by the PCLAP algorithm.

Lemma 4.7. The above defined binary relation σ− bal is such that x σ-bal y if and only if one among the
following relations, which are mutually exclusive, holds:

(E2): (x � y) or (x Ov y),
or

(E3): (x ⊂ y) and dL(y, x) 6 dR(y, x),
or

(E4): (y ⊂ x) and dR(x, y) <dL(x, y).

Proof. Configurations (E2), (E3) and (E4) are clearly mutually exclusive. Given x, y in X, we have either:
(E2*): (x� y or x Ov y) or (y � x or y Ov x),

or
(E3*): (x ⊂ y)

or
(E4*): (y ⊂ x).

Configurations (E2*), (E3*), (E4*) are also mutually exclusive.
If (E2*) holds, then σ-bal coincides with the relation AR = (� or Ov), which means that xσ-bal y if and

only if AR[x, y] = 1, or, in other words, if and only if (E2) holds.
If (E3*) holds then x ∈ LIST⊂[y] and the CLAP algorithm sets x σ-bal y if and only if:

dL(y,x) = R[x] − R[y] 6 L[x] − L[y] = dR(y,x),

which also means dL(y,x) 6 dR(y,x).
If (E4*) holds then y ∈ LIST⊂[x] and the CLAP algorithm sets x σ-bal y if and only if:

dL(x, y) = R[y] − R[x] >L[y] − L[x] = dR(x, y),

which also means dR(x, y) <dL(x, y).We conclude. �

Corollary 4.8. Given x ∈ X. If we set A*(x) = {y ∈ ND(x) such that yσ-bal x} and B*(x) = {y ∈ ND(x)
such that x σ-bal y} then we get a strong precedence consistent partition A*(x) ∪Ex B*(x) of ND(x).

Proof. It is a mere translation of Lemma 4.4 and above Lemma 4.7.
Let us now check that σ-bal is a precedence consistent linear ordering:

Lemma 4.9. The σ-bal relation computed through the PCLAP algorithm is anti-symmetric, transitive and
precedence consistent.

Proof. The anti-symmetry of σ-bal comes from its mere definition.
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As for transitivity, let us consider x, y, z such that x σ-bal y σ-bal z. We have to check that x σ-bal z. Non
trivial configurations correspond to the following three cases (modulo symmetry):

• Case 1. x ⊂ y ⊂ z
We know (Lem. 4.7) that dL(y, x) 6 dR(y, x) and dL(z, y) 6 dR(z, y). It comes that:
dL(z, x) = dL(z, y) + dL(y, x) 6 dR(z, x) = dR(z, y)+ dR(y, x), and that xσ-bal z.

• Case 2. x ⊂ z ⊂ y
We know (Lem. 4.7) that dL(y, x) 6 dR(y, x) and dR(y, z) <dL(y, z). It comes that:
dL(z, x) = dL(y, x) − dL(y, z) 6 dR(y, x) − dR(y, z) = dR(z, x), and that x σ-bal z.

• Case 3. y Ov z; x ⊂ y; x ⊂ z
We know (Lem. 4.7) that dL(y, x) 6 dR(y, x). Since y Ov z, we also have:
dL(z, x) 6 dL(y, x) and dR(y, x) 6 dR(z, x). We deduce dL(z, x) 6 dR(z, x) and x σ-bal z.
So we get the transitivity of σ-bal.
As for the precedence consistency of σ-bal, it comes in a trivial from the fact that σ-bal has been a priori

built as an extension of �. The result is thus established. �

We are now in a position to prove the optimality of σ-bal. This optimality will derive from the fact that,
for any x ∈ X, σ-bal distributes the elements of ND(x) before and after x, in a way which induces a strong
precedence consistent partition of ND(x) and thus which achieve the MCC (x)) value.

Theorem 4.10. The PCLAP Algorithm computes, in polynomial time, a relation σ-bal which is an optimal
PCLAP solution and whose value PCGB*(G) satisfies:

PCGB*(G) = PCGB(G, σ-bal) = Tr(G) +Σ x (m(x) - MCC(x)) = Σ x Σ z∈ND(x) Inf(dL(x, z), dR(x, z)).

Besides, the following inequality holds:

Tr(G) +Σ xΣz∈ND(x) Inf(dL(x, z), dR(x, z)) = PCGB*(G) 6 Tr(G) + Strong-Fork/2,

where Strong-Fork denotes the number of strong forks of the interval graph G.

