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A NOTE ON SECOND-ORDER KARUSH–KUHN–TUCKER NECESSARY

OPTIMALITY CONDITIONS FOR SMOOTH VECTOR OPTIMIZATION

PROBLEMS
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Abstract. The aim of this note is to present some second-order Karush–Kuhn–Tucker necessary
optimality conditions for vector optimization problems, which modify the incorrect result in ([10],
Thm. 3.2).
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1. Introduction

In this note, we are interested in second-order Karush–Kuhn–Tucker (KKT) optimality conditions for the
following constrained vector optimization problem

min f(x) (VP)

s.t. x ∈ Q0 := {x ∈ Rn : g(x) 5 0},

where f := (fi), i ∈ I := {1, . . . , l}, and g := (gj), j ∈ J := {1, . . . ,m} are twice continuously differentiable
vector-valued functions.

(KKT) optimality conditions are one of the greatest results in Optimization. In literature, there are two
types of (KKT) necessary optimality conditions for vector optimization problems; see [3] for more details. The
first one is called by strong (KKT) necessary conditions, i.e., when all the Lagrange multipliers of the objective
functions are positive. The second one is weak (KKT) necessary conditions, i.e., when not all the Lagrange
multipliers of the objective functions are zero.

It is well known that constraint qualifications and regularity conditions play an important role in establish-
ing (KKT)-type necessary optimality conditions. We recall here that these assumptions are called constraint
qualifications when they have to be fulfilled by the constraints of the problem, and they are called regularity
conditions when they have to be fulfilled by both the objectives and the constraints of the problem; see [3] for
more details.
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In 1994, Maeda [6] was the first to introduce a Generalized Guignard regularity condition and established
strong first-order (KKT) necessary optimality conditions for differentiable problems. Later on, Preda and
Chiţescu [9] derived results analogous to those obtained by Maeda [6] within the more general framework of the
semidifferentiable case. On the line of their work, many authors have derived strong first-order (KKT) necessary
conditions for efficiency in vector optimization problems both for smooth and nonsmooth cases; see [3–5].

One of the first investigations to obtain second-order (KKT) optimality conditions for smooth vector opti-
mization problems was carried out by Wang [11]. Then, Bigi and Castellani [1, 2] obtained some weak second-
order (KKT) optimality conditions by introducing some types of the second-order regularity conditions. In
2004, Maeda [7] was the first to propose a Abadie regularity condition and established strong second-order
(KKT) necessary conditions for C1,1 vector optimization problems. Then, using the so-called generalized Abadie
regularity condition, Rizvi and Nasser [10] obtained some second-order (KKT) necessary conditions for (VP).
However, the main result of Rizvi and Nasser ([10], Thm. 3.2) is not correct; see Example 2.5 in Section 2 below.

The aim of this note is to present some second-order (KKT) necessary optimality conditions for (VP), which
modify the incorrect result in ([10], Thm. 3.2). The rest of this note is organized as follows. In Section 2, we give
an example which shows that the result in ([10], Thm. 3.2) is not correct. Section 3 presents the main results.

2. A counterexample

In order to present a counterexample of ([10], Thm. 3.2), we need to recall some notations as follows. Let Rl

be the l-dimensional Euclidean space. For a, b ∈ Rl, by a 5 b, we mean ai 5 bi for all i = 1, . . . , l; by a ≤ b, we
mean a 5 b and a 6= b; and by a < b, we mean ai < bi for all i = 1, . . . , l. For any two vectors a = (a1, a2) and
b = (b1, b2) in R2, we denote the lexicographic order by

a 5lex b, iff a1 < b1 or a1 = b1 and a2 5 b2,

a <lex b, iff a1 < b1 or a1 = b1 and a2 < b2.