Explanation. The second part of the above result provides us with a magnitude order of the values of GB* (G)
and PCGB* (G), and makes the Strong-Fork number discriminate the LAP instance defined by G from the
time-polynomial unit interval graph case.

Proof. We get from Lemma 4.9 that σ-bal is a precedence consistent linear ordering and from Lemma 6 that
the PCLAP Algorithm computes it in no more than O(Card(X)2) instructions.

The main idea behind the proof is that (see Cor. 4.8), since σ-bal distributes, for any x ∈ X, nodes of ND(x)
in a way which defines a strong precedence consistent partition A*(x)∪ExB*(x), the MCC (x) value is achieved
by the cut-size ρ(A*(x), B*(x)) of this partition. Then it will be only a matter of summing the related local
relations and to use Lemma 4.1 in order to conclude for the first part of the result. The second part will derive
in a straightforward way of Corollary 4.3.

So let us enter into details and first prove the optimality of σ-bal (and, consequently, the inequality PCGB(G,
σ-bal) 6 PCGB(G, σ-can)). We know (see proof of Lem. 4.1) that PCGB(G, σ-bal) = Tr(G)+ Fk(G, σ-bal), and
that Fk(G, σ-bal) may also be written: Fk(G, σ-bal) = Σx Fk(G, σ-bal, x). But Lemma 4.4 and Corollary 4.3
tell us that, for any x, Fk(G, σ-bal, x) = m(x) - MCC (x). It comes that PCGB(G, σ-bal) = Tr(G) +Σx (m(x)
- MCC (x)). Then Lemma 4.1 yields PCGB(G, σ-bal) = PCGB*(G) and Lemma 4.2 tells us that: PCGB(G,
σ-bal) = PCGB*(G) = Tr(G) +ΣxΣy∈ND(x)Inf(dL(x, y), dR(x, y)).

In order to get the second part of the above theorem, we consider, for any x ∈ X, F (x) and F0(x) as defined in
the statement of Corollary 4.3. This corollary tells us that m(x) - MCC (x) 6 Card(F (x)−F0(x))/2.ButF (x)−
F0(x) may be written as: F (x) − F0(x) = {[y, z] ∈ Ec such that y � z and at least one node t among {y, z}
is such that t ⊂ x} . So we see that there is a one-to-one correspondence between F (x)− F0(x) and the set of
strong forks with root x. Since a fork has only one root, we get that Σx∈X Card(F (x)−F0(x)) = Strong-Fork,
and so we may conclude. �
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5. Bounding the Gap between LB(G), PCGB∗(G) and GB∗(G)

The purpose of this section is to bound the gap between the lower bound LB(G) of Theorem 3.4 and the
upper bound PCGB* (G).

Sketch of the approach: Since PCGB* (G) = Tr(G) + Σx(m(x) − MCC (x)), we first bound the gap between
MC (x) and MCC (x) values (Lem. 5.1). We do it by applying a transformation Reduce to some interval collection
ND(x), checking that the gap is null for this Reduce(x) interval collection (Lems. 5.2 and 5.3), and bounding
the gap induced by reversing the Reduce transformation (Lem. 5.1). Next, we consider the interval collection X
as a whole, and derive from our local reasoning about MC (x) and MCC (x) values a global bound for the gap
between LB(G) and PCGB*(G).

5.1. Bounding the gap between MC(x) and MCC(x) values

We consider an interval graph G = (X, E), some node x, the set ND(x), and set:

• E1(x) = {(y, z) ∈ E, such that y and z ∈ ND(x ) − (A0(x) ∪B0(x))} ;
• E2(x) = {(y, z) ∈ E, such that y ∈ A0(x) ∪B0(x) and z ∈ ND(x ) − (A0(x) ∪B0(x))} .