Definition 2.1. Let x0 ∈ Q0. We say that:

(i) x0 is an efficient solution to (VP) if there is no x ∈ Q0 satisfies f(x) ≤ f(x0).
(ii) x0 is a Geoffrion properly efficient solution to (VP) if it is efficient and there exists K > 0 such that, for

each i,
fi(x)− fi(x0)

fj(x0)− fj(x)
5 K,

for some j such that fj(x
0) < fj(x) whenever x ∈ Q0 and fi(x

0) > fi(x).

Let C be a nonempty subset of Rn, x0 ∈ C and u ∈ Rn. The tangent cone to C at x0 ∈ C is the set defined
by

T (C;x0) := {d ∈ Rn : ∃tk → 0+,∃dk → d, x0 + tkd
k ∈ C ∀k ∈ N}.

The second-order tangent set to C at x0 with respect to the direction u is the set defined by

T 2(C;x0, u) :=

{
v ∈ Rn : ∃tk → 0+,∃vk → v, x0 + tku+

1

2
t2kv

k ∈ C ∀k ∈ N
}
.

Clearly, T 2(C;x0, 0) = T (C;x0).
Fix x0 ∈ Q0, the active index set at x0 is defined by

J(x0) := {j ∈ J : gj(x
0) = 0}.

For each u ∈ Rn, put

I(x0;u) := {i ∈ I : 〈∇fi(x0), u〉 = 0},
J(x0;u) := {j ∈ J(x0) : 〈∇gj(x0), u〉 = 0}.
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We say that u is a critical direction of problem (VP) at x0 ∈ Q0 if

〈∇fi(x0), u〉 5 0 ∀i ∈ I,
〈∇fi(x0), u〉 = 0 at least one i ∈ I,
〈∇gj(x0), u〉 5 0 ∀j ∈ J(x0).

The set of all critical direction of problem (VP) at x0 is denoted by K(x0).
The following sets were introduced by Rizvi and Nasser [10]:

M i := Q0 ∩ {x ∈ Rn : fi(x) 5 fi(x
0)}, i ∈ I,

Q := {x ∈ Q0 : f(x) 5 f(x0)} =

l⋂
i=1

M i.

The linearizing cone to M i (resp. Q) at x0 ∈ Q0 is the set defined by

L(M i;x0) := {u ∈ Rn : 〈∇fi(x0), u〉 5 0, 〈∇gj(x0), u〉 5 0, j ∈ J(x0)}, i ∈ I.

(resp. L(Q;x0) := {u ∈ Rn : 〈∇fk(x0), u〉 5 0, k ∈ I; 〈∇gj(x0), u〉 5 0, j ∈ J(x0)}.)

For each (u, v) ∈ Rn × Rn, put

F 2
i (x0;u, v) :=

(
〈∇fi(x0), u〉, 〈∇fi(x0), v〉+ 〈∇2fi(x

0)u, u〉
)
, i ∈ I,

G2
j (x0;u, v) :=

(
〈∇gj(x0), u〉, 〈∇gj(x0), v〉+ 〈∇2gj(x

0)u, u〉
)
, j ∈ J,

and

L2(Q0;x0, u) := {v ∈ Rn : G2
j (x0;u, v) 5lex (0, 0), j ∈ J(x0)},

L2(Q;x0, u) := {v ∈ Rn : F 2
i (x0;u, v) 5lex (0, 0), i ∈ I

and G2
j (x0;u, v) 5lex (0, 0), j ∈ J(x0)},

L2(M i;x0, u) := {v ∈ Rn : F 2
i (x0;u, v) 5lex (0, 0),

and G2
j (x0;u, v) 5lex (0, 0), j ∈ J(x0)}, i ∈ I.

It is easily seen that L2(Q;x0, 0) = L(Q;x0), L2(Q0;x0, 0) = L(Q0;x0), and L2(M i;x0, 0) = L(M i;x0) for all
i ∈ I.

Definition 2.2. Let x0 ∈ Q0 and u ∈ Rn. We say that:
(i) (see [1], Def. 5.1) The Abadie second-oder constraint qualification holds at x0 for the direction u if

L2(Q0;x0, u) ⊂ T 2(Q0;x0, u). (ASOCQ)

(ii) (see [10], Rem. 3.1) The generalized Abadie second-order regularity condition holds at x0 for the direction u
if

L2(Q;x0, u) ⊂
l⋂

i=1

T 2(M i;x0, u). (GASORC)

(iii) The weak Abadie second-order regularity condition holds at x0 for the direction u if

L2(Q;x0, u) ⊂ T 2(Q0;x0, u). (WASORC)



570 D. SANG KIM AND N. VAN TUYEN

Remark 2.3. It is easily seen that the following implications hold:

(i) (GASORC) ⇒ (WASORC);
(ii) (ASOCQ) ⇒ (WASORC).

We recall the main result in ([10], Thm. 3.2) as follows.

Theorem 2.4 (see [10]). Let x0 ∈ Q0 be an efficient solution to (VP). Suppose that the (GASORC) holds at
x0 for each critical direction. Let u0 be a critical direction at x0. Then, there exist λ ∈ Rl and µ ∈ Rm such that

l∑
i=1

λi∇fi(x0) +

m∑
j=1

µj∇gj(x0) = 0, (2.1)

l∑
i=1

λi〈∇2fi(x
0)u0, u0〉+

m∑
j=1

µj〈∇2gj(x
0)u0, u0〉 = 0, (2.2)

µ = (µ1, µ2, . . . , µm) = 0, µj = 0, j /∈ J(x0;u0), (2.3)

λi > 0 if i ∈ I(x0;u0);λi = 0, i /∈ I(x0;u0). (2.4)

The following example shows that the conclusions of Theorem 2.4 are not correct.

Example 2.5. Consider the following problem

min f(x) (VP)

s. t. x ∈ Q0 := R2,

where f : R2 → R3 is a vector-valued function defined by

f(x) := (f1(x), f2(x), f3(x)) = (x2, x1 + x22,−x1 + x22).

Let x0 := (0, 0) ∈ Q0. We have

M1 = {(x1, x2) : x2 5 0},M2 = {(x1, x2) : x1 5 −x22},M3 = {(x1, x2) : x22 5 x1},

and x0 is an efficient solution to (VP) since Q = {x0}. It is easy to check that

K(x0) = {(u1, u2) ∈ R2 : u1 = 0, u2 5 0}.

For each critical direction u = (0, u2), where u2 < 0, it is easy to show that L2(Q;x0, u) = ∅. Thus,
the (GASORC) holds at x0 for the direction u. We now check the (GASORC) at x0 for the critical direc-
tion 0R2 := (0, 0). An easy computation shows that

T (M1;x0) = M1, T (M2;x0) = {(u1, u2) ∈ R2 : u1 5 0},
T (M3;x0) = {(u1, u2) ∈ R2 : u1 = 0},
3⋂

i=1

T (M i;x0) = L(Q;x0) = {(u1, u2) ∈ R2 : u1 = 0, u2 5 0}.

Since L2(Q;x0, 0R2) = L(Q;x0) and T 2(M i;x0, 0R2) = T (M i;x0) for all i = 1, 2, 3, we have

L2(Q;x0, 0R2) = L(Q;x0) =

3⋂
i=1

T (M i;x0) =

3⋂
i=1

T 2(M i;x0, 0R2).
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Thus, the (GASORC) holds at x0. Since I(x0, 0R2) = {1, 2, 3} and

λ1∇f1(x0) + λ2∇f2(x0) + λ3∇f3(x0) = 0⇔

{
λ1 = 0

λ2 = λ3,

it follows that the conclusions of Theorem 2.4 is not correct.
Furthermore, we see that the system

F 2
i (x0; 0R2 , v) = (0, v2) <lex (0, 0)

F 2
i (x0; 0R2 , v) = (0, v1) 5lex (0, 0)

F 2
i (x0; 0R2 , v) = (0,−v1) 5lex (0, 0), for all i = 1, 2, 3

admits a solution v = (0, v2), where v2 < 0. Thus, ([10], Thm. 3.1) is not correct, too.
We conclude this section with the remark that x0 is not a Geoffrion properly efficient solution to (VP).