Explanation. Precedence consistent orderings σ of X impose any y in A0(x) to be such that y σ x, and any
zin B0(x) to be such that x σ z. But the example related to Figure 7 shows that relaxing precedence consistency
may lead to put elements of A0(x) and B0(x) on the same side with respect to x, and put on the other side
elements of ND(x ) − (A0(x)∪ B0(x)) which are connected by a small number of anti-edges. At the end, this
may induce the difference between PCGB*(G) and GB*(G). If we refer now to our local distribution process
related to some node x and its non dominant neighbour set ND(x ), this gives rise to the intuition that the
difference between MC (x) and MCC (x) values is going to be due to edges of the sub-graph induced by ND(x )
which involve at least one node in ND(x ) − (A0(x) ∪B0(x)), that means to the edges in E1(x) and E2(x). On
another side, taken as a whole, subsets E1(x) and E2(x) have to be linked with the strong triangles: the sum
Σx∈X Card(E1(x)) provides us with the number of strong triangles {x, y, z} , which are such that both y and z
are included into x and Σx∈X Card(E2(x)) enumerates all strong triangles {x, y, z} such that x and y overlap,
while eventually counting twice a same triangle {x, y, z} in the case we simultaneously have z ⊂ x and z ⊂ y.
This last remark will help us in turning local Lemma 5.2 and 5.3 into global Theorem 5.5.

We say that ND(x) is reduced if any interval which is not in A0(x)∪ B0(x) may be considered as reduced
to 1 point, that means if for any y, z in ND(x) − A0(x) ∪ B0(x) we either have y � z or z � y. We denote
by Reduce(x) the reduced interval collection derived from ND(x) by replacing every y in ND(x) by an interval
u(x) according to the following scheme:

• u(y) = y if y ∈ A0(x) ∪B0(x);
(E5): u(y) is reduced to the interval [o(y), o(y) + ε], where ε very small, if y /∈ A0(x)∪B0(x) and Card({z ∈
A0(x) such that (y, z) ∈ E} ) > Card({z ∈ B0(x) such that (y, z) ∈ E} );
(E5’): u(y) is reduced to the point [d(y), d(y) + ε], where ε very small, if y /∈ A0(x) ∪B0(x) and Card({z ∈
A0(x) such that (y, z) ∈ E} ) < Card({z ∈ B0(x) such that (y, z) ∈ E} );

Figure 9 below shows the way we derive Reduce(x) from ND(x).

ND(x) =>Reduce(x)

Of course, the definitions of MC (x) and MCC (x) apply to Reduce(x): to any pair (A, B) of disjoint subsets
of ND(x) corresponds in a one-to-one way a pair (u(A) = {u(x), x ∈ A} , u(B) = {u(x), x ∈ B} ) of disjoint
subsets of Reduce(x), with a ρR(A, B) value defined by:

• ρR(A, B) = Card({[u(x), u(y)] ∈ anti-edge set induced by Reduce(x), such that x ∈ A and y ∈ B} ).
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  ND(x)   =>       Reduce(x) 

    

Figure 9. Deriving Reduce(x) from ND(x).

This allows us to set in a natural way:

• MCR(x) (MCCR(x)) = the value MC (x) (MCC (x)) computed while dealing with the Reduce(x) interval
collection and replacing the values ρ(A, B) by the ρR(A, B) values.

Lemma 5.1. The following inequalities hold:
(E6): MC(x) 6 MCR(x) 6 MC(x) + Card(E1(x)) + Card(E2(x));
(E7): MCCR(x) 6 MCC(x) + Card(E2(x))/2 + Card(E1(x)).

Proof. Any partition A ∪EX B of ND(x) yields a partition {u(x), x ∈ A} ∪Ex {u(x), x ∈ B} of Reduce(x),
and we have ρR(A, B) > ρ(A, B). We deduce MC (x) 6 MCR(x). If {u(x), x ∈ A} ∪Ex {u(x), x ∈ B} is an
optimal partition for Reduce(x), then the anti-edges which are involved in the computation of ρR(A, B) and
which are not involved in ρ(A, B) correspond to edges of E1(x) ∪ E2(x) which have been suppressed by the
transition from ND(x) to Reduce(x). We deduce MCR(x) 6 MC (x) + Card(E1(x)) + Card(E2(x)) and (E6).