Indeed, for each a > 0, put x =: (0,−a). Then we have f1(x) < f1(x0), f2(x) > f2(x0) and

lim
a↓0

f1(x)− f1(x0)

f2(x0)− f2(x)
= lim

a↓0

1

a
= +∞.

Therefore, x0 is not a Geoffrion properly efficient solution.

3. Main results

This section presents our main results, both for weak and strong second-order (KKT) necessary optimality
conditions.

Theorem 3.1 (Weak second-order (KKT) necessary optimality conditions). Let x0 ∈ Q0 be an efficient solution
to (VP). Suppose that the (WASORC) holds at x0 for each critical direction. Let u0 be a critical direction
at x0. Then, there exist λ ∈ Rl and µ ∈ Rm satisfying (2.1)–(2.3) and

λ = (λ1, λ2, . . . , λl) ≥ 0, λi = 0, i /∈ I(x0;u0). (3.1)

Proof. We first claim that the following system

F 2
i (x0;u, v) <lex (0, 0), i ∈ I, (3.2)

G2
i (x0;u, v) 5lex (0, 0), j ∈ J(x0) (3.3)

has no solution (u, v) ∈ Rn×Rn. Arguing by contradiction, assume that there exists (u, v) ∈ Rn×Rn satisfying
the system (3.2)–(3.3). It follows that v ∈ L2(Q;x0, u) and

〈∇fi(x0), u〉 5 0, i ∈ I,
〈∇gj(x0), u〉 5 0, j ∈ J(x0).

Thus u ∈ L(Q;x0). We claim that u ∈ K(x0). Indeed, if otherwise, then

〈∇fi(x0), u〉 < 0, ∀i ∈ I. (3.4)

Since 0 ∈ K(x0) and the (WASORC) holds at x0 for each critical direction, we have

L2(Q;x0, 0) = L(Q;x0) ⊂ T 2(Q0;x0, 0) = T (Q0;x0).
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This implies that u ∈ T (Q0;x0), i.e., there exist sequences τk → 0+, uk → u such that

x0 + τku
k ∈ Q0, ∀k ∈ N.

Since (3.4) and

lim
k→∞

fi(x
0 + τku

k)− fi(x0)

τk
= 〈∇fi(x0), u〉

it follows that there exists k0 ∈ N such that

fi(x
0 + τku

k) < fi(x
0), ∀i ∈ I, k = k0,

contrary to the fact that x0 is an efficient solution to (VP).
Since u ∈ K(x0) and the (WASORC) holds at x0 for each critical direction, we have v ∈ T 2(Q0;x0, u). Thus,

there exist a sequence {vk} converging to v and a positive sequence {tk} converging to 0 such that

xk := x0 + tku+
1

2
t2kv

k ∈ Q0, ∀k ∈ N.

By Taylor’s formula, for each i ∈ I, we have

fi(x
k)− fi(x0)− tk〈∇fi(x0), u〉 =

1

2
t2k
[
〈∇fi(x0), v〉+ 〈∇2fi(x

0)u, u〉
]

+ o(t2k)

for all k ∈ N. Thus

lim
k→∞

fi(x
k)− fi(x0)− tk〈∇fi(x0), u〉

1
2 t

2
k

= 〈∇fi(x0), v〉+ 〈∇2fi(x
0)u, u〉.

For each i ∈ I, we consider two cases as follows.

Case 1. i ∈ I(x0;u). This means that 〈∇fi(x0), u〉 = 0. By (3.2), we have

〈∇fi(x0), v〉+ 〈∇2fi(x
0)u, u〉 < 0.