As for (E7), we see that any precedence consistent partition {u(x), x ∈ A} ∪Ex {u(x), x ∈ B} of Reduce(x)
yields a precedence consistent partition A ∪Ex B of ND(x). The anti-edges which are involved in ρR(A, B) −
ρ(A, B) correspond either to edges of E1(x) or to edges of E2(x). In the case they correspond to edges of
E2(x), (E5) and (E5’) tell us that, for any zin ND(x)−A0(x)−B0(x), no more than half part of the edges of
E2(x) which may be written (y, z), y ∈ A0(x) ∪ B0(x) have been suppressed by the transition from ND(x) to
Reduce(x). We deduce that ρR(A, B) 6 ρ(A, B) + Card(E1(x)) + Card(E2(x))/2 and (E7). �

As a matter of fact, we may identify, for any y in ND(x) − A0(x) − B0(x), the interval u(y) of Reduce(x)
and its end-points o(u(y)) and d(u(y)). So we consider a strong precedence consistent partition (see previous
Sect. 4.3) A*∪EXB* of Reduce(x). A*∪EXB* induces an optimal ρR(A*, B*) value). Then we say that Reduce(x)
is regular if for any y ∈ A* and z ∈ B* we have y � z, and we claim:

Lemma 5.2. In case Reduce(x) is regular then: MCCR(x) = MCR(x).

Proof. As a matter of fact, it is enough to prove that if ND(x) is reduced, then MCC (x) = MC (x). Since we
are going to apply perturbations to current graph G throughout our reasoning, we use the ND(G, x) notation
for the non-dominant neighbour set when there is an ambiguity about the related graph. Let us set n =
Card(ND(x)) and m = Number of edges in the interval graph defined by ND(x). We suppose that ND(x) is
regular and we proceed by induction on n+m. In order to do it, we label {y1, . . . , yp, zq, . . . z1} the elements
of ND(x)−A0(x)−B0(x), in such a way that:

• u(y1)� . . .� u(yp)� u(zq)� . . .� u(z1);
• u(y1), . . . , u(yp) ∈ A*; u(z1), . . . , u(zq) ∈ B*.

If i > 1 and z ∈ A*∩A0(x) exist such that u(yi) � z � u(yi+1), then we see that, because ND(x) is regular,
making d(z) decrease until we get z � u(yi) makes m decrease by 1. Induction hypothesis applies to the



1142 A. QUILLIOT ET AL.

resulting interval graph G’. But A*∪EXB* remains a strong precedence consistent partition of ND(G′, x) with
unchanged ρ(A*, B*) value. Since removing an edge of the graph induced by ND(x) cannot make increase the
related MC (x) value, we conclude.

So, we may suppose that, for any z ∈ A*∩A0(x), we either have z � u(y1) or u(yp) < d(z), and we set:

AInf0 (x) = {z ∈ A0(x) such that z � u(y1)} and ASup0 (x) = {z ∈ A0(x) such that d(z) > u(yp)} . We may of
course proceed the same way with B* and suppose that for any z ∈ B*∩B0(x), we either have u(z1) � z or
u(zq) >o(z). By the same way, we set: BInf0 (x) = {z ∈ B0(x) such that z � u(z1)} and BSup0 (x) = {z ∈ A0(x)
such that u(zq) >o(z)} .

Let us suppose now that AInf0 (x) is not empty, and let us pick up y in AInf0 (x) such that d(y) is the largest
possible. Replacing y by some interval [d(y) − ε, d(y)], ε very small, turns the interval graph G into another
interval graph G’ in such a way that ND(G′, x) remains reduced and that A* and B* keep on defining a strong
� -consistent partition of ND(G′, x). Then we may apply the induction hypothesis and state that related values
MCCG′(x) and MCG′(x) are equal. But MCCG′(x) and MCCG(x) are also equal since the value ρ(A*, B* )
remains unchanged. Since MCG′(x) > MCG(x) = MC (x) we conclude. It comes that we may suppose that
AInf0 (x) is empty, and, by proceeding the same way with BInf0 (x), that BInf0 (x) is also empty.

Because of the strong precedence consistency of the partition A*∪EXB*, we see that: p − 1 6 Card(BSup0 (x))

+q and that : q − 1 < Card(ASup0 (x)) +p. In case both ASup0 (x) and BSup0 (x) are non empty, we see that we

must have (E8): p 6 Card(BSup0 (x)) +q or (E8-1):q < Card(ASup0 (x)) +p. In case (E8) holds, we remove one

element z from BSup0 (x). Because of (E8), A* and B* − {z} keep on defining a strong precedence consistent
partition of the resulting ND(G′, x) interval collection. Induction hypothesis applies and yields MCCG′(x) =
MCG′(x). But we also have MCCG(x) = MCCG′(x) + Card(A*). Since Card(A*) is exactly the number of anti-
edges with end-point z in ND(G, x), we have MC (x) = MCG(x) 6 MCG′(x)+ Card(A*). Then we conclude.
In case (E8-1) holds, we proceed the same way and see that we may suppose that at least one among ASup0 (x),

BSup0 (x) is empty.