From this and

lim
k→∞

fi(x
k)− fi(x0)

1
2 t

2
k

= lim
k→∞

fi(x
k)− fi(x0)− tk〈∇fi(x0), u〉

1
2 t

2
k

= 〈∇fi(x0), v〉+ 〈∇2fi(x
0)u, u〉

it follows that there exists k large enough such that fi(x
k) < fi(x

0).

Case 2. i ∈ I \ I(x0;u). This means that 〈∇fi(x0), u〉 < 0. Since

lim
k→∞

fi(x
k)− fi(x0)

tk
= 〈∇fi(x0), u〉 < 0,

it follows that fi(x
k) < fi(x

0) for large enough k. Thus

fi(x
k) < fi(x

0)

for all i ∈ I and large enough k, contrary to the fact that x0 is an efficient solution to (VP).
Fix u0 ∈ K(x0). Then the system

F 2
i (x0;u0, v) <lex (0, 0), i ∈ I,
G2

j (x0;u0, v) 5lex (0, 0), j ∈ J(x0)
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has no solution v ∈ Rn. This implies that the system

〈∇fi(x0), v〉+ 〈∇2fi(x
0)u0, u0〉 < 0, i ∈ I(x0;u0),

〈∇gj(x0), v〉+ 〈∇2gj(x
0)u0, u0〉 ≤ 0, j ∈ J(x0;u0),

has no solution v ∈ Rn. By the Motzkin theorem of the alternative ([8], p. 28), there exist λ ∈ Rl and µ ∈ Rm

satisfying (2.1)–(2.3) and (3.1). �

Next we prove that for Geoffrion properly efficient solutions, the (GASORC) guarantees strong second-order
(KKT) optimality conditions.

Theorem 3.2 (Strong second-order (KKT) necessary optimality conditions).
Let x0 ∈ Q0 be a Geoffrion properly efficient solution to (VP). Suppose that the (GASORC) holds at x0 for

each critical direction. Let u0 be a critical direction at x0. Then, there exist λ ∈ Rl and µ ∈ Rm satisfying (2.1)–
(2.3) and

λ = (λ1, λ2, . . . , λl) > 0. (3.5)

Proof. We first claim that the following system

F 2
i (x0;u, v) ≤lex (0, 0), i ∈ I, (3.6)

F 2
i (x0;u, v) <lex (0, 0), at least one i ∈ I, (3.7)

G2
j (x0;u, v) 5lex (0, 0), j ∈ J(x0) (3.8)

has no solution (u, v) ∈ Rn × Rn. Arguing by contradiction, assume that there exists a point (u, v) ∈ Rn × Rn

such that (3.6)–(3.8) hold. Without loss of generality one may assume that

F 2
1 (x0;u, v) <lex (0, 0). (3.9)

From (3.6) and (3.8) it follows that v ∈ L2(Q;x0, u) and

〈∇fi(x0), u〉 5 0, i ∈ I,
〈∇gj(x0), u〉 5 0, j ∈ J(x0).

Since the (GASORC) holds at x0 for any critical direction at x0, thanks to Theorem ([3], Thm. 4.3), we have

〈∇fi(x0), u〉 = 0

for all i ∈ I. Thus, u is a critical direction at x0. Since the (GASORC) at x0 for the critical direction u, we
have

v ∈
l⋂

i=1

T 2(M i;x0, u).

Consequently, v ∈ T 2(M1;x0, u). This implies that there exist a sequence {vk} converging to v and a positive
sequence {tk} converging to 0 such that

xk := x0 + tku+
1

2
t2kv

k ∈M1 ∀k ∈ N.

Clearly, {xk} ⊂ Q0. By (3.6) and (3.9), we have

〈∇f1(x0), v〉+ 〈∇2f1(x0)u, u〉 < 0, (3.10)

〈∇fi(x0), v〉+ 〈∇2fi(x
0)u, u〉 5 0 ∀i ∈ {2, . . . , l}. (3.11)
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For each i ∈ I, we have

lim
k→∞

fi(x
k)− fi(x0)

1
2 t

2
k

= 〈∇fi(x0), v〉+ 〈∇2fi(x
0)u, u〉. (3.12)

From this and (3.10), we have

f1(xk)− f1(x0) < 0

for all large enough k. Without loss of generality we may assume that

f1(xk) < f1(x0) ∀k ∈ N.