So we may suppose that both AInf0 (x) and BInf0 (x) are empty, and that at least one among ASup0 (x), BSup0 (x)

(for instance BSup0 (x)) is empty. Then it is an easy matter to check that, if A ∪EX B is a partition of ND(x),

then we may move the elements of AInf0 (x) in such a way:

• we either have AInf0 (x) ⊆ A or AInf0 (x) ⊆ B;
• the value ρ(A, B) does not strictly decrease.

We may then rename A and B in such a way that AInf0 (x) ⊆ A. But once it is done, it is also an easy matter

to check that if we set k = Card(A−AInf0 (x)), then replacing in A the elements of A−AInf0 (x) by the k first
elements of {u(y1) , . . . , u(yp), u(zq), . . . , u(z1)} for the � linear ordering does not make the value ρ(A, B)
strictly decrease. That means that MCC (x) = and MC (x). We conclude. �

Lemma 5.3. In any case:
(E9): MCCR(x) = MCR(x).

Proof. We proceed by induction on the number of anti-edges of the interval graph defined by Reduce(x), while
considering the case when Reduce(x) is regular as our bottom case (Lem. 4.1). In order to do it, we consider
once again a strong precedence consistent partition A*∪EXB* of Reduce(x) and set:

• L = {End-points o(u(y)), y ∈ A* − A0(x), d(z), z ∈ A0(x)} ;
• R = {End-points d(u(y)), y ∈ B* − B0(x), o(z), z ∈ B0(x)} .

In case Reduce(x) is not regular then there must exist t and t’, t < t’, which are consecutive in L∪R, and such
that t ∈ R and t’ ∈ L. Because of the definition of L and R the intersection {t, t’} ∩ (A0(x)∪B0(x)) cannot be
empty. Then we see that switching t and t’ makes increase by 1 the number of anti-edges of the interval graph
defined by Reduce(x). By the same way, the quantity ρR(L, R) also increases by 1. We conclude. �
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Lemma 5.4. The following inequalities hold: 0 6 MC(x) − MCC(x) 6 Card(E1(x)) + Card(E2(x))/2.

Proof. The first part of the statement is trivial and directly follows from the definition of the quantities MC (x)
and MCC (x). The second one comes in a straightforward way from (E6), (E7) of Lemma 5.1 and (E9) of
Lemma 5.3 . �

We are now able to state the main result of this section: let us denote by Strong-Tr the number of strong
triangles (defined in Sect. 2.5).

Theorem 5.5. Let G = (X, E) be an interval graph. Then we have: PCGB*(G) − GB*(G) 6 PCGB*(G) −
LB(G) 6 Strong-Tr.

Remark 5.6. Notice that this approximation result improves the result (see [9]) which states that GB* (G,
σ-can) 6 2.GB*(G)+ Card(E), and which also means that σ-can produces a 2-approximation if we refer to the
standard definition of LAP.

Proof of Theorem 3. The idea which is behind the proof of Theorem 5.5 is to first turn, through summation local
bounds involved in Lemma 5.4 into a global bound and then use what was told at the beginning of Section 5.1
about the link which exists between the subsets E1(x), E2(x), x ∈ X, and the strong triangle notion.

Theorem 4.10 says that GB(G, σ-bal) = PCGB ∗ (G) = Tr(G) + Σx (m(x) − MCC (x)) and Theorem 3.4
says that GB*(G) > Tr(G) + Σx (m(x) − MC (x)) = LB(G). But, because of Lemma 5.4 , we know that, for
any x ∈ X, MC (x) − MCC (x) is non negative and does not exceed Card(E1(x)) + Card(E2(x))/2.

The sum Σx∈X Card(E1(x)) provides us with the number of strong triangles {x, y, z} , which are such that
both y and z are included into x. We denote by Strong1 the number of those strong triangles. When it comes
to Σx∈X Card(E2(x)), we see that it enumerates all strong triangles {x, y, z} such that x and y overlap, while
eventually counting twice a same triangle {x, y, z} in the case we simultaneously have z ⊂ x and z ⊂ y. Then,
it follows that Σx∈X Card(E2(x))/2 does not exceed the number Strong2 of strong triangles which are such that
x and y overlap. So we get:

GB(G, σ-bal) - OPT (G) 6 C-OPT (G) − LB(G) 6 Σx (MC (x) − MCC (x)) 6
Σx Card(E1(x)) + Card(E2(x))/2) = Strong1 +Σx Card(E2(x))/2 6 Strong1+ Strong2 = Strong-Tr.
Therefore, the result follows. �

Experimental comparison of GB(G, σ-can), GB*(G) and PCGB*(G).
We use the same instances as at the end of Section 3, in order to get an evaluation of the gap which may

exist between GB(G, σ-can), PCGB*(G) and GB*(G):

• GAP-BAL is the gap GAP-BAL= (GB(G, σ-bal) - GB*(G))/ GB*(G);
• GAP-can is the gap GAP-CAN = (GB(G, σ-can) - GB*(G))/ GB*(G);
• CPU times never exceed 1 ms (10−3 second), for both GB(G, σ-bal) and GB(G, σ-can).

Comment: Above results show that the linear ordering σ-bal yields a very good approximation of GB*(G),
since only instance group GR1 yields a maximal GAP-BAL value larger than 1%. It seems difficult to correlate
the behavior of σ-bal to either the size of the instance, (the worst result corresponds here to the smallest size)
or to the number Hof inclusion relation. Conversely, one may see that the practical performance of the intuitive
solution σ-can is not so good: though it solves the unit case in an exact way and may prevail itself with a worst
case 2-approximation ratio 2-approximation if we refer to the standard definition of LAP (see above Rem. 5.6),
it yields, in the general case and according to the above table, GAP-CAN values close to 30% in the average,
and larger than 80% in the worst case. The fact that LB(G) and PCGB*(G) provide us with respectively lower
and upper bounds which are very close in average to the optimal value GB*(G) opens the way to the design of
efficient branch and bound algorithms for LAP, provided we become able to design an efficient way to compute
the MC (x) values.
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Table 2. Comparing GB*(G), PCGB*(G) and GB(G, σ-can).

Instance Card(X ) Card(E) H
GAP-CAN% GAP-BAL%

Mean Min Max Mean Min Max

GR1 20 41.4 24.7 31.6 5.3 74.4 0.8 0 7.7

GR2 50 283.8 104.9 17.0 12.3 24.9 0.03 0 0.2

GR3 50 406.0 158.5 22.8 10.5 45.6 0.12 0 5.4

GR4 50 606.1 305.3 27.4 14.4 43.6 0 0 0

GR5 50 634.1 305.6 25.5 11.7 39.2 0.004 0 0.02

GR6 80 31.3 10.8 35.0 0 66.7 0 0 0

GR7 80 152.0 108.6 21.6 5.3 30.5 0 0 0

GR8 80 300.1 105.5 27.4 14.4 43.6 0 0 0

GR9 80 566.9 205.6 18.8 12.7 25.3 0 0 0

GR10 100 235.3 75.8 18.8 13.6 27.8 0.09 0 0.9

GR11 100 298.3 100.5 20.0 12.4 23.7 0.04 0 0.4

GR12 100 305.2 186.7 17.4 7.2 38.5 0.15 0 4.0

GR13 100 665.5 302.0 23.2 13.4 36.6 0.7 0 3.8

GR14 100 469.6 164.9 18.6 13.4 23.8 0 0 0

GR15 100 702.9 249.0 17.7 12.4 24.0 0 0 0

6. Conclusion

This paper addressed the Linear Arrangement problem while focusing on interval graphs. We first developed
a new lower bound LB, tight for unit interval graphs, then solved in an exact way the restriction PCLAP of LAP
which is obtained by imposing any linear arrangement to be consistent with the Precedence partial ordering,
and ended by bounding the gap, from both a theoretical and an experimental point of view, which is induced
by solving PCLAP instead of LAP.

Still, we could notice that important questions remain open. One of them is about the link between the Unit
Cost Max Cut Problem and the LAP problem. Would it be possible to tell more about properties which would
make Unit Cost Max Cut easy to solve on the complementary of interval graphs and about efficient related
algorithms? This would open the way to the design of efficient branch and bound LAP algorithms for interval
graphs. Also, our intuition is that the bound stated proposed in Theorem 5.5 could eventually be improved.
Finally, one may ask whether the methods which have been used throughout this paper could be applied to
classes of graphs which present some kind of similarities with interval graphs.

So, in the future, we plan trying to go further on these issues and more specifically studying the case of
circular and chordal graphs.
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