For each k ∈ N, put

Ik := {i ∈ I : i ≥ 2 and fi(x
k) > fi(x

0)}.

We claim that Ik is nonempty for all k ∈ N. Indeed, if Ik = ∅ for some k ∈ N , then we have

fi(x
k) 5 fi(x

0) ∀i = 2, . . . , l.

Using also the fact that f1(xk) < f1(x0), we arrive at a contradiction with the efficiency of x0.

Since Ik ⊂ {2, . . . , l} for all k ∈ N, we may assume without loss of generality that Ik = Ī is constant for all
k ∈ N. By (3.12), for each i ∈ Ī, we have

〈∇fi(x0), v〉+ 〈∇2fi(x
0)u, u〉 = 0.

This and (3.11) imply that

〈∇fi(x0), v〉+ 〈∇2fi(x
0)u, u〉 = 0 ∀i ∈ Ī . (3.13)

By (3.10), we can fix δ ∈ R such that 〈∇f1(x0), v〉+ 〈∇2f1(x0)u, u〉 < δ < 0, i.e.,

−[〈∇f1(x0), v〉+ 〈∇2f1(x0)u, u〉] > −δ > 0.

From this and (3.12) it follows that there exists k0 ∈ N such that

f1(x0)− f1(xk) > −1

2
δt2k > 0

for all k ≥ k0. Thus, for any i ∈ Ī and k ≥ k0, we have

0 <
fi(x

k)− fi(x0)

f1(x0)− f1(xk)
5
fi(x

k)− fi(x0)

− 1
2δt

2
k

·

From this, (3.12) and (3.13), we have

0 ≤ lim
k→∞

fi(x
k)− fi(x0)

f1(x0)− f1(xk)
5 lim

k→∞

fi(x
k)− fi(x0)

− 1
2δt

2
k

= −1

δ
[〈∇fi(x0), v〉+ 〈ξi, u〉] = 0.

Thus

lim
k→∞

f1(xk)− f1(x0)

fi(x0)− fi(xk)
= +∞,

contrary to the fact that x0 is a Geoffrion properly efficient solution to (VP).
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Let u0 be a critical direction at x0. By ([3], Thm. 4.3), 〈∇fi(x0), u0〉 = 0 for all i ∈ I. Since the system

F 2
i (x0;u0, v) ≤lex (0, 0), i ∈ I,

F 2
i (x0;u0, v) <lex (0, 0), at least one i ∈ I,

G2
j (x0;u0, v) 5lex (0, 0), j ∈ J(x0)

has no solution v ∈ Rn, it follows that the system

〈∇fi(x0), v〉+ 〈∇2fi(x
0)u0, u0〉 ≤ 0, i ∈ I,

〈∇fi(x0), v〉+ 〈∇2fi(x
0)u0, u0〉 < 0, at least one i ∈ I,

〈∇gj(x0), v〉+ 〈∇2gj(x
0)u0, u0〉 ≤ 0, j ∈ J(x0;u0),

has no solution v ∈ Rn. By the Motzkin theorem of the alternative, there exist λ ∈ Rl and µ ∈ Rm satisfy-
ing (2.1)–(2.3) and (3.5). �

Remark 3.3.

(i) Thanks to Remark 2.3(i), the conclusions of Theorem 3.1 still hold when the (WASORC) is replaced
by the (GASORC). However, by Example 2.5, even if the (GASORC) is satisfied, the conclusions of
Theorem 2.4 still does not hold.

(ii) Thanks to Example 2.5, Theorem 3.2 cannot be extended to the efficient solution of (VP).
